ON THE MODULE STRUCTURE IN A CYCLIC EXTENSION OVER A p-ADIC NUMBER FIELD

YOSHIMASA MIYATA

Let p be a prime. Let k be a p-adic number field and \mathfrak{o} be the ring of all integers of k. Let K / k be a cyclic totally ramified extension of degree p^{n} with Galois group G. Clealy the ring \mathfrak{O} of all integers of K is an $\mathfrak{o}[G]$-module, and the purpose of this paper is to give a necessary and sufficient condition for the $\mathfrak{o}[G]$-module \mathfrak{D} to be indecomposable.

In §§1-2, we shall prepare some lemmas. In §§ 3-4, we shall obtain the necessary and sufficient condition (Theorem 3).

Throughout this paper, let π be a prime element of k and e be the absolute ramification index of k. For a positive rational integer a, we define a function $m(a)$ by

$$
m(a)=\left[\frac{(p-1)(a+1)}{p}\right] .
$$

1.

In this section, we shall obtain some inequalities for ramification numbers. Let F / k be a cyclic ramified extension of prime degree p with the first ramification number b. Let \mathfrak{O}_{F} be the ring of all integers of F. Let e, π and $m(a)$ be the same as in Introduction. Then it is well known that

$$
m(b) \leqq e
$$

and

$$
\begin{equation*}
\operatorname{tr}_{F / k} \mathfrak{O}_{F}=\left(\pi^{m(b)}\right), \tag{1}
\end{equation*}
$$

where $\operatorname{tr}_{F / k}$ denotes the trace map from F to k (for example, see [2]).
Let ζ be a primitive p-th root of 1 . Let F^{\prime} and k^{\prime} be the extensions
Received October 8, 1977.
$F(\zeta)$ and $k(\zeta)$ respectively. Then the degree d of k^{\prime} over k divides $p-1$ and k^{\prime} / k is tamely ramified. As F / k is a cyclic extension of degree p, so is F^{\prime} / k^{\prime}. As is well known, the only one ramification number b^{\prime} of F^{\prime} / k^{\prime} is $d b$. Then we have the following lemma.

Lemma 1. Let F, F^{\prime}, b and b^{\prime} be as stated in the above. Then $m(b)<e$ if and only if $m\left(b^{\prime}\right)<d e$.

Proof. Since the extension F^{\prime} / F is tamely ramified, $\operatorname{tr}_{F^{\prime} / F} \mathfrak{D}_{F^{\prime}}=\Im_{F}$. Then, from (1), we have $\operatorname{tr}_{F^{\prime} / k} \mathfrak{D}_{F^{\prime}}=\left(\pi^{m(b)}\right)$. We can choose a prime element π^{\prime} of k^{\prime} such that $\pi^{\prime d} \in k$. Clearly $\operatorname{tr}_{k^{\prime} / k} \pi^{\prime i}=0$ for $1 \leqq i \leqq d-1$ and $\operatorname{tr}_{k^{\prime} / k} \pi^{\prime d}=d \pi^{\prime d}$. d is a unit of k. Then we obtain easily that

$$
\operatorname{tr}_{F^{\prime} / k} \mathfrak{D}_{F^{\prime}}=\operatorname{tr}_{k^{\prime} / k} \operatorname{tr}_{F^{\prime} / k^{\prime}} \mathfrak{D}_{F^{\prime}}=\left(\pi^{\left[m\left(b^{\prime}\right) / d\right]}\right)
$$

Hence $\left(\pi^{m(b)}\right)=\left(\pi^{\left[m\left(b^{\prime}\right) / d\right]}\right)$. This proves our assertion.
Let K be a cyclic totally ramified extension of degree p^{n} of k with the Galois group G. Since K / k is cyclic, we see that there exist n ramification numbers b_{1}, \cdots, b_{n}. The b_{i}-th ramification group is a subgroup $\left\langle g^{p^{i-1}}\right\rangle$ generated by $g^{p i-1}$, where g denotes a generator of G.

Lemma 2. Let $K / k, b_{1}, \cdots, b_{n}$ be as above. Then if $m\left(b_{1}\right)<e$, $m\left(b_{i}\right)<p^{i-1} e$ for each $i, 1 \leqq i \leqq n$.

Proof. As is easily seen, it is sufficient to prove only for the case $n=2$. From Lemma 1 , we can assume that k contains a primitive p th root of 1 without any loss of generality of this proof. From a result of B. F. Wyman ([3], Corollary 26), we have that if $b_{1} \geqq \frac{e}{p-1}$,

$$
b_{2}=b_{1}+p e,
$$

and if $b_{1}<\frac{e}{p-1}$,

$$
b_{2} \leqq \frac{p^{2} e}{p-1}-(p-1) b_{1} .
$$

At first, we suppose $b_{1} \geqq \frac{e}{p-1}$. Then

$$
\begin{aligned}
m\left(b_{2}\right) & =\left[\frac{(p-1)\left(b_{1}+p e+1\right)}{p}\right]=(p-1) e+\left[\frac{(p-1)\left(b_{1}+1\right)}{p}\right] \\
& =(p-1) e+m\left(b_{1}\right)
\end{aligned}
$$

From the assumption $m\left(b_{1}\right)<e$, it follows that $m\left(b_{2}\right)<p e$.
Next, we suppose $b_{1}<\frac{e}{p-1}$. Put

$$
\frac{(p-1)\left(b_{1}+1\right)}{p}=m\left(b_{1}\right)+\frac{r}{p} .
$$

Then

$$
\begin{aligned}
m\left(b_{2}\right) & \leqq\left[\frac{(p-1)\left\{\frac{p^{2} e}{p-1}-(p-1) b_{1}+1\right\}}{p}\right] \\
& =p e+(p-1)-(p-1) m-r .
\end{aligned}
$$

From $r \leqq p-1$ and $m<e$, it follows $m\left(b_{2}\right)<p e$. Clearly this completes the proof.
2.

In this section, we study the properties of idempotents of the group ring $k[G]$. Let G be a cyclic group of order p^{n} and let g denote a generator of G. Let θ be a primitive p^{n}-th root of 1 and let k^{\prime} be k^{\prime} $=k(\theta)$. Setting

$$
\varepsilon_{i}=\frac{1}{p^{n}} \sum_{j=0}^{p^{n}-1}\left(\theta^{-i}\right)^{j} g^{j}, \quad 0 \leqq i \leqq p^{n}-1
$$

we see that ε_{i} is an idempotent and $g_{\varepsilon_{i}}=\theta^{i} \varepsilon_{i}$. Let H be $H=\left\langle g^{p^{n-1}}\right\rangle$. Obviously H is a subgroup of order p. We denote by T the idempotent $\frac{1}{p}\left(\sum_{h \in H} h\right)$ in $k[G]$. The canonical map from G onto the factor group G / H induces the ring homomorphism φ from the group ring $k[G]$ onto $k[G / H]$. Then we have the following two lemmas.

Lemma 3. Let G be a cyclic group of order p^{n}. Let ε_{i} and φ be as stated in the above. Suppose that k contains a primitive p^{n}-th root θ of 1 . Then $\varphi\left(\varepsilon_{i}\right)=0$ for $0 \leqq i<p^{n}$ if and only if $(i, p)=1$.

Proof. From easy computations, we can obtain $\operatorname{ker} \varphi=k[G](1-T)$. Then $\varepsilon_{i} \in \operatorname{ker} \varphi$ if and only if $\varepsilon_{i} T=0$. From $g^{p^{n-1}} \varepsilon_{i}=\theta^{i p^{n-1}} \varepsilon_{i}, T \varepsilon_{i}$ $=\frac{1}{p}\left\{\sum_{j=0}^{p-1}\left(\theta^{i p^{n-1}}\right)^{j}\right\} \varepsilon_{i}$. We note that $\sum_{j=0}^{p-1}\left(\theta^{i p^{n-1}}\right)^{j}=0$ if and only if $(i, p)=1$.

Clearly this completes the proof of the lemma.
Lemma 4. Suppose that k does not contain a primitive p^{n}-th root θ of 1 . Let G be a cyclic group of order p^{n} and let S be a subgroup $\left\langle g^{p}\right\rangle$. Let ε be an idempotent of $k[G]$ such that $\varphi(\varepsilon)=0$. Then, if $n \geqq 2, \varepsilon \in k[S]$.

Proof. From our assumption, the extension $k(\theta) / k\left(\theta^{p}\right)$ is a cyclic extension of degree p with the Galois group V. It is easily seen that there exists an element σ of V such that $\sigma(\theta)=\theta^{1+p^{n-1}}$. We can consider σ as an automorphism of $k^{\prime}[G]$ in the usual way. Now for $0 \leqq i<p^{n}$, $\varepsilon \varepsilon_{i}=\varepsilon_{i}$ or 0 . If $\varepsilon \varepsilon_{i}=\varepsilon_{i}$, then $\varepsilon \varepsilon_{i}^{\sigma}=\varepsilon_{i}^{\sigma}$ because $\varepsilon^{\sigma}=\varepsilon$. Hence $\varepsilon\left(\sum_{j=0}^{p-1} \varepsilon_{i}^{\sigma j}\right)$ $=\sum_{j=0}^{p-1} \varepsilon_{i}^{\sigma^{j}}$. Put $\sum_{j=0}^{p-1} \varepsilon_{i}^{\sigma^{j}}=\sum_{\ell=0}^{p^{n-1}} a_{\ell} g^{\ell}$ in $k^{\prime}[G]$. Then

$$
a_{\ell}=\sum_{j=0}^{p-1}\left(\theta^{-i \ell}\right)^{\sigma j}=\theta^{-i \ell}\left(\sum_{j=0}^{p-1}\left(\theta^{-i \ell}\right)^{p^{n-1 j}}\right) .
$$

Therefore, if $(i, p)=1=(\ell, p)$, we have $a_{\ell}=0$. Since $\varphi(\varepsilon)=0$, it follows from Lemma 3 that if $\varepsilon \varepsilon_{i}=\varepsilon_{i}$, then $(i, p)=1$. Let $\varepsilon=\sum_{\varepsilon=0}^{p^{n}-1} b_{\ell} g^{\varepsilon}$ in $k[G]$. The fact which we have just shown implies $b_{\ell}=0$ for $0 \leqq \ell$ $<p^{n}$ with $(\ell, p)=1$. This completes the proof.

3.

In this section, we treat the case that the extension K / k is a Kummer extension. We use the same notations as in previous two sections. Let K / k be a cyclic totally ramified extension of degree p^{n}. Throughout this section, we suppose k contains a primitive p^{n}-th root θ of 1 . Then we see that there exists an element A of K such that

$$
K=k(A) \quad \text { and } \quad A^{p^{n}}=\pi^{p^{m}} u
$$

where $0 \leqq m \leqq n$ and u is a unit of k. Furthermore, we may take the unit u such that $u-1 \in(\pi)$ since the degree of the extension is a power of p. Let b_{1}, \cdots, b_{n} be the sequence of the ramification numbers of K / k as in $\S 1$. Let $K_{i}=k\left(A^{p^{n-i}}\right)$ for $0 \leqq i \leqq n$. Then the degree of the extension K_{i} / k is p^{i}.

Lemma 5. Let A, m and u be as stated in the above. Then, if $m=0$, or $m>0$ and $u-1 \oplus\left(\pi^{2}\right)$, we have $m\left(b_{1}\right)=e$.

Proof. By the hypothesis, $K_{1}=k(\sqrt[p]{\pi u})$ or $K_{1}=k(\sqrt[p]{u})$. From a
result of B. F. Wyman ([3], Corollary 13), we have $b_{1}=\frac{p e}{p-1}$ or $\frac{p e}{p-1}-1$. Then $m\left(b_{1}\right)=e$.

Now we consider the case that $m>0$ and $u-1 \in\left(\pi^{2}\right)$. Write u in the form $u=1+\pi^{2} u_{0}$, where u_{0} is an integer of k. For $1 \leqq i<p^{n-1}$ with $(i, p)=1$, we define an element B_{i} of K by

$$
B_{i}=\frac{A^{i}}{\pi^{j}}\left\{1+\frac{A^{p^{n-1}}}{\pi^{p^{m-1}}}+\cdots+\left(\frac{A^{p n-1}}{\pi^{p^{m-1}}}\right)^{p-1}\right\},
$$

where $j=\left[\frac{i p^{m}}{p^{n}}\right]+1$.
Lemma 6. Suppose that $m>0$ and $u-1 \in\left(\pi^{2}\right)$. Let B_{i} be as stated in the above. Then B_{i} is an element of \mathfrak{D}.

Proof. We denote the valuation of K by val. Clearly val $\pi=p^{n}$. From $m>0, K_{1}=k(\sqrt[p]{u})$. Put $\sqrt[p]{u}=1+U . \quad(1+U)^{p}=1+\pi^{2} u_{0}$. Therefore we have val $U \geqq 2 p^{n-1}$.

$$
\begin{equation*}
u_{0} \pi^{2}=(1+U)^{p}-1=U\left(\sum_{j=0}^{p-1}(1+U)^{j}\right) \tag{2}
\end{equation*}
$$

Now we evaluate the valuation of the sum $\sum_{j=0}^{p-1}(1+U)^{j}$. By the formula $\sum_{r=m}^{n}\binom{r}{m}=\binom{n+1}{m+1}$, we obtain

$$
\sum_{j=0}^{p-1}(1+U)^{j}=\sum_{j=0}^{p-1}\binom{p}{j+1} U^{j}
$$

Clearly from val $U \geqq 2 p^{n-1}$, it follows that val $\sum_{j=0}^{p-1}(1+U)^{j} \geqq p^{n}$. By (2), we have

$$
\begin{equation*}
\operatorname{val} U \leqq p^{n}+\operatorname{val} u_{0} \tag{3}
\end{equation*}
$$

Here we note that $A^{p^{n-1}}=\pi^{p^{m-1} p} u$. Therefore

$$
\begin{aligned}
B_{i} & =\frac{A^{i}}{\pi^{j}}\left(1+\sqrt[p]{u}+(\sqrt[p]{u})^{2}+\cdots+(\sqrt[p]{u})^{p-1}\right) \\
& =\frac{A^{i}}{\pi^{j}} \frac{u-1}{\sqrt[p]{u}-1}
\end{aligned}
$$

Hence

$$
\operatorname{val} B_{i}=i p^{m}+2 p^{n}+\operatorname{val} u_{0}-j p^{n}-\operatorname{val} U
$$

By the definition of $j, i p^{m}+p^{n}-j p^{n} \geqq 0$, and we obtain

$$
\text { val } B_{i} \geqq p^{n}+\operatorname{val} u_{0}-\operatorname{val} U
$$

From (3), val $B_{i} \geqq 0$. Then B_{i} belongs to \mathfrak{O}.
We are now ready to prove the following theorem which is the main aim of this section.

Theorem 1. Suppose k contains a primitive p^{n}-th root of 1. Let K / k be a cyclic totally ramified extension of degree p^{n}. Then the ring \mathfrak{D} of all integers in K is an indecomposable o[G]-module if and only if $m\left(b_{1}\right)<e$.

Proof. First, suppose $m\left(b_{1}\right)=e$. Then, from Lemma 2, we have $m\left(b_{n}\right)=p^{n-1} e$. Let T be the idempotent $\frac{1}{p}\left(\sum_{\ell=0}^{p-1}\left(g^{p^{n-1}}\right)^{\ell}\right)$ as in § 2 . Then it follows from (1) that $T \subseteq \subseteq \subseteq$, and so \mathfrak{D} posseses a direct sum decomposition

$$
\mathfrak{O}=T \mathfrak{O} \oplus(1-T) \mathfrak{O} .
$$

Therefore \mathfrak{D} is not indecomposable, and we have proved that if \mathfrak{D} is indecomposable, then $m\left(b_{1}\right)<e$.

Next suppose $m\left(b_{1}\right)<e$. We use induction on the length n of a tower of intermediate fields

$$
k=K_{0} \subset K_{1} \subset \cdots \subset K_{n}=K
$$

As a immediate consequence of Theorem 1 of [1], we obtain the result for $n=1$. Assume the result holds for the extension whose length is fewer than n. Let E be an $\mathfrak{o}[G]$-endomorphism of \mathfrak{O} such that $E^{2}=E$ (i.e. a projection). Then we can consider E as an idempotent of $k[G]$. Let $\mathfrak{\Im}_{i}$ be the ring of all integers in K_{i}, so \mathfrak{D}_{i} is an o[G]-submodule of \mathfrak{O}. Then $E \mathfrak{@}_{n-1} \subseteq \mathfrak{D}_{n-1}$. φ denotes the canonical map from $k[G]$ to $k[G / H]$ as in $\S 2$, where H is the Galois group of the extension K / K_{n-1}. For any element α of K_{n-1}, we have $E \alpha=\varphi(E) \alpha$. From our inductive assumption, \mathfrak{D}_{n-1} is an indecomposable $\mathrm{o}[G / H]$-module, so that $\varphi(E)=1$ or 0 . Without loss of generality, we may assume $\varphi(E)=1$. Since T is the identity map of $\mathfrak{S}_{n-1}, E-T \in \operatorname{ker} \varphi$. Put $E=T+E_{1}$. Let I be the set defined by

$$
I=\left\{i \mid 0 \leqq i<p^{n},(i, p)=1\right\}
$$

Then, from Lemma 3, there exists a subset I_{0} of the set I such that $E_{1}=\sum_{i \in I_{0}} \varepsilon_{i}$, where ε_{i} is the primitive idempotent of $k[G]$ defined as in §2. For $1 \leqq i<p^{n-1}$ with $(i, p)=1$, let I_{i} be $I_{i}=\left\{i, i+p^{n-1}, \cdots, i\right.$ $\left.+(p-1) p^{n-1}\right\}$. Now suppose $I_{i} \cap I_{0} \neq I_{i}$. Let r be the number of elements in $I_{i} \cap I_{0}$. From the hypothesis, $I_{i} \cap I_{0} \neq I_{i},(r, p)=1$. For the integer B_{i} defined before, it is easy to see that

$$
\operatorname{val}\left(E B_{i}\right)=\operatorname{val}\left\{\left(\sum_{\ell \in I_{0 \cap I_{i}}} \varepsilon_{\ell}\right) B_{i}\right\}=\operatorname{val}\left(r \frac{A^{i}}{\pi^{j}}\right) .
$$

By the definition of j, val $\left(\frac{A^{i}}{\pi^{j}}\right)<0$. Since $(r, p)=1$, val $(r)=0$. Therefore we have $\operatorname{val}\left(E B_{i}\right)<0$, which is a contradiction. Thus we have obtained $I_{0} \supseteq I_{i}$ for each i with $1 \leqq i<p^{n-1}$ and (i, p) $=1$. This implies $I_{0}=I$. Then it follows from Lemma 3 that $E_{1}=1-T$. Hence $E=1$, and which completes the proof.
4.

In this section, we treat the case that k does not contain any primitive p^{n}-th root of 1 . We use the same notations as in the previous sections. Then we have

Theorem 2. Suppose k does not contain any primitive p^{n}-th root θ of 1 . Let K / k be a cyclic totally ramified extension of degree p^{n}. Then the ring \mathfrak{D} of all integers in K is an indecomposable $\mathfrak{o}[G]-m o d u l e$ if and only if $m\left(b_{1}\right)<e$.

Proof. Precisely from the same arguments as in the proof of Theorem 1, it is sufficient to prove that if $m\left(b_{1}\right)<e$, then \subseteq is indecomposable. Now we assume $m\left(b_{1}\right)<e$. We also use induction on n as in the proof of Theorem 1. From Theorem 1 of [1], we obtain at once the result for $n=1$. Assume the result holds for the fewer length than n. Then, we can write $E=T+E_{1}$ and $E_{1}=\sum_{i \in I_{0}} \varepsilon_{i}$ in $k(\theta)[G]$. Let S be $S=\left\langle g^{p}\right\rangle$ as before. Since $\theta \& k$, it follows from Lemma 4 that $E_{1} \in k[S]$. Therefore E belongs to $k[S]$. Clearly S is the Galois group of the extension K / K_{1}, which contains ($n-1$) intermediate fields. We see that b_{2} is the first ramification number for K / K_{1} (for example, see [2]). From Lemma 2 and our assumption $m\left(b_{1}\right)<e$, we have $m\left(b_{2}\right)<p e$.

Then, by the inductive assumption and Theorem 1, we can see that \mathfrak{D} is an indecomposable $\mathfrak{D}_{1}[S]$-module. Thus we obtain $E=1$, and this completes the proof.

Finally, from Theorem 1 and Theorem 2, we have the following theorem which is the main aim of this short paper.

THEOREM 3. Let K / k be a cyclic totally ramified extension of degree p^{n}. Let b_{1} be the first ramification number for K / k. Then the ring \mathfrak{O}
 $m\left(b_{1}\right)<e$.

References

[1] Y. Miyata, On the module structure of the ring of all integers of a \mathfrak{p}-adir number field, Nagoya Math. J. 54 (1974), 53-59.
[2] J. P. Serre, Corps Locaux, Paris, 1962.
[3] B. F. Wyman, Wildly ramified gamma extension, Amer. J. Math. 91 (1969), 135-152.

Faculty of Education
Shizuoka University

