TENSOR PRODUCTS OF POSITIVE DEFINITE QUADRATIC FORMS IV

YOSHIYUKI KITAOKA

Let L, M, N be positive definite quadratic lattices over Z. We treated the following problem in [5], [6]:

If $L \otimes M$ is isometric to $L \otimes N$, then is M isometric to N ?
We gave a condition (**) in [6] such that the answer is affirmative for an indecomposable lattice L satisfying (**), and we gave some examples. In this paper we introduce a certain apparently weaker condition (A) than the condition (**), and we show that the condition (A) implies the condition (**) and more on integral orthogonal groups than a result in [6].

By a positive lattice we mean a lattice of a positive definite quadratic space over the rational number field \boldsymbol{Q}. Terminology and notations are generally those from [8].

Let L be an indecomposable positive lattice. We consider the following two conditions (A), (B).
(A) For any given positive lattices M, N and for any isometry σ from $L \otimes M$ on $L \otimes N$ which satisfies that $\sigma(L \otimes m)=L \otimes n(m \in M, n \in N)$ implies $m=0, n=0$, there is a basis $\left\{v_{1}, \cdots, v_{n}\right\}$ of L (depending on M, N, σ) such that
(i) $\left[M: \sum_{i=1}^{n} M_{i}\right]<\infty,\left[N: \sum_{i=1}^{n} N_{i}\right]<\infty$ where $M_{i}=\{m \in M ; \sigma(L \otimes m)$ $\left.\subset v_{i} \otimes N\right\}, N_{i}=\left\{n \in N ; \sigma^{-1}(L \otimes n) \subset v_{i} \otimes M\right\}$, and
(ii) $\sigma\left(v_{i} \otimes M_{i}\right) \subset v_{i} \otimes N_{i}$ for $i=1,2, \cdots, n$.
(B) Let X be an indecomposable positive lattice. Then we have
(i) $L \otimes X$ is indecomposable,
(ii) if X is isometric to $L \otimes X^{\prime}$, then X^{\prime} is uniquely determined by X up to isometries, and
(iii) if $X=\otimes^{m} L \otimes X^{\prime}$ and $X^{\prime} \not \equiv L \otimes K$ for any positive lattice K, then the orthogonal group $O(X)$ of X is generated by $O(L), O\left(X^{\prime}\right)$ and
interchanges of L 's.
Our aim is to prove
Theorem. For an indecomposable positive lattice L, the conditions (A), (B) are equivalent.

1.

In this section we prove that (A) implies (B). Through this section L denotes an indecomposable positive lattice satisfying the condition (A).
1.1. Lemma 1. Let $M, N, M_{i}, N_{i}, \sigma$ be those as in the condition (A). Then we have $M=\sum M_{i}, N=\sum N_{i}, \sigma\left(L \otimes M_{i}\right)=v_{i} \otimes N$ and $M \cong N$ $\cong L \otimes K$. Defining μ by $\sigma\left(v_{i} \otimes m\right)=v_{i} \otimes \mu(m)\left(m \in M_{i}\right)$, we get an isometry μ from M on N such that $\mu\left(M_{i}\right)=N_{i}$. Especially the condition (A) implies the condition (**) in [6].

Proof. Take any element $m=\sum m_{i}$ of M where $m_{i} \in \boldsymbol{Q} M_{i}$; then $\sigma\left(v_{1} \otimes m\right)=\sum \sigma\left(v_{1} \otimes m_{i}\right)$ and $\sigma\left(v_{1} \otimes m_{i}\right)=v_{i} \otimes n_{i}$ for some n_{i} in $\boldsymbol{Q} N$ by the definition of M_{i}. Since $\sigma\left(v_{1} \otimes m\right)=\sum v_{i} \otimes n_{i}$ is an element of $L \otimes N$ and $\left\{v_{i}\right\}$ is a basis of L, we have $n_{i} \in N$. Hence it implies $v_{1} \otimes m_{i}$ $=\sigma^{-1}\left(v_{i} \otimes n_{i}\right) \in L \otimes M$ and so $m_{i} \in M$. As M_{i} is obviously primitive in M, we have $m_{i} \in M_{i}$ and $M=\sum M_{i}$. Since $\sigma\left(L \otimes M_{i}\right) \subset v_{i} \otimes N, M$ is a direct sum of M_{i}, and we have $\sigma(L \otimes M)=\sigma\left(L \otimes \sum M_{i}\right) \subset \sum v_{i} \otimes N$ $=L \otimes N$. This implies $\sigma\left(L \otimes M_{i}\right)=v_{i} \otimes N$. Hence N is isometric to $L \otimes K$ for some positive lattice $K . \quad \sigma\left(L \otimes M_{i}\right)=v_{i} \otimes N$ implies rank M_{i} $=\operatorname{rank} N / \operatorname{rank} L . \quad$ Similarly we have $N=\sum N_{i}$ (direct sum) and rank N_{i} $=\operatorname{rank} M / \operatorname{rank} L=\operatorname{rank} N / \operatorname{rank} L . \quad$ Since $v_{i} \otimes M_{i}, v_{i} \otimes N_{i}$ are primitive in $L \otimes M, L \otimes N$ respectively, and rank $v_{i} \otimes M_{i}=\operatorname{rank} v_{i} \otimes N_{i}$, the part (ii) in (A) implies $\sigma\left(v_{i} \otimes M_{i}\right)=v_{i} \otimes N_{i}$. Define μ by $\sigma\left(v_{i} \otimes m\right)=v_{i} \otimes \mu(m)$ for $m \in M_{i}$; then μ is an isomorphism from M on N. We must prove that μ is an isometry. Take elements $m_{i} \in M_{i}, m_{j} \in M_{j}$; then $B\left(v_{i} \otimes m_{i}\right.$, $\left.v_{j} \otimes m_{j}\right)=B\left(\sigma\left(v_{i} \otimes m_{i}\right), \sigma\left(v_{j} \otimes m_{j}\right)\right)=B\left(v_{i} \otimes \mu\left(m_{i}\right), v_{j} \otimes \mu\left(m_{j}\right)\right) \quad$ where B denotes the bilinear form associated with quadratic spaces in general. Hence we have $B\left(v_{i}, v_{j}\right) B\left(m_{i}, m_{j}\right)=B\left(v_{i}, v_{j}\right) B\left(\mu\left(m_{i}\right), \mu\left(m_{j}\right)\right)$, and $B\left(m_{i}, m_{j}\right)$ $=B\left(\mu\left(m_{i}\right), \mu\left(m_{j}\right)\right)$ for $B\left(v_{i}, v_{j}\right) \neq 0$. Suppose $B\left(v_{i}, v_{j}\right)=0$; then $B\left(L \otimes M_{i}\right.$, $\left.L \otimes M_{j}\right)=B\left(v_{i} \otimes N, v_{j} \otimes N\right)=0$ implies $B\left(M_{i}, M_{j}\right)=0$. Since the situations are symmetric with respect to M, N, we have $\sigma^{-1}\left(L \otimes N_{i}\right)=v_{i} \otimes M$, $\sigma^{-1}\left(v_{i} \otimes N_{i}\right)=v_{i} \otimes M_{i}, \sigma^{-1}\left(v_{i} \otimes n\right)=v_{i} \otimes \mu^{-1}(n)$ for $n \in N_{i}$. Therefore
$B\left(v_{i}, v_{j}\right)=0$ implies $B\left(N_{i}, N_{j}\right)=B\left(\mu\left(M_{i}\right), \mu\left(M_{j}\right)\right)=0$. Thus μ is an isometry. $\mu\left(M_{i}\right)=N_{i}$ is obvious by definition.

Corollary. The condition (A) implies (ii) in the condition (B).
Proof. This follows from Theorem in § 1 in [6].
1.2. In 1.1 we proved that the condition (A) implies the condition ${ }^{(* *)}$ in [6]. Let X, Y be positive lattices and let σ be an isometry from $L \otimes X$ on $L \otimes Y$. Then the proof of Theorem in $\S 1$ in [6] shows that there are orthogonal decompositions $X={\underset{i=1}{t}}_{L_{0, i} \perp M, Y={\underset{i}{i=1}}_{t} N_{0, i} \perp N}$ such that $\sigma\left(L \otimes M_{0, i}\right)=L \otimes N_{0, i}, \sigma(L \otimes M)=L \otimes N$, and $\sigma=\alpha_{i} \otimes \beta_{i}$ on $L \otimes M_{0, i}$ where $\alpha_{i} \in O(L), \beta_{i}: M_{0, i} \cong N_{0, i}$, and $\sigma(L \otimes m)=L \otimes n(m \in M, n \in N)$ implies $m=0, n=0$. Hence we have

Lemma 2. Let X, Y be indecomposable positive lattices and σ be an isometry from $L \otimes X$ on $L \otimes Y$. If there are non-zero elements $x \in X, y \in Y$ such that $\sigma(L \otimes x)=L \otimes y$, then we have $\sigma=\alpha \otimes \beta$ where $\alpha \in O(L), \beta: X \cong Y$. If $\sigma(L \otimes x)=L \otimes y(x \in X, y \in Y)$ implies $x=0, y=0$, then we have $X \cong Y \cong L \otimes K$ for some positive lattice K.
1.3. Lemma 3. Let M, N be indecomposable positive lattices, and suppose $M \otimes N=K_{1} \perp K_{2}\left(K_{1} \neq 0, K_{2} \neq 0\right)$. Then an isometry α of $M \otimes N$ defined by $\left.\alpha\right|_{K_{1}}=\operatorname{id}_{K_{1}},\left.\alpha\right|_{K_{2}}=-\mathrm{id}_{K_{2}}$ is not in $O(M) \otimes O(N)$.

Proof. Assume $\alpha=\sigma \otimes \mu, \sigma \in O(M), \mu \in O(N)$; then $\alpha^{2}=\sigma^{2} \otimes \mu^{2}=1$ implies (i) $\sigma^{2}=1, \mu^{2}=1$ or (ii) $\sigma^{2}=-1, \mu^{2}=-1$. Suppose $\sigma^{2}=1, \mu^{2}=1$, and put $M_{ \pm}=\{x \in M ; \sigma x= \pm x\}, N_{ \pm}=\{x \in N ; \mu(x)= \pm x\}$; then we have $\left[M: M_{+} \perp M_{-}\right]<\infty,\left[N: N_{+} \perp N_{-}\right]<\infty$. Fix a primitive element $n \in N$ such that $\mu(n)=\delta n(\delta= \pm 1)$. For any element $x=x_{+}+x_{-}$in M $\left(x_{+} \in \boldsymbol{Q} M_{+}, x_{-} \in \boldsymbol{Q} M_{-}\right)$, we have $x \otimes n=x_{+} \otimes n+x_{-} \otimes n$, and $\alpha\left(x_{+} \otimes n\right)$ $=\delta x_{+} \otimes n, \alpha\left(x_{-} \otimes n\right)=-\delta x_{-} \otimes n . \quad x \otimes n \in M \otimes N=K_{1} \perp K_{2}$ implies x_{+} $\otimes n \in K_{1}$ if $\delta=1, x_{+} \otimes n \in K_{2}$ if $\delta=-1$, and so $x_{+} \otimes n \in M \otimes N$. This means $x_{+} \in M$ and $x_{-} \in M$. Hence we have $M=M_{+} \perp M_{-}$. Since M is indecomposable, we have $M=M_{+}$or M_{-}and $\sigma= \pm 1$. Similarly we have $\mu= \pm 1$. This contradicts $\alpha=\sigma \otimes \mu \neq \pm 1$. Suppose $\sigma^{2}=-1, \mu^{2}$ $=-1$. Considering M as $Z[\sigma] \cong Z[\sqrt{-1}]$-module, M is isomorphic to $\oplus Z[\sqrt{-1}]$ as a $Z[\sqrt{-1}]$-module. Hence there is a submodule M_{1} such that $M=M_{1} \oplus \sigma\left(M_{1}\right)$. Similarly there is a submodule N_{1} of N such that
$N=N_{1} \oplus \mu\left(N_{1}\right)$. Taking a basis $\left\{m_{i}\right\}$ of M_{1} and a basis $\left\{n_{i}\right\}$ of N_{1}, we have a basis $\left\{m_{i} \otimes n_{j}, m_{i} \otimes \mu\left(m_{j}\right), \sigma\left(m_{i}\right) \otimes n_{j}, \sigma\left(m_{i}\right) \otimes \mu\left(n_{j}\right)\right\}$ of $M \otimes N$. Since $\alpha\left(m_{i} \otimes n_{j}\right)=\sigma\left(m_{i}\right) \otimes \mu\left(n_{j}\right), \alpha\left(m_{i} \otimes \mu\left(n_{j}\right)\right)=-\sigma\left(m_{i}\right) \otimes n_{j}$, we have $\left\{m_{i} \otimes n_{j}+\sigma\left(m_{i}\right) \otimes \mu\left(n_{j}\right), m_{i} \otimes \mu\left(n_{j}\right)-\sigma\left(m_{i}\right) \otimes n_{j}\right\}$ as a basis of K_{1} and $\left\{m_{i} \otimes n_{j}-\sigma\left(m_{i}\right) \otimes \mu\left(n_{j}\right), m_{i} \otimes \mu\left(n_{j}\right)+\sigma\left(m_{i}\right) \otimes n_{j}\right\}$ as a basis of K_{2}. This implies that $m_{i} \otimes n_{j}$ is not contained in $K_{1} \perp K_{2}=M \otimes N$. This is a contradiction.
1.4. Lemma 4. Let L be an indecomposable positive lattice satisfying the condition (A). Then we have
(i) $L \otimes L$ is indecomposable, and
(ii) $O(L \otimes L)=O(L) \otimes O(L) \cup O(L) \otimes O(L) \mu$, where $\mu \in O(L \otimes L)$ is an isometry defined by $\mu(x \otimes y)=y \otimes x$ for $x, y \in L$.

Proof. Take an isometry σ of $L \otimes L$. If there are non-zero elements x, y in L such that $\sigma(L \otimes x)=L \otimes y$, then Lemma 2 implies σ $\in O(L) \otimes O(L)$. Suppose that $\sigma(L \otimes x)=L \otimes y$ implies $x=y=0$; then there is a basis $\left\{v_{i}\right\}$ of L such that $\sigma\left(L \otimes L_{i}\right)=v_{i} \otimes L$, putting $L_{i}=\{x$ $\left.\in L ; \sigma(L \otimes x) \subset v_{i} \otimes L\right\}$. Hence we have $\operatorname{rank} L_{i}=1$, and put $L_{i}=Z\left[u_{i}\right]$. It yields $\mu \sigma\left(L \otimes u_{i}\right)=L \otimes v_{i}$. Therefore $\mu \sigma \in O(L) \otimes O(L)$ follows from Lemma 2. Thus we have $O(L \otimes L)=O(L) \otimes O(L) \cup \mu O(L) \otimes O(L)$. This completes the proof of (ii). Suppose that $L \otimes L=K_{1} \perp K_{2}\left(K_{1} \neq 0, K_{2} \neq 0\right)$. Define an isometry α of $L \otimes L$ by $\alpha=\mathrm{id}$. on $K_{1}, \alpha=-\mathrm{id}$. on K_{2}. Then Lemma 3 and (ii) in this lemma imply $\alpha=\left(\sigma_{1} \otimes \sigma_{2}\right) \mu$ where $\sigma_{1}, \sigma_{2} \in O(L)$. From $\alpha^{2}=1$ follows that, for $x_{1}, x_{2} \in L, x_{1} \otimes x_{2}=\left(\sigma_{1} \otimes \sigma_{2}\right) \mu\left(\sigma_{1}\left(x_{2}\right) \otimes \sigma_{2}\left(x_{1}\right)\right)$ $=\sigma_{1} \sigma_{2}\left(x_{1}\right) \otimes \sigma_{2} \sigma_{1}\left(x_{2}\right)$. This yields $\sigma_{1} \sigma_{2}= \pm 1$. Hence we may assume α $=\left(\sigma \otimes \sigma^{-1}\right) \mu(\sigma \in O(L))$, taking $-\alpha$ instead of α if necessary. Take a basis $\left\{e_{i}\right\}$ of L and decompose $\sigma\left(e_{i}\right) \otimes e_{j}$ as $\sigma\left(e_{i}\right) \otimes e_{j}=\left(\sigma\left(e_{i}\right) \otimes e_{j}+\alpha\left(\sigma\left(e_{i}\right)\right.\right.$ $\left.\left.\otimes e_{j}\right)\right) / 2+\left(\sigma\left(e_{i}\right) \otimes e_{j}-\alpha\left(\sigma\left(e_{i}\right) \otimes e_{j}\right)\right) / 2$. Then $\left(\sigma\left(e_{i}\right) \otimes e_{j}+\alpha\left(\sigma\left(e_{i}\right) \otimes e_{j}\right)\right) / 2$ $\in \boldsymbol{Q} K_{1},\left(\sigma\left(e_{i}\right) \otimes e_{j}-\alpha\left(\sigma\left(e_{i}\right) \otimes e_{j}\right)\right) / 2 \in \boldsymbol{Q} K_{2}$ and $L \otimes L=K_{1} \perp K_{2}$ imply $\left(\sigma\left(e_{i}\right)\right.$ $\left.\otimes e_{j}+\alpha\left(\sigma\left(e_{i}\right) \otimes e_{j}\right)\right) / 2 \in K_{1} . \quad$ Therefore we have $\left(\sigma\left(e_{i}\right) \otimes e_{j}+\sigma\left(e_{j}\right) \otimes e_{i}\right) / 2$ $\in L \otimes L$. This is a contradiction because $\left\{e_{i}\right\}$ is a basis of L.
1.5. Lemma 5. $\otimes^{m} L$ is indecomposable provided that the orthogonal group $O\left(\otimes^{m} L\right)$ is generated by $O(L)$ and interchanges of L 's and that $\otimes^{m-1} L$ is indecomposable.

Proof. By Lemma 4 we may assume $m \geq 3$. Suppose $\otimes^{m} L=K_{1} \perp K_{2}$ $\left(K_{1} \neq 0, K_{2} \neq 0\right)$ and define an isometry α of $O\left(\otimes^{m} L\right)$ by $\alpha=\mathrm{id}$. on K_{1},
$\alpha=-\mathrm{id}$. on K_{2}. By the assumption we have $\alpha=\left(\otimes_{\sigma_{i}}\right) \mu$ where σ_{i} $\in O(L)$ and μ is an isometry defined by $\mu\left(x_{1} \otimes \cdots \otimes x_{m}\right)=x_{\mu(1)} \otimes \cdots$ $x_{\mu(m)}$ (μ is considered as a permutation). $\quad \alpha^{2}=1$ implies $\alpha^{2}\left(x_{1} \otimes \cdots \otimes x_{m}\right)$ $=\alpha\left(\sigma_{1}\left(x_{\mu^{(1)}}\right) \otimes \cdots \otimes \sigma_{m}\left(x_{\mu(m)}\right)\right)=\sigma_{1}\left(\sigma_{\mu^{(1)}}\left(x_{\mu^{2}(1)}\right)\right) \otimes \cdots \otimes \sigma_{m}\left(\sigma_{\mu^{\prime}(m)}\left(x_{\mu^{2}(m)}\right)\right)=x_{1} \otimes$ $\cdots \otimes x_{m}$ for any $x_{i} \in L$. Hence we have $\mu^{2}=1$. Suppose $\mu(1)=1$; then $\alpha\left(x_{1} \otimes \cdots\right)=\sigma_{1}\left(x_{1}\right) \otimes \cdots$, and we have $\alpha \in O(L) \otimes O\left(\otimes^{m-1} L\right)$. This contradicts Lemma 3. Suppose $\mu(1)=j \geq 2$. Define an isometry μ_{j} by μ_{j} $\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{j} \otimes \cdots \otimes x_{m}\right)=x_{j} \otimes x_{2} \otimes \cdots \otimes x_{1} \otimes \cdots \otimes x_{m} ;$ then $\mu_{j} \alpha \mu_{j}^{-1}$ $\left(x_{1} \otimes \cdots \otimes x_{j} \otimes \cdots\right)=\mu_{j} \alpha\left(x_{j} \otimes \cdots \otimes x_{1} \otimes \cdots\right)=\mu_{j}\left(\sigma_{1}\left(x_{1}\right) \otimes \cdots \otimes \sigma_{j}\left(x_{j}\right) \otimes\right.$ $\cdots)=\sigma_{j}\left(x_{j}\right) \otimes \cdots \otimes \sigma_{1}\left(x_{1}\right) \otimes \cdots$. Hence we have $\mu_{j} \alpha \mu_{j}^{-1} \in O\left(\otimes^{2} L\right)$ $\otimes O\left(\otimes^{m-2} L\right)$ for $j=2$. This contradicts Lemma 3 since $\mu_{j} \alpha \mu_{j}^{-1}=\mathrm{id}$. on $\mu_{j}\left(K_{1}\right), \mu_{j} \alpha \mu_{j}^{-1}=-\mathrm{id}$. on $\mu_{j}\left(K_{2}\right)$. Suppose $\mu(1)=j \geq 3$. Defining an isometry μ^{\prime} by $\mu^{\prime}\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{j} \otimes \cdots\right)=x_{1} \otimes x_{j} \otimes \cdots \otimes x_{2} \otimes \cdots$, we have $\mu^{\prime} \mu_{j} \alpha \mu_{j}^{-1} \mu^{\prime-1}\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{j} \cdots\right)=\sigma_{j}\left(x_{2}\right) \otimes \sigma_{1}\left(x_{1}\right) \otimes \cdots . \quad$ Thus $\mu^{\prime} \mu_{j} \alpha \mu_{j}^{-1} \mu^{\prime-1} \in O\left(\otimes^{2} L\right) \otimes O\left(\otimes^{m-2} L\right)$. This is also a contradiction as in the case of $j=2$.
1.6. To prove that the condition (A) implies the condition (B), it is sufficient to show

Lemma. Let K be an indecomposable positive lattice such that K $\not \equiv L \otimes K^{\prime}$ for any lattice K^{\prime}. Then we have
(i) $\otimes^{m} L \otimes K$ is indecomposable, and
(ii) $O\left(\otimes^{m} L \otimes K\right)$ is generated by $O(L), O(K)$ and interchanges of L's.

Proof. We use the induction with respect to m. Suppose $m=1$; then Lemma 2 implies (ii), and (ii) and Lemma 3 imply (i). Suppose that (i), (ii) are true for $m=t$. Assume that there is an isometry σ $\in O \otimes{ }^{t+1} L \otimes K$) which is not in the subgroup generated by $O(L), O(K)$ and interchanges of L 's. Put $M=\otimes^{t} L \otimes K$; then $O(M)$ is generated by $O(L), O(K)$ and interchanges of L 's, and M is indecomposable. If there are non-zero elements $m, m^{\prime} \in M$ such that $\sigma(L \otimes m)=L \otimes m^{\prime}$, then Lemma 2 implies $\sigma \in O(L) \otimes O(M)$. This contradicts our assumption on σ. Hence for such an isometry σ follows that $\sigma(L \otimes m)=L \otimes m^{\prime}\left(m, m^{\prime}\right.$ $\in M$) implies $m=m^{\prime}=0$. Hence the condition (A) and Lemma 1 yield $\sigma\left(L \otimes M_{1}\right)=v_{1} \otimes M$ where $\left\{v_{i}\right\}$ is some basis of L and $M_{1}=\{m \in M$; $\left.\sigma(L \otimes m) \subset v_{1} \otimes M\right\}$. Defining an isometry μ_{2} by $\mu_{2}(x \otimes y \otimes z)=y \otimes x \otimes z$
$\left(x, y \in L, z \in \otimes^{t-1} L \otimes K\right)$, we have $\mu_{2} \sigma\left(L \otimes M_{1}\right)=L \otimes v_{1} \otimes\left(\otimes^{t-1} L\right) \otimes K$. Since $\mu_{2} \sigma$ is not contained in the subgroup generated by $O(L), O(K)$ and interchanges of L 's, $\mu_{2} \sigma(L \otimes m)=L \otimes m^{\prime}\left(m \in M_{1} \subset M, m^{\prime} \in v_{1} \otimes\left(\otimes^{t-1} L\right.\right.$ $\otimes K) \subset M$) implies $m=m^{\prime}=0$ as above. Applying the condition (A) to $\mu_{2} \sigma, M_{1}, v_{1} \otimes\left(\otimes^{t-1} L\right) \otimes K$ instead of σ, M, N respectively, we have $\mu_{2} \sigma(L$ $\left.\otimes M_{1,1}\right)=v_{1}^{\prime} \otimes v_{1} \otimes\left(\otimes^{t-1} L\right) \otimes K$ where $\left\{v_{i}^{\prime}\right\}$ is a basis of L and $M_{1,1}$ $=\left\{m \in M_{1} ; \mu_{2} \sigma(L \otimes m) \subset v_{1}^{\prime} \otimes v_{1} \otimes\left(\otimes^{t-1} L\right) \otimes K\right\}$. This is the similar situation to $\sigma\left(L \otimes M_{1}\right)=v_{1} \otimes\left(\otimes^{t} L\right) \otimes K$. Hence we have inductively $\mu_{t+1} \ldots$ $\mu_{2} \sigma\left(L \otimes M_{1}, \ldots, 1\right)=L \otimes v_{1} \otimes v_{1}^{\prime} \otimes \cdots \otimes v_{1}^{\prime \cdots \prime} \otimes K$, where μ_{j} is an isometry defined by $\mu_{j}\left(x_{1} \otimes \cdots \otimes x_{j} \otimes \cdots \otimes x_{t+1} \otimes y\right)=x_{j} \otimes \cdots \otimes x_{1} \otimes \cdots \otimes x_{t+1}$ $\otimes y\left(x_{i} \in L, y \in K\right)$. Since $L \otimes K$ is indecomposable, $M_{1, \ldots, 1}$ is also indecomposable. Moreover there are no non-zero elements $m \in M_{1, \ldots, 1} \subset M$, $m^{\prime} \in v_{1} \otimes v_{1}^{\prime} \otimes \cdots \otimes v_{1}^{\prime} \cdots \otimes K \subset M$ such that $\mu_{t+1} \cdots \mu_{2} \sigma(L \otimes m)=L \otimes m^{\prime}$. Lemma 2 implies $v_{1} \otimes v_{1}^{\prime} \otimes \ldots \otimes v_{1}^{\prime \cdots \prime} \otimes K \cong L \otimes K^{\prime}$ for some positive lattice K^{\prime}. This contradicts the assumption on K. Thus the part (ii) for m $=t+1$ has been proved. Now we must prove the part (i) for $m=t$ +1 . The part (ii) implies that $O\left(\otimes^{t+1} L \otimes K\right)=O\left(\otimes^{t+1} L\right) \otimes O(K)$, and $O\left(\otimes^{t+1} L\right)$ is generated by $O(L)$ and interchanges of L 's. From the part (i) for $m=t$ follows that $\otimes^{t} L$ is indecomposable. Hence Lemma 5 implies that $\otimes^{t+1} L$ is also indecomposable; then from Lemma 3 follows that $\otimes^{t+1} L \otimes K$ is indecomposable. This completes the proof.

2.

In this section we prove the converse.
Let L be an indecomposable positive lattice which satisfies the condition (B).
2.1. Let M, N be indecomposable positive lattices and let σ be an isometry from $L \otimes M$ on $L \otimes N$ such that $\sigma(L \otimes m)=L \otimes n(m \in M, n \in N)$ implies $m=0, n=0$. Fix any basis $\left\{v_{i}\right\}$ of L. Assume that $M \cong \otimes^{p} L$ $\otimes M^{\prime}, N \cong \otimes^{q} L \otimes N^{\prime}$ where M^{\prime}, N^{\prime} are not isometric to any lattice of the form $L \otimes K$. Since M, N are indecomposable, M^{\prime}, N^{\prime} are also indecomposable. Then the part (ii) in (B) implies $p=q$ and $\alpha: M^{\prime} \cong N^{\prime}$. Identifying M (resp. N) and $\otimes^{p} L \otimes M^{\prime}$ (resp. $\otimes^{p} L \otimes N^{\prime}$), we have σ $=\left(\sigma_{0} \otimes \ldots \otimes \sigma_{p} \otimes \beta\right) \eta$ by virtue of (iii) in (B) where $\sigma_{i} \in O(L), \beta \in O\left(N^{\prime}\right)$ and η is an isometry defined by $\eta\left(x_{0} \otimes \ldots \otimes x_{p} \otimes m\right)=x_{s(0)} \otimes \cdots \otimes x_{s(p)}$ $\otimes \alpha(m)\left(x_{0}, \cdots, x_{p} \in L, m \in M^{\prime}, s:\right.$ a permutation $) . \quad s(0)=0$ implies $\sigma\left(L \otimes x_{1}\right.$
$\left.\otimes \cdots \otimes x_{p} \otimes m\right)=L \otimes \sigma_{1}\left(x_{s(1)}\right) \otimes \cdots \otimes \sigma_{p}\left(x_{s(p)}\right) \otimes \beta \alpha(m) . \quad$ This contradicts our assumption on σ. Thus we have $s(0) \geq 1$. It is easy to see that $\sigma\left(v_{i} \otimes L \otimes \ldots \otimes L \otimes M^{\prime}\right)=L \otimes \cdots \otimes L \otimes_{\sigma_{s-1(0)}}\left(v_{i}\right) \otimes L \otimes \cdots \otimes L \otimes N^{\prime}$, $\sigma^{-1}\left(v_{i} \otimes L \otimes \cdots \otimes L \otimes N^{\prime}\right)=L \otimes \cdots \otimes L \otimes \sigma_{0}^{-1}\left(v_{i}\right) \otimes L \otimes \cdots \otimes L \otimes M^{\prime}$ where $\sigma_{s-1(0)}\left(v_{i}\right)$ (resp. $\sigma_{0}^{-1}\left(v_{i}\right)$) is on the $s^{-1}(0)+$ 1-th (resp. $s(0)+1$-th) component. Put $N_{i}=L \otimes \ldots \otimes L \otimes \sigma_{s^{-1}(0)}\left(v_{i}\right) \otimes L \otimes \cdots \otimes L \otimes N^{\prime}, M_{i}=L \otimes \ldots$ $\otimes L \otimes \sigma_{0}^{-1}\left(v_{i}\right) \otimes L \otimes \cdots \otimes L \otimes M^{\prime}$ where $\sigma_{s-1(0)}\left(v_{i}\right)$ (resp. $\left.\sigma_{0}^{-1}\left(v_{i}\right)\right)$ is on the $s^{-1}(0)$-th (resp. $s(0)$-th) component. Then we have $M_{i}=\{m \in M ; \sigma(L \otimes m)$ $\left.\subset v_{i} \otimes N\right\}, N_{i}=\left\{n \in N ; \sigma^{-1}(L \otimes n) \subset v_{i} \otimes M\right\}, M=\oplus M_{i}, N=\oplus N_{i}$, and $\sigma\left(v_{i} \otimes M_{i}\right)=v_{i} \otimes N_{i}$.

Hence we have proved that the condition (A) holds for indecomposable positive lattices M, N and for any fixed basis $\left\{v_{i}\right\}$ of L.
2.2. Let M, N be positive lattices and let σ be an isometry from $L \otimes M$ on $L \otimes N$ such that $\sigma(L \otimes m)=L \otimes n(m \in M, n \in N)$ implies $m=0$, $n=0$. Put $M=\perp M_{i}, N=\perp N_{i}$ where M_{i}, N_{i} are indecomposable; then the part (i) in (B) implies that $L \otimes M_{i}, L \otimes N_{i}$ are indecomposable. By virtue of $105: 1$ in [8] we may assume $\sigma\left(L \otimes M_{i}\right)=L \otimes N_{i}$. Hence 2.1 implies the condition (A) for decomposable lattices M, N.

3. Miscellaneous remarks

3.1. Let k be a totally real algebraic number field with maximal order O_{k}. We considered the following question in [3], [4] (see also [1], [2], [9]).

If σ is an isometry from $O_{k} L \cong O_{k} M$, where L, M are positive lattices, then does $\sigma(L)=M$ hold?

This is equivalent to the following if k / \boldsymbol{Q} is a Galois extension.
Assume that k is a totally real Galois extension over \boldsymbol{Q}. Let G be a finite group in $G L\left(n, O_{k}\right)$ such that $g(G)=\{g(A) ; A \in G\}=G$ for any g in $\operatorname{Gal}(k / \boldsymbol{Q})$. Then does $G \subset G L(n, Z)$ hold?

Sketch of the proof of the equivalence. Suppose that $G \subset G L\left(n, O_{k}\right)$ is given. Put $P=\sum_{A \in G}{ }^{t} A A$. Then P is a positive definite symmetric matrix with rational numbers as entries since $g(G)=G$ for any g in $\operatorname{Gal}(K / Q)$. Let L be a positive lattice corresponding to P. Then $O\left(O_{k} L\right)$ contains G. If $O\left(O_{k} L\right)=O(L)$ holds, then $G \subset G L(n, Z)$ holds. Conversely, suppose that $\sigma: O_{k} L \cong O_{k} M$ is given. Define an isometry $\tilde{\sigma}$ of $O\left(O_{k}(L \perp M)\right.$) by $\tilde{\sigma}=\sigma$ on $O_{k} L, \tilde{\sigma}=\sigma^{-1}$ on $O_{k} M$. Taking G as
$O\left(O_{k}(L \perp M)\right.$, we have $\tilde{\sigma} \in O(L \perp M)$ and $\sigma(L)=M$ if $G=O(L \perp M)$.
3.2. Let F be a totally real algebraic number field. Suppose that there is an unramified totally real Galois extension E of F. Denote the Galois group $G(E / F)$ by G. Put $V=F[G]$ (group ring) and introduce an inner product by $\left(g, g^{\prime}\right)=\delta_{g, g^{\prime}}$ (= Kronecker's delta) for $g, g^{\prime} \in G$. This makes V a positive definite quadratic space over F. We define the operation G to $E V=E[G]$ by $g^{\prime}\left(\sum_{g \in G} a_{i} g\right)=\sum_{g \in G} g^{\prime}\left(a_{i}\right) g^{\prime} g$ for $g^{\prime} \in G$, $a_{i} \in E$. Put $\tilde{L}=\perp_{g \in G} O_{E} g, L=\left\{\sum_{g \in G} g\left(a 1_{G}\right) ; a \in O_{E}\right\}$. Then $\tilde{L}=O_{E} L$ and L is an indecomposable quadratic lattice over O_{F} [3]. Put M $=\perp_{g \in G} O_{F} g$; then $\tilde{L}=O_{E} M$. Hence we have
(a) L, M are not isometric positive lattices over O_{F}, but $O_{E} L, O_{E} M$ are isometric.

Defining an inner product in O_{E} by $(x, y)=\operatorname{tr}_{E / F} x y\left(x, y \in O_{E}\right)$, we have a positive lattice \tilde{O}_{E}. Taking traces, we have $\tilde{O}_{E} \otimes L \cong \tilde{O}_{E} \otimes M$. Here $\tilde{O}_{E} \otimes L$ is decomposable since $O_{E} L$ is decomposable. \tilde{O}_{E} is indecomposable because it is isometric to L. Hence we have, putting N $=\tilde{O}_{E}$,
(b) L, N are indecomposable positive lattices over O_{F} but $L \otimes N$ is decomposable.
(c) $N \otimes L \cong N \otimes M$ but $L \not \equiv M$.

References

[1] H.-J. Bartels, Zur Galoiskohomologie definiter arithmetischer Gruppen, J. reine angew. Math. 298 (1978), 89-97.
[2] ——, Definite arithmetische Gruppen, ibid. 301 (1978), 27-29.
[3] Y. Kitaoka, Scalar extension of quadratic lattices, Nagoya Math. J. 66 (1977), 139-149.
[4] -, Scalar extension of quadratic lattices II, ibid. 67 (1977), 159-164.
[5] -, Tensor products of positive definite quadratic forms, Göttingen Nachr. Nr. 4 (1977).
[6] -, Tensor products of positive definite quadratic forms II, J. reine angew. Math. 299/300 (1978), 161-170.
[7] -, Tensor products of positive definite quadratic forms III, Nagoya Math. J. 70 (1978), 173-181.
[8] O. T. O’Meara, Introduction to quadratic forms, Berlin, Heidelberg, New York (1971).
[9] J. H. Yang, Positive definite quadratic forms under some field extensions, A. M. S. Notices 23 (1976), A-424.

Department of Mathematics
Nagoya University

