N. Nakagoshi Nagoya Math. J. Vol. 73 (1979), 41-60

THE STRUCTURE OF THE MULTIPLICATIVE GROUP OF RESIDUE CLASSES MODULO p^{N+1}

NORIKATA NAKAGOSHI

§1. Introduction

Let k be an algebraic number field of finite degree and p be a prime ideal of k, lying above a rational prime p. We denote by $G(p^{N+1})$ the multiplicative group of residue classes modulo p^{N+1} ($N \ge 0$) which are relatively prime to p. The structure of $G(p^{N+1})$ is well-known, when N = 0, or k is the rational number field Q. If k is a quadratic number field, then the direct decomposition of $G(p^{N+1})$ is determined by A. Ranum [6] and F.H-Koch [4] who gives a basis of a group of principal units in the local quadratic number field according to H. Hasse [2]. In [5, Theorem 6.2], W. Narkiewicz obtains necessary and sufficient conditions so that $G(p^{N+1})$ is cyclic, in connection with a group of units in the padic completion of k.

The structure of $G(\mathfrak{p}^{N+1})$ is confirmed by that of the *p*-Sylow subgroup and the *p*-rank of $G(\mathfrak{p}^{N+1})$ is given by T. Takenouchi [8]. If an algebraic number field *k* contains a primitive *p*-th root of unity, the *p*-rank is also given by H. Hasse [3, Teil I_a , §15].

In the present paper we shall establish the direct decomposition of $G(p^{N+1})$ for each N which gives another proof of T. Takenouchi's results [8].

\S 2. Notation and an outline of the investigation

Let e and f be the ramification index and the degree of \mathfrak{p} over Q, respectively. Put $e_1 = \left[\frac{e}{p-1}\right]$, where [x] is the maximal integer $\leq x$. We denote by Z(m) a cyclic group of order m.

Let H_{N+1} be the (N + 1)-th unit group of the p-adic completion $k_{\mathfrak{p}}$ of k, that is,

Received October 3, 1977.

NORIKATA NAKAGOSHI

$$H_{N+1} = \{\eta \in k_{\mathfrak{p}} | \eta \equiv 1 \mod \mathfrak{p}^{N+1}\} \qquad (N = 0, 1, \cdots).$$

 H_1 is called a group of principal units of k_v . Then one verifies easily that

$$G(\mathfrak{p}^{N+1}) \cong Z(p^f - 1) \times H_1/H_{N+1}$$
 (direct),

whence H_1/H_{N+1} is isomorphic to the *p*-Sylow subgroup of $G(p^{N+1})$.

Let $b_N(\nu)$ be a number of elements of a basis of H_1/H_{N+1} whose orders are exactly $p^{\nu}(\nu \ge 1)$. Then H_1/H_{N+1} is expressed as direct product:

$$H_1/H_{N+1} \cong \prod_{\nu=1}^{\infty} (Z(p^{\nu}) \times \cdots \times Z(p^{\nu})) .$$

For our purpose it will suffice to establish a basis of H_1/H_{N+1} for each $N \ge 0$.

For any multiplicative group G we denote by $G^{p^{\nu}}$ a subgroup of G generated by $\sigma^{p^{\nu}}$ where $\sigma \in G$ and $\nu \geq 1$. We define the *p*-rank R_N of $G(p^{N+1})$ by

$$p^{R_N} = (G(\mathfrak{p}^{N+1}):G(\mathfrak{p}^{N+1})^p) .$$

 R_N will be given by Theorem 1 in §3.

We let π be a prime element of k_{ν} , fixed once for all. Put

$$(1) -p = \varepsilon \pi^e ,$$

where ε is a unit of $k_{\mathfrak{p}}$. Moreover, we let $\{\omega_i\}_{1 \le i \le f}$ be a system of representatives in $k_{\mathfrak{p}}$ for a basis of the residue class field modulo \mathfrak{p} over the prime field.

Let Z_p be the ring of *p*-adic integers. Then H_1 is a multiplicative Z_p -group and its system of generators over Z_p is given by H. Hasse [2].

THEOREM A (H. Hasse [2]). Suppose that k_{*} does not contain a primitive p-th root of unity. Put

$$\eta_{is} = 1 + \omega_i \pi^s \qquad egin{pmatrix} i = 1, \cdots, f \ 1 \leq s \leq pe/(p-1), s \equiv 0 \mod p \end{pmatrix}.$$

Then $\{\eta_{is}\}$ is a \mathbb{Z}_p -basis of H_1 .

Let ζ_{μ} be a primitive p^{μ} -th root of unity for each $\mu \geq 0$. Then we have

THEOREM B (H. Hasse [2]). Suppose that $k_{\mathfrak{p}}$ contains ζ_{μ} ($\mu \geq 1$), but does not contain $\zeta_{\mu+1}$. Let λ and e_0 be integers such that

$$e=arphi(p^{\lambda})e_{\scriptscriptstyle 0}$$
 ,

where φ is Euler's function and e_0 is prime to p. Put

$$egin{aligned} &\eta_{is}=1+\omega_i\pi^s & egin{pmatrix} i=1,\,\cdots,\,f\ 1&\leq s\leq e+e_1=pe/(p-1),\,s\equiv 0 mod p \end{pmatrix},\ &\eta_*=1+\omega_0\pi^{e+e_1} \end{aligned}$$

where $\omega_1, \dots, \omega_f$ satisfy the following conditions:

$$\omega_1^{p^{\lambda}} - \varepsilon \omega_1^{p^{\lambda-1}} \equiv 0 \mod \mathfrak{p} , \qquad \omega_i^{p^{\lambda}} - \varepsilon \omega_i^{p^{\lambda-1}} \equiv 0 \mod \mathfrak{p} \ (2 \leq i \leq f)$$

and ω_0 is a unit of k_{ν} for which a congruence

$$X^p - \epsilon X \equiv \omega_0 \mod \mathfrak{p}$$

has no solution X in k_{ν} .

Then $\{\eta_{is}, \eta_*\}$ is a system of generators of H_1 over Z_p .

We note that $\lambda \geq \mu$.

Now we sketch a plan to determine a basis of H_1/H_{N+1} . Let $\mu e + e_1 \le N < (\mu + 1)e + e_1$ and $t \ge 1$. Then we see by Lemma 7 in §5 that if $\mu = 0$, $b_{te+N}(\nu + t) = b_N(\nu)$; if $\mu \ge 1$, $b_{te+N}(\mu) = 1 + b_N(\mu - t)$, $b_{te+N}(\mu + t) = b_N(\mu) - 1$ and $b_{te+N}(\nu + t) = b_N(\nu)$, where $\nu \ne \mu$ and $\nu + t \ne \mu$. Hence it is enough to compute $b_N(\nu)$ for $0 \le N < (\mu + 1)e + e_1$.

We assume that $k_{\mathfrak{p}}$ contains ζ_{μ} ($\mu \geq 0$) but does not contain $\zeta_{\mu+1}$.

First suppose that $\mu = 0$. Let $\eta_{is}H_{N+1}$ be cosets of H_{N+1} in H_1 , where η_{is} are principal units defined by Theorem A. From Theorem A a system of canonical generators for H_1/H_{N+1} is given by

(2)
$$\{\eta_{is}H_{N+1}\},\$$

where $1 \leq i \leq f, 1 \leq s \leq \min(N, pe/(p-1))$ and $s \equiv 0 \mod p$. Let $g_N(\nu)$ be a number of generators of (2) such that $\eta_{is}^{p\nu} \equiv 1 \mod p^{N+1}$. In §5 we shall prove

(3)
$$g_N(1) + \sum_{\nu=2}^{\infty} \nu(g_N(\nu) - g_N(\nu - 1)) = Nf$$

(see (17) in §5), hence (2) is a basis of H_1/H_{N+1} . Then $b_N(\nu)$ are given as follows:

NORIKATA NAKAGOSHI

(4)
$$\begin{cases} b_N(1) = g_N(1) ,\\ b_N(\nu) = g_N(\nu) - g_N(\nu - 1) , \quad (\nu \ge 2) \end{cases}$$

Furthermore, we shall compute orders $p^{\nu(N;i,s)}$ of η_{is} modulo \mathfrak{P}^{N+1} , using Corollary 8 in §5. Then we can determine a basis of H_{N+1} for each N (see Proposition 11 in §5). Since a basis of H_1 is given by Theorem A, the direct decomposition of H_1/H_{N+1} is easily obtained.

Secondly we assume $\mu \geq 1$. Put

(5)
$$S = \{(i,s) | 1 \leq i \leq f, 1 \leq s \leq e + e_1 = pe_1, \\ s \equiv 0 \mod p, (i,s) \neq (1,e_0) \}.$$

The number of elements of S is equal to (ef - 1). If $\lambda = \mu$, then $\eta_{1e_0} = \zeta_{\mu}$ and $\{\eta_*, \eta_{is}\}_{(i,s)\in S}$ is a Z_p -basis of $H_1([2, p. 232])$. If $\lambda > \mu$, then we observe by [2, p. 231] that

(6)
$$\eta_{le_0}^{p^{\lambda-\mu}} = \zeta_{\mu} \cdot \eta_{*}^{\beta_*} \prod_{(i,s) \in S} \eta_{is}^{\beta_{is}},$$

where β_* and β_{is} are *p*-adic integers. Let H_{01} be a multiplicative Z_p -group generated by $\{\eta_*, \eta_{is}\}_{(i,s) \in S}$. Then by [2, p. 230] we have a direct decomposition of H_{01} :

(7)
$$H_{01} = \langle \eta_* \rangle \times \prod_{(i,s) \in S} \langle \eta_{is} \rangle$$
 (direct),

where $\langle \eta \rangle$ stands for a cyclic group generated by η .

Let η_*H_{N+1} , $\eta_{is}H_{N+1}$ be cosets of H_{N+1} in H_1 and $p^{\nu(N:*)}$, $p^{\nu(N:*,s)}$ be their orders in H_1/H_{N+1} , respectively. From Theorem B we have a system of canonical generators for H_1/H_{N+1} as follows:

(8₁)
$$\{\eta_{is}H_{N+1}\}, \quad \text{if } 1 \leq N < e + e_1,$$

(8₂)
$$\{\eta_* H_{N+1}, \eta_{is} H_{N+1}\}, \quad \text{if } e + e_1 \leq N,$$

where $1 \leq i \leq f, 1 \leq s \leq \min(N, e + e_1)$ and $s \equiv 0 \mod p$. Let $g_N(\nu)$ be a number of generators defined by (8_1) or (8_2) such that $\eta_{is}^{p\nu} \equiv 1 \mod p^{N+1}$, $\eta_*^{p\nu} \equiv 1 \mod p^{N+1}$. Then (8_1) or (8_2) is a basis of H_1/H_{N+1} if and only if the equality (3) holds. It will be proved by (17) in §5 that (i) (8_1) is a basis of H_1/H_{N+1} , (ii) (8_2) is a basis of H_1/H_{N+1} if and only if $\nu(N:1, e_0)$ $= \lambda$. If the equality (3) holds, then $b_N(\nu)$ are given by (4).

If $N \ge e + e_1$ and $\nu(N:1, e_0) \ne \lambda$, then it will be possible to determine a basis of H_{N+1} (see Proposition 11 in §5) and we observe that

 H_{N+1} is a subgroup of H_{01} . Hence we can find a relation between η_* , η_{1e_0} and η_{is} modulo \mathfrak{p}^{N+1} (see (18) in § 6) which is induced by (6). Let Z be the ring of rational integers. Let M be a free Z-module generated by $\tilde{\eta}_*, \tilde{\eta}_{1e_0}$ and $\tilde{\eta}_{is}$ ((i, s) $\in S$). Let $\psi: M \to H_1/H_{N+1}$ be a homomorphism defined by $\psi(\tilde{\eta}_*) \equiv \eta_* \mod \mathfrak{p}^{N+1}, \psi(\tilde{\eta}_{1e_0}) \equiv \eta_{1e_0} \mod \mathfrak{p}^{N+1}$ and $\psi(\tilde{\eta}_{is}) \equiv \eta_{is} \mod \mathfrak{p}^{N+1}$. Then we shall have a system of canonical generators for Ker ψ . Hence the direct decomposition of $H_1/H_{N+1} \cong M/\text{Ker } \psi$ will be obtained using elementary divisors of a certain matrix (see (9) of Theorem 3) whose entries are $p^{\nu(N;i,s)}, p^{\nu(N;*)}$ and p-components of exponents appearing in the relation (18) in § 6.

§3. Theorems

We shall prove the following assertions:

THEOREM 1 (cf. [3] and [8]). The p-rank R_N of $G(\mathfrak{p}^{N+1})$ is given by

$$R_{N} = \begin{cases} \left(N - \left[\frac{N}{p}\right]\right)f, & \text{ if } 0 \leq N < e + e_{1}, \\ ef, & \text{ if } N \geq e + e_{1} \text{ and } k_{\mathfrak{p}} \oplus \zeta_{1}, \\ ef + 1, & \text{ if } N \geq e + e_{1} \text{ and } k_{\mathfrak{p}} \oplus \zeta_{1}. \end{cases}$$

THEOREM 2. Suppose that k_{ν} does not contain ζ_1 . Let $0 \leq N \leq e + e_1$. Then it follows that for each $t \geq 0$

$$G(\mathfrak{p}^{te+N+1}) \cong Z(p^f-1) \times \prod_{\nu=1}^{\infty} (Z(p^{\nu+t}) \times \cdots \times Z(p^{\nu+t})) \times (Z(p^t) \times \cdots \times Z(p^t)) \times (Z(p^t) \times \cdots \times Z(p^t))$$

where R_{te+N} , R_N are p-ranks of $G(p^{te+N+1})$, $G(p^{N+1})$, respectively, and

$$b_N(\nu) = \left(\left[\frac{N}{p^{\nu-1}} \right] - 2 \left[\frac{N}{p^{\nu}} \right] + \left[\frac{N}{p^{\nu+1}} \right] \right) f.$$

THEOREM 3. Suppose that $k_{\mathfrak{p}}$ contains ζ_{μ} ($\mu \geq 1$) but does not contain $\zeta_{\mu+1}$. Let λ and $e_{\mathfrak{q}}$ be as in Theorem B. Then the direct decomposition of $G(\mathfrak{p}^{N+1})$ is expressed as follows:

(I) In the case where $1 \leq N \leq e + e_1$,

$$G(\mathfrak{p}^{N+1})\cong Z(p^{f}-1) imes \prod_{\mathfrak{p}=1}^{\infty} (\underbrace{Z(p^{\mathfrak{p}})}_{\mathfrak{b}_{N}(\mathfrak{p})- ext{times}} \underbrace{Z(p^{\mathfrak{p}})}_{\mathfrak{b}_{N}(\mathfrak{p})- ext{times}})$$
 ,

where $b_N(v)$ are equal to those of Theorem 2.

(II) In the case where $e + e_1 \leq N < (\mu + 1)e + e_1$ and $\nu (N:1, e_0) = \lambda$,

$$G(\mathfrak{p}^{N+1}) \cong Z(p^f-1) \times \prod_{\mathfrak{p}=1}^{\infty} (Z(\underline{p^{\mathfrak{p}})}_{b_N(\mathfrak{p})-\operatorname{times}} \times Z(p^{\mathfrak{p}}));$$

 $b_N(\nu)$ are given as follows:

Let a be a rational integer $(1 \leq a \leq \mu)$ such that $ae + e_1 \leq N < (a + 1)e + e_1$.

For
$$\nu \leq a - 1$$
, $b_N(\nu) = 0$.
For $\nu = a$, $b_N(a) = \left((a + 1)e - N + \left[\frac{N - ae}{p}\right]\right)f + \beta_N(a)$.
For $\nu \geq a + 1$,
 $b_N(\nu) = \left(\left[\frac{N - (a + \delta - 1)e}{p^{\nu - a - \delta}}\right] - 2\left[\frac{N - (a + \delta - 1)e}{p^{\nu - a - \delta + 1}}\right] + \left[\frac{N - (a + \delta - 1)e}{p^{\nu - a - \delta + 2}}\right]f + \beta_N(\nu)$,

where

$$eta_N(a) = egin{cases} 2 \ , & if \ a = \lambda = \mu \ , \ 1 \ , & if \ a = \lambda \ , \ \end{pmatrix} egin{array}{c} eta_N(
u) = egin{array}{c} 1 \ , & if \
u = \lambda \ge a + 1 \ , \ -1 \ , & if \
u = \lambda + a \ , \ 0 \ , & otherwise \ (
u \ge a + 1) \ \end{pmatrix} \end{pmatrix}$$

and

$$\delta = egin{cases} 0 \ , & if \ N = ae + e_1 \ , \ 1 \ , & if \ ae + e_1 < N < (a + 1)e + e_1. \end{cases}$$

(III) In the case where $e + e_1 < N < (\mu + 1)e + e_1$ and $\nu (N:1, e_0) > \lambda$, there exists a rational integer $a (1 \leq a \leq \mu)$ such that $ae + e_1 \leq N < (a + 1)e + e_1$. Let $p^{a'_{i*}}$ be p-components of $\beta_{i*}p^{\mu}$ where β_{i*} are p-adic integers defined by (6). Put

$$a_{is} = \min \{ \nu(N : i, s), a'_{is} \}$$
 for $(i, s) \in S$,

where S is given by (5). If $N = ae + e_1$ and $(e + e_1)/p^{\nu-a+1} < s \leq (e + e_1)/p^{\nu-a}$, then $\nu(N:i,s) = \nu \geq a$; if $ae + e_1 < N < (a + 1)e + e_1$ and $(N - ae)/p^{\nu-a} < s \leq (N - ae)/p^{\nu-a-1}$, then $\nu(N:i,s) = \nu \geq a$. Let $p^{c_0}, p^{c_1}, \dots, p^{c_{sf}}$ be elementary divisors of the following $(ef + 2) \times (ef + 1)$ -matrix

It then follows that

$$G(\mathfrak{p}^{N+1})\cong Z(p^{f}-1) imes Z(p^{c_0}) imes Z(p^{c_1}) imes\cdots imes Z(p^{c_{\ell f}})$$
 .

(IV) In the case where $\mu e + e_1 \leq N \leq (\mu + 1)e + e_1$, we let $G(\mathfrak{p}^{N+1})$ be of type $(p^f - 1, p^{\mu}, p^{d_1}, \dots, p^{d_{\mathfrak{s}f}})$ which is determined by (II) and (III). Then $G(\mathfrak{p}^{te+N+1})$ is of type $(p^f - 1, p^{\mu}, p^{d_1+t}, \dots, p^{d_{\mathfrak{s}f}+t})$ for each $t \geq 0$.

Remarks. Under the hypothesis of Theorem 3 (i) if $\lambda = \mu$ and $N \ge e + e_1$, then $\nu (N:1, e_0) = \lambda$ (cf. [2, p. 216]); (ii) if $N = ae + e_1$, then $\lambda \le \nu (N:1, e_0) \le \lambda + a - 1$; (iii) if $ae + e_1 < N < (a + 1)e + e_1$, then $\lambda \le \nu (N:1, e_0) \le \lambda + a$ (cf. proof of Corollary 10 of § 5); (iv) if $N \ge \mu e + e_1$, then H_{N+1} is a subgroup of a free part of H_1 .

COROLLARY 4. If p is an unramified prime ideal of k, lying above a rational prime p, then we have

$$G(\mathfrak{p}^{N+1}) \cong egin{cases} Z(p^f-1) imes Z(p^N) imes \cdots imes Z(p^N) \ Z(2^f-1) imes Z(2) imes Z(2^{N-1}) imes Z(2^N) imes \cdots imes Z(2^N) \ if \ p=2 \ . \end{cases} if \ p=2 \ .$$

§4. Proof of Theorem 1

It follows from (1) that

LEMMA 5 (cf. [2, p. 220] and [3, Teil I_a , §15]). Let γ be an integer of k_{ν} . Then

$$(1 + \gamma \pi^s)^p \equiv egin{cases} 1 + \gamma^p \pi^{ps} \mod \mathfrak{p}^{ps+1} \ , & if \ 1 \leq s < e/(p-1) \ , \ 1 + (\gamma^p - \epsilon \gamma) \pi^{ps} \mod \mathfrak{p}^{ps+1} \ , & if \ s = e/(p-1) \ , \ 1 - \epsilon \gamma \pi^{s+e} \mod \mathfrak{p}^{s+e+1} \ , & if \ if \ s > e/(p-1) \ . \end{cases}$$

Now we shall prove Theorem 1. First we note that $k_{\mathfrak{p}}$ contains a primitive *p*-th root of unity if and only if $e \equiv 0 \mod (p-1)$ and a congruence

$$(*) X^p - \epsilon X \equiv 0 \mod p$$

has a solution $X \not\equiv 0 \mod p$ in k_{p} (cf. [2, p. 215]).

According to H. Hasse [3], we shall use the following notation:

 $\begin{array}{ll} \alpha: & \text{a number of } k_{\mathfrak{p}}, \text{ prime to } \mathfrak{p}. \\ \gamma: & \text{an integer of } k_{\mathfrak{p}}. \\ \gamma_0: & \text{an integer of } k_{\mathfrak{p}} \text{ such that } \gamma_0 \equiv 0 \mod \mathfrak{p}. \\ \gamma: & \text{a principal unit of } k_{\mathfrak{p}}. \\ \mu_s: & \text{an integer of } k_{\mathfrak{p}} \text{ such that } \mu_s \equiv \alpha^p \mod \mathfrak{p}^s \ (s \geq 1). \\ \alpha_s: & \text{an integer of } k_{\mathfrak{p}} \text{ such that } \alpha_s^p \equiv 1 \mod \mathfrak{p}^s. \\ \gamma_s: & \text{an integer of } k_{\mathfrak{p}} \text{ such that } \end{array}$

(10)
$$\alpha_s^p \equiv 1 + \gamma_s \pi^s \mod \mathfrak{p}^{s+1}.$$

Each of these notations stands for a general element of a group, but will sometimes be used to stand for the group itself. The *p*-rank R_N of $G(p^{N+1})$ is then given by

(11)
$$p^{R_N} = (G(\mathfrak{p}^{N+1}) : G(\mathfrak{p}^{N+1})^p) = (\alpha : \mu_{N+1}) \\ = (\alpha : \mu_1)(\mu_1 : \mu_2) \cdots (\mu_N : \mu_{N+1})$$

and we have

(12)
$$(\mu_s:\mu_{s+1})=(\gamma:\gamma_s) \qquad (1\leq s\leq N) \ .$$

It will be verified that

(a)
$$(\alpha:\mu_1)=1,$$

(b)
$$(\mu_s:\mu_{s+1}) = \begin{cases} 1 \ , & \text{if } 1 \leq s \leq e+e_1 \text{ and } s \equiv 0 \mod p \ , \\ p' \ , & \text{if } 1 \leq s \leq e+e_1 \text{ and } s \equiv 0 \mod p \ , \end{cases}$$

$$(1, \quad \text{if } e \equiv 0 \mod (p-1) \text{ and } k_{\mathfrak{p}} \oplus \zeta_{1})$$

(c)
$$(\mu_{e+e_1}:\mu_{e+e_1+1}) = \begin{cases} p , & \text{if } k_p \ni \zeta_1 , \\ p^f , & \text{if } e \equiv 0 \mod (p-1) , \end{cases}$$

(d)
$$(\mu_s:\mu_{s+1})=1$$
, if $s > e + e_1$.

Proof of (a). Since $(\alpha : \mu_1) = (\alpha : \alpha^p \eta)$ is a power of p and α/η is a cyclic group of order $(p^f - 1), (\alpha : \mu_1) = 1$.

Proof of (b), (c) and (d). Since $\alpha_s^p \equiv 1 \mod p$ and the order of G(p) is equal to $p^f - 1$ which is prime to p, $\alpha_s \equiv 1 \mod p$. If $\alpha_s = 1$, then by (10) we see that $\gamma_s \equiv 0 \mod p$. Let $\alpha_s \neq 1$. We can put

$$\alpha_s = 1 + \varepsilon_s \pi^s$$
,

where $\bar{s} \ge 1$ and ε_s is a unit of k_{ν} . Then it follows from Lemma 5

$$\alpha_s^p \equiv \begin{cases} 1 + \varepsilon_s^p \pi^{p\bar{s}} \mod \mathfrak{p}^{p\bar{s}+1} , & \text{if } 1 \leq \bar{s} < e/(p-1) ,\\ 1 + (\varepsilon_s^p - \varepsilon\varepsilon_s) \pi^{p\bar{s}} \mod \mathfrak{p}^{p\bar{s}+1} , & \text{if } \bar{s} = e/(p-1) ,\\ 1 - \varepsilon\varepsilon_s \pi^{\bar{s}+e} \mod \mathfrak{p}^{\bar{s}+e+1} , & \text{if } \bar{s} > e/(p-1) . \end{cases}$$

If $1 \leq s \leq e + e_1$ and $s \equiv 0 \mod p$, then by (10) γ_s modulo \mathfrak{p} contains $(\varepsilon_s^p + \gamma_0)$ modulo \mathfrak{p} . Hence $(\gamma : \gamma_s) = 1$, because of $(\gamma : \gamma_s) \leq (\gamma : \varepsilon_s^p + \gamma_0) = 1$.

Suppose that $1 \leq s \leq e + e_1$ and $s \equiv 0 \mod p$. Then from the above congruences and (10) we can conclude that

 $\begin{cases} \gamma_s \equiv 0 \mod \mathfrak{p} , & \text{if } 1 \leq \bar{s} < e/(p-1) \text{ and } s < p\bar{s} , \\ \varepsilon_s^p \pi^{p\bar{s}} \equiv 0 \mod \mathfrak{p}^{p\bar{s}+1} \text{, a contradiction }, & \text{if } s > p\bar{s} \\ \gamma_s \equiv 0 \mod \mathfrak{p} , & \text{if } \bar{s} \geq e/(p-1) . \end{cases}$

Hence we have $(\gamma : \gamma_s) = (\gamma : \gamma_0) = p^f$ which shows (b) by (12).

Let $s = e + e_i$. Using the above congruences and (10) we see that

 $\begin{cases} \varepsilon_s^p \pi^{p\bar{s}} \equiv 0 \mod \mathfrak{p}^{p\bar{s}+1}, \text{ a contradiction }, & \text{ if } 1 \leq \bar{s} < e/(p-1) \text{ ,} \\ \gamma_s \equiv \varepsilon_s^p - \varepsilon \varepsilon_s \mod \mathfrak{p} \text{ ,} & \text{ if } \bar{s} = e/(p-1) \text{ ,} \\ \gamma_s \equiv 0 \mod \mathfrak{p} \text{ ,} & \text{ if } \bar{s} > e/(p-1) \text{ .} \end{cases}$

If $k_{\mathfrak{p}} \ni \zeta_1$, then $\gamma/\gamma'_0 \cong ((\gamma^p - \epsilon\gamma) + \gamma_0)/\gamma_0$, where γ'_0 are solutions of $X^p - \epsilon X \equiv 0 \mod \mathfrak{p}$, and $(\gamma : \gamma_0)/(\gamma : \gamma'_0) = p$. Hence $(\gamma : \gamma_s) = (\gamma : (\gamma^p - \epsilon\gamma) + \gamma_0) = p$. If $e \equiv 0 \mod (p-1)$ and $k_{\mathfrak{p}} \oplus \zeta_1$, then $\gamma_s \equiv \epsilon_s^p - \epsilon \epsilon_s \equiv 0 \mod \mathfrak{p}$ and $(\gamma : \gamma_s) = 1$. If $e \equiv 0 \mod (p-1)$, then $(\gamma : \gamma_s) = (\gamma : \gamma_0) = p^f$. Therefore (c) is obtained by (12).

Assume that $s > e + e_i$. Then we have by Lemma 5

$$(1 + \gamma \pi^{s-e})^p \equiv 1 - \epsilon \gamma \pi^s \mod \mathfrak{p}^{s+1}$$

Hence by (10) γ_s modulo \mathfrak{p} contains $(-\epsilon \gamma + \gamma_0)$ modulo \mathfrak{p} and $(\gamma : \gamma_s) = (\gamma : (-\epsilon \gamma + \gamma_0)) = 1$, thereby proving (d). By (11) and (12) we have Theorem 1.

For instance, we compute R_N when $N \ge e + e_1$ and $e \equiv 0 \mod (p-1)$. Put $e = (p-1)e_1 + r$, $1 \le r \le p-2$. Then by (11), (a), (b), (c) and (d) we have

$$egin{aligned} R_{\scriptscriptstyle N} &= \Big(e + e_{\scriptscriptstyle 1} - 1 - \Big[rac{e + e_{\scriptscriptstyle 1} - 1}{p}\Big]\Big)f + f \ &= \Big(e + e_{\scriptscriptstyle 1} - 1 - \Big[e_{\scriptscriptstyle 1} + rac{r - 1}{p}\Big]\Big)f + f = ef \;. \end{aligned}$$

\S 5. Preliminaries to the proof of Theorem 2 and Theorem 3

In order to prove Theorem 2 and Theorem 3 we need some results which we obtain in this section. Throughout this section we assume that k_p contains ζ_{μ} ($\mu \ge 0$) but does not contain $\zeta_{\mu+1}$.

The following proposition is well-known:

PROPOSITION 6 (cf. [2, §15] and [5, Chap. V]). If $N \ge e_1$, then H_{N+1} is a free Z_p -group and $H_{N+1} \cong H_{e+N+1}$ by $\eta \to \eta^p (\eta \in H_{N+1})$.

LEMMA 7. Suppose that $N \ge e_1$ and H_{N+1} is a subgroup of a \mathbb{Z}_p -free part $\overline{H_{01}}$ of H_1 . Let H_1/H_{N+1} be of type $(p^{s_0}, p^{s_1}, \dots, p^{s_{ef}})$. Then we can take $s_0 = \mu$ and H_1/H_{te+N+1} is of type $(p^{s_0}, p^{s_1+t}, \dots, p^{s_{ef}+t})$ for each $t \ge 0$. Remark. In Lemma 7 we allow that $s_j = 0$ $(0 \le j \le ef)$.

Proof. We have an expression of H_1 as direct product (cf. [2, p. 222]):

$$H_{\scriptscriptstyle 1} = \langle \zeta_{\scriptscriptstyle \mu}
angle imes \overline{H_{\scriptscriptstyle 01}}$$
 ,

where $\langle \zeta_{\mu} \rangle$ is a cyclic group generated by ζ_{μ} and $\overline{H_{01}}$ is of rank *ef*. By the hypothesis of the Lemma 7 we have

$$H_1/H_{N+1} \cong \langle \zeta_{\mu} \rangle \times \overline{H_{01}}/H_{N+1}$$
 (direct).

Hence there exists a \mathbb{Z}_p -basis $\{\eta_1, \dots, \eta_{ef}\}$ of \overline{H}_{01} such that $\{\eta_1^{p^{s_1}}, \dots, \eta_{ef}^{p^{s_e}}\}$ is a \mathbb{Z}_p -basis of H_{N+1} . It then follows from Proposition 6 that $\{\eta_1^{p^{s_1+1}}, \dots, \eta_{ef}^{p^{s_e+1}}\}$ is a \mathbb{Z}_p -basis of H_{e+N+1} . Thus the Lemma 7 is proved by induction. q.e.d.

If $\mu = 0$ and $N \ge e_1$, then we observe by Lemma 7 that $b_{te+N}(\nu + t) = b_N(\nu)$ for each $t \ge 0$. Hence all $G(\mathfrak{p}^{N+1})$ are determined by factor groups $H_1/H_1, \dots, H_1/H_{e+e_1}$. If $\mu \ge 1$ and $N \ge \mu e + e_1$, then H_{N+1} is a subgroup of $H_1^{p\mu} = \{\eta^{p\mu} | \eta \in H_1\}$. Hence H_{N+1} is a subgroup of a free part of H_1 . In this case for each $t \ge 1$ it follows that $b_{te+N}(\mu) = 1 + b_N(\mu - t)$,

 $b_{te+N}(\mu + t) = b_N(\mu) - 1$ and $b_{te+N}(\nu + t) = b_N(\nu)$, where $\nu \neq \mu$ and $\nu + t \neq \mu$. Hence all $G(\mathfrak{p}^{N+1})$ are determined by factor groups $H_1/H_2, \dots, H_1/H_{\mu e+e_1}$.

In order to compute $g_N(\nu), \nu(N:i,s)$ and $\nu(N:*)$ defined in §2 we need the following corollary to Lemma 5 (cf. [7] and [9, Corollary 1.2]):

COROLLARY 8. Let η be an element of $k_{\mathfrak{p}}$ such that $\eta \equiv 1 \mod \mathfrak{p}^s$ and $\eta \equiv 1 \mod \mathfrak{p}^{s+1}$ ($s \geq 1$). Let τ be the least non-negative integer such that $p^*s \geq e/(p-1)$. Then

 $\eta^{p^{\nu}} \equiv 1 \mod \mathfrak{p}^{s p^{\nu}}, \quad \eta^{p^{\nu}} \equiv 1 \mod \mathfrak{p}^{s p^{\nu+1}} \qquad for \ \nu = 0, 1, \cdots, \tau$

and

$$\eta^{p^{\nu}} \equiv 1 \mod \mathfrak{p}^{s p^{\tau + (\nu - \tau)e}} \qquad for \ \nu \geq \tau \ .$$

More precisely we have the following congruences by (1):

$$= \begin{cases} (1 + \gamma^{p^{\nu}} \pi^{sp^{\nu}} \mod \mathfrak{p}^{sp^{\nu+1}}, & \text{if } e/(p-1) < p^{\tau}s \text{ and } 1 \leq \nu \leq \tau, \\ 1 + \gamma^{p^{\tau}} \pi^{p^{\nu-\tau}} \pi^{sp^{\tau}} \mod \mathfrak{p}^{sp^{\tau+(\nu-\tau)e+1}}, & \text{if } e/(p-1) < p^{\tau}s \text{ and } 1 \leq \tau < \nu, \\ 1 + \gamma^{p^{\nu}} \pi^{sp^{\nu}} \mod \mathfrak{p}^{sp^{\nu+1}}, & \text{if } e/(p-1) = p^{\tau}s \text{ and } 1 \leq \nu \leq \tau, \\ 1 + (\gamma^{p^{\tau+1}} - \epsilon\gamma^{p^{\tau}}) p^{\nu-\tau-1} \pi^{e+e_1} \mod \mathfrak{p}^{(\nu-\tau)e+e_1+1}, & \text{if } e/(p-1) = p^{\tau}s \text{ and } 0 \leq \tau < \nu, \\ 1 + \gamma p^{\nu} \pi^s \mod \mathfrak{p}^{\nu e+s+1}, & \text{if } e/(p-1) < s, \end{cases}$$

where γ is an integer of k_{μ} .

LEMMA 9. Let η_{is} be principal units defined by Theorem A or Theorem B $(1 \leq i \leq f, 1 \leq s \leq pe/(p-1), s \equiv 0 \mod p)$. Let $1 \leq N < 2e + e_1$. Then we have for $\nu \geq 1$

$$\eta_{is}^{p^{\mathbf{p}}} \equiv 1 \mod \mathfrak{p}^{N+1}$$

if and only if indices i and s satisfy the following conditions:

(i) $1 \leq s \leq N/p^{\nu}$, when $1 \leq N < e + e_1$;

(ii) $1 \leq s \leq (e + e_1)/p^{\nu}$, but if $\mu \geq 1$ and $\nu = \lambda$, then $(i, s) \neq (1, e_0)$, when $N = e + e_1$;

(iii) $1 \leq s \leq (N-e)/p^{\nu-1}$, but if $\nu = \lambda$ and $\lambda \geq \nu(N:1, e_0)$, then (i,s) $\neq (1, e_0)$, when $e + e_1 \leq N \leq 2e + e_1$ and $\mu \geq 1$.

Proof. Let τ be the least non-negative integer such that

$$p^{r-1}s \leq e/(p-1) \leq p^rs$$
.

Let $1 \leq N \leq e + e_1$. If $1 \leq s \leq N/p^{\nu}$, then $\nu \leq \tau$, otherwise it follows that $p^{\nu}s = p^{\tau}s \cdot p^{\nu-\tau} \geq pe/(p-1) \geq e + e_1 > N$. Hence we see by Corollary 8 that $\eta_{is}^{p\nu} \equiv 1 \mod p^{N+1}$. If $N/p^{\nu} \leq s$, then by Corollary 8 we have $\eta_{is}^{p\nu} \equiv 1 \mod p^{N+1}$.

Let $N = e + e_1$. If $1 \leq s \leq N/p^{\nu}$ and $p^{\tau-1}s < e/(p-1) < p^{\tau}s$, then $\nu \leq \tau$. Hence by Corollary 8 we have $\eta_{is}^{p^{\nu}} \equiv 1 \mod \mathfrak{p}^{N+1}$. If $e \equiv 0 \mod (p-1)$, we put $e = \varphi(p^{\lambda})e_0$, $(e_0, p) = 1$. If $1 \leq s \leq N/p^{\nu}$ and $p^{\tau}s = e/(p-1)$, then $\nu \leq \tau + 1$. In this case $s = e_0$ and $\tau = \lambda - 1$, because of $s \equiv 0 \mod p$. If $\nu \leq \tau = \lambda - 1$, then by Corollary 8 we have $\eta_{is}^{p^{\nu}} = \eta_{ie_0}^{p^{\nu}} \equiv 1 \mod \mathfrak{p}^{N+1}$. If $\nu = \tau + 1 = \lambda$, then we observe by Corollary 8 that

$$\eta_{is}^{p^{\mathfrak{p}}} = \eta_{ie_0}^{p^{\lambda}} \equiv 1 + (\omega_i^{p^{\lambda}} - \varepsilon \omega_i^{p^{\lambda-1}}) \pi^{e+e_1} \operatorname{mod} \mathfrak{p}^{e+e_1+1}.$$

If $\mu = 0$, then $\eta_{ie_0}^{p\lambda} \equiv 1 \mod p^{e+e_1+1}$, because of $\omega_i^{p\lambda} - \varepsilon \omega_i^{p\lambda-1} \equiv 0 \mod p$ (cf. (*) of § 4). If $\mu \ge 1$, then by Theorem B we have

$$\eta_{1e_0}^{p^2} \equiv 1 \mod \mathfrak{p}^{e+e_1+1}, \quad \eta_{ie_0}^{p^2} \equiv 1 \mod \mathfrak{p}^{e+e_1+1} \qquad ext{for } i \neq 1.$$

Suppose that $(e + e_1)/p^{\nu} < s \leq e + e_1 = N$. If $0 < \nu \leq \tau$, then by Corollary 8 we get $\eta_{is}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$. If $p^r s > e/(p-1)$ and $0 \leq \tau < \nu$, then $\eta_{is}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$. If $p^r s = e/(p-1)$, then $s = e_0$ and $\tau = \lambda - 1$. By the inequality $(e + e_1)/p^{\nu} < s = e_0 = e_1/p^{\lambda-1}$, it follows $\nu > \lambda$. Hence $\eta_{ie_0}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$.

Let $e + e_1 < N < 2e + e_1$ and assume $\mu \ge 1$. If $1 \le s \le (N - e)/p^{\nu-1}$, then $\nu \le \tau + 1$, otherwise $p^{\nu-1}s = p^{\tau}s \cdot p^{\nu-\tau-1} \ge pe/(p-1) = e + e_1 > N - e$. If $e/(p-1) < p^{\tau}s$ and $s \le (N-e)/p^{\nu-1}$, then by Corollary 8 we have $\eta_{is}^{p^{\nu}} \equiv 1 \mod p^{N+1}$. If $e/(p-1) = p^{\tau}s$ and $\nu \le \tau$, then $\eta_{is}^{p^{\nu}} \equiv 1 \mod p^{N+1}$. If $e/(p-1) = p^{\tau}s$ and $\nu = \tau + 1$, then $s = e_0$ and $\tau = \lambda - 1$. In this case we see by Theorem B that $\eta_{ie_0}^{p^{\nu}} \equiv 1 \mod p^{N+1}$ for $i \ne 1$. On the other hand we have for i = 1

$$\eta_{1e_0}^{p^{\nu}} \equiv \begin{cases} 1 + \omega_1^{p^{\nu}} \pi^{e_0 p^{\nu}} \mod \mathfrak{p}^{e_0 p^{\nu+1}} & \text{if } \nu \leq \lambda - 1 \\ 1 + (\omega_1^{p^{\lambda}} - \varepsilon \omega_1^{p^{\lambda-1}}) p^{\nu^{-\lambda}} \pi^{e+e_1} \mod \mathfrak{p}^{(\nu-\lambda+1)e+e_1+1} , & \text{if } \nu \geq \lambda \end{cases},$$

where $\omega_1^{p^2} - \varepsilon \omega_1^{p^{\lambda-1}} \equiv 0 \mod \mathfrak{p}$. If $\nu \leq \lambda - 1$, then $\eta_{le_0}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$, and $e_0 \leq (N-e)/p^{\nu-1}$. If $\nu > \lambda$, then $\eta_{le_0}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$ and $e_0 > (N-e)/p^{\nu-1}$. If $\nu = \lambda$, it may happen that $\eta_{le_0}^{p\lambda} \equiv 1 \mod \mathfrak{p}^{N+1}$, namely $\lambda \geq \nu(N:1, e_0)$. Hence $\eta_{ls}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$, where $1 \leq i \leq f, 1 \leq s \leq (N-e)/p^{\nu-1}, s \equiv 0 \mod p$,

but if $\nu = \lambda$ and $\lambda \ge \nu$ $(N:1, e_0)$, then $(i, s) \ne (1, e_0)$. Finally, suppose $(N-e)/p^{\nu-1} < s \le e+e_1$, where $e+e_1 < N < 2e+e_1$. It then follows that $\nu \ge \tau + 1$. If $e/(p-1) < p^r s$, then $\eta_{is}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$, because $sp^r + (\nu - \tau)e > e_1 + 2e > N$, if $\tau \le \nu - 2$; $sp^r + (\nu - \tau)e = sp^{\nu-1} + e > N$, if $\tau = \nu - 1$. If $e/(p-1) = p^r s$, then $s = e_0$ and $\tau = \lambda - 1$. By the inequality $(N-e)/p^{\nu-1} < s = e_0 = e_1/p^{2-1}$ we have $\nu > \lambda$ and then $\eta_{ie_0}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$. If s > e/(p-1) and $(N-e)/p^{\nu-1} < s$, then $\eta_{is}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$. Thus Lemma 9 is proved.

COROLLARY 10. Suppose $\mu \geq 1$. Let η_{is} and η_* be principal units of Theorem B. Let $ae + e_1 \leq N \leq (a + 1)e + e_1$ and $1 \leq a \leq \mu$. Then we have

$$\eta_{is}^{p^{\nu}} \equiv 1 \mod \mathfrak{p}^{N+1}, \quad \eta_{*}^{p^{\nu}} \equiv 1 \mod \mathfrak{p}^{N+1} \qquad for \ \nu \leq a-1,$$

 $\eta_{is}^{p^{\nu}} \equiv 1 \mod \mathfrak{p}^{N+1}, \quad \eta_{*}^{p^{\nu}} \equiv 1 \mod \mathfrak{p}^{N+1} \qquad for \ \nu \geq a,$

if and only if indices i and s satisfy the following conditions:

For $\nu \leq a - 1$, $1 \leq s \leq e + e_1$. For $\nu \geq a$, $1 \leq s \leq (N - (a + \delta - 1)e)/p^{\nu - a - \delta + 1}$, but if $\nu (N : 1, e_0) \leq \nu \leq \lambda + a - 1$, then $(i, s) \neq (1, e_0)$, where

$$\delta = egin{cases} 0 \ , & if \ N = ae + e_1 \ , \ 1 \ , & if \ ae + e_1 < N < (a + 1)e + e_1 \ . \end{cases}$$

Proof. Let $N = ae + e_1$. It is obvious by Proposition 6 that $H_{e+e_1+1}^{p^{a-1}} \cong H_{N+1}$. Since we have $\eta_{is} \equiv 1 \mod \mathfrak{p}^{e+e_1+1}$ $(1 \leq s \leq e+e_1)$ and $\eta_* \equiv 1 \mod \mathfrak{p}^{e+e_1+1}$, $\eta_{is}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$ and $\eta_*^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$ for $\nu \leq a-1$. Let $(i,s) \equiv (1,e_0)$ and $\nu \geq a$. By Lemma 9 we find that $\eta_{is}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$ for $1 \leq s \leq (e+e_1)/p^{\nu}$. Hence it follows that $\eta_{is}^{p\nu+a-1} \equiv 1 \mod \mathfrak{p}^{N+1}$ for $1 \leq s \leq (e+e_1)/p^{\nu}$. Moreover, since $H_{e+e_1+1}^{p^{a-1}} \cong H_{N+1}$, we see that $\eta_{is}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$ for $1 \leq s \leq (e+e_1)/p^{\nu-a+1}$. Let $(i,s) = (1,e_0)$. Then $e_0 = e_1/p^{1-1} \leq (e+e_1)/p^{\nu-a+1} = e_1/p^{\nu-a}$ if and only if $\nu \leq \lambda + a - 1$. By Corollary 8 we have $\eta_{ie_0}^{p^{\lambda}} \equiv 1 \mod \mathfrak{p}^{e+e_1+1}$ and hence $\eta_{ie_0}^{p^{\lambda+a-1}} \equiv 1 \mod \mathfrak{p}^{N+1}$, that is, $\lambda \leq \nu(N:1,e_0) \leq \lambda + a - 1$.

Since $\eta_* \equiv 1 \mod \mathfrak{p}^{e+e_1}$, $\eta_* \equiv 1 \mod \mathfrak{p}^{e+e_1+1}$, we have $\eta_*^{p\nu} \equiv 1 \mod \mathfrak{p}^{(\nu+1)e+e_1}$, $\eta_*^{p\nu} \equiv 1 \mod \mathfrak{p}^{(\nu+1)e+e_1+1}$ for $\nu = 0, 1, \cdots$.

Let $ae + e_1 \le N \le (a + 1)e + e_1$. It then follows from Proposition 6 that $H_{N-(a-1)e+1}^{pa-1} \cong H_{N+1}$. Hence by the same arguments as above we have

the latter half of Corollary 10. We note that $\lambda \leq \nu (N:1, e_0) \leq \lambda + a$. q.e.d.

From Lemma 9 and Corollary 10, the numbers $g_N(\nu)$, exponents $\nu(N:i,s)$ and $\nu(N:*)$ defined in §2 are given as follows:

If $1 \leq N \leq e + e_1$, or if $\mu = 0$ and $N = e + e_1$, then

(13)
$$g_N(\nu) = \left(N - \left[\frac{N}{p}\right] - \left[\frac{N}{p^{\nu}}\right] + \left[\frac{N}{p^{\nu+1}}\right]\right)f, \quad (\nu \ge 1)$$

and

(14)
$$\nu(N:i,s) = \nu \quad \text{for } N/p^{\nu} < s \leq N/p^{\nu-1}$$
,

where $1 \leq i \leq f, 1 \leq s \leq N$ and $s \neq 0 \mod p$.

If $\mu \ge 1$ and $ae + e_1 \le N < (a + 1)e + e_1(1 \le a \le \mu)$, then

(15)
$$\begin{cases} g_{N}(\nu) = 0, & \text{for } \nu \leq a - 1, \\ g_{N}(\nu) = \left(e + e_{1} - \left[\frac{e + e_{1}}{p}\right] - \left[\frac{N - (a + \delta - 1)e}{p^{\nu - a - \delta + 1}}\right] \\ + \left[\frac{N - (a + \delta - 1)e}{p^{\nu - a - \delta + 2}}\right] f + \bar{g}_{N}(\nu), & \text{for } \nu \geq a, \end{cases}$$

where

$$ar{g}_N(
u) = egin{cases} 2 \ , & ext{if }
u \left(N:1,e_{\scriptscriptstyle 0}
ight) \leqq
u \leqq \lambda + a - 1 \ , \ 1 \ , & ext{otherwise }, \end{cases}$$

and

(16)
$$\begin{cases} \nu (N:*) = a , & \lambda \leq \nu (N:1, e_0) \leq \lambda + a - 1 + \delta , \\ \nu (N:i,s) = \nu & \text{for } (N - (a + \delta - 1)e)/p^{\nu - a - \delta + 1} \\ < s \leq (N - (a + \delta - 1)e)/p^{\nu - a - \delta} , \end{cases}$$

where $1 \leq i \leq f, 1 \leq s \leq e + e_1, s \equiv 0 \mod p$, $(i, s) \neq (1, e_0)$ and δ is given by Corollary 10. We note that if $\lambda = \mu$, or $N = e + e_1$, then $\nu (N: 1, e_0) = \lambda$.

It then follows from (13) and (15) that

(17)

$$g_{N}(1) + \sum_{\nu=2}^{\infty} \nu(g_{N}(\nu) - g_{N}(\nu - 1))$$

$$= \begin{cases} Nf, & \text{if } 1 \leq N \leq e + e_{1}, \\ Nf + \nu (N : 1, e_{0}) - \lambda, & \text{if } ae + e_{1} \leq N < (a + 1)e + e_{1} \\ & \text{and } 1 \leq a \leq \mu. \end{cases}$$

Thus (2) or (8₁) is a basis of H_1/H_{N+1} and (8₂) is a basis of H_1/H_{N+1} if and only if $\nu(N:1, e_0) = \lambda$.

Now we establish a basis of H_{N+1} .

PROPOSITION 11. (A). Suppose that $\mu = 0$. It then follows that for each $t \ge 0$ and $1 \le N \le e + e_1$

$$H_{ie+N+1} = \prod_{1 \leq i \leq f} \prod_{\substack{1 \leq s \leq N \\ s \neq 0 \text{ mod } p}} \left\langle \gamma_{is}^{p^{\nu(N;i,s)+t}} \right\rangle \times \prod_{\substack{1 \leq i \leq f \ N < s \leq pe/(p-1) \\ s \neq 0 \text{ mod } p}} \prod_{q_{is}^{pt}} \left\langle \gamma_{is}^{pt} \right\rangle \qquad (direct) ,$$

where η_{is} are principal units of Theorem A and ν (N:i,s) are given by (14).

(B). Suppose $\mu \ge 1$. Let $ae + e_1 \le N < (a + 1)e + e_1$ and $1 \le a \le \mu$. Then it follows that for each $t \ge 0$

$$H_{te+N+1} = \left< \eta_*^{p^{a+t}} \right> \times \prod_{(i,s) \in S} \left< \eta_{is}^{p^{\nu(N;\,i,s)+t}} \right> \qquad (direct) \ ,$$

where η_*, η_{is} are principal units of Theorem B, $\nu(N:i,s)$ are given by (16) and S is the set defined by (5).

Proof. We first notice that by Theorem A or (7) multiplicative expressions described as above are surely direct products.

(A). Suppose that $\mu = 0$ and $1 \leq N \leq e + e_1$. Put

$$H'_{N+1} = \prod_{1 \le i \le f} \prod_{\substack{1 \le s \le N \\ s \equiv 0 \text{ mod} p}} \langle \eta_{is}^{p^{\nu(N;i,s)}} \rangle \times \prod_{\substack{1 \le i \le f \\ s \equiv 0 \text{ mod} p}} \prod_{\substack{\gamma \in N \\ s \equiv 0 \text{ mod} p}} \langle \eta_{is} \rangle \quad \text{(direct)} \ .$$

Then H'_{N+1} is a subgroup of H_{N+1} . It is proved that $H'_{N+1} = H_{N+1}$. Indeed,

$$(H_1:H_{N+1}')=\prod_{1\leq i\leq f}\prod_{\substack{1\leq s\leq N\s\equiv 0 ext{ mod }p}}p^{
u(N:i,s)};$$

from (13) and (17) we have

$$\sum_{1 \le i \le f} \sum_{\substack{0 \le s \le N \\ s \ne 0 \mod p}} \nu \left(N : i, s \right) = g_N(1) + \sum_{\nu=2}^{\infty} \nu (g_N(\nu) - g_N(\nu - 1)) = Nf$$

Hence we have $(H_1: H'_{N+1}) = p^{Nf} = (H_1: H_{N+1})$, as was to be shown.

If $e_1 \leq N \leq e + e_1$, then we observe by Proposition 6 that $H_{N+1}^{pt} \cong H_{te+N+1}$ for each $t \geq 0$. Therefore, we have the direct decomposition of H_{te+N+1} .

(B). Suppose $\mu \ge 1$. Let $ae + e_1 \le N < (a + 1)e + e_1$ and $1 \le a \le \mu$.

Put

$$H'_{\scriptscriptstyle N+1} = \langle \eta^{\scriptscriptstyle p^a}_*
angle imes_{\scriptscriptstyle (i,s) \in S} \langle \eta^{\scriptscriptstyle p
u(N:i,s)}_{is}
angle \qquad ext{(direct)} \;.$$

Then H'_{N+1} is a subgroup of H_{N+1} and H_{01} . We contend $H'_{N+1} = H_{N+1}$. Indeed, since we have $(H_1: H_{01}) = p^2$ by [2, p. 231],

$$(H_1:H'_{N+1}) = (H_1:H_{01})(H_{01}:H'_{N+1}) = p^{\lambda}p^a \prod_{(i,s)\in S} p^{\nu(N:i,s)};$$

it follows from (15), (16) and (17) that

$$\sum_{\substack{(i,s)\in S}} \nu(N:i,s)$$

$$= a(g_N(a) - 1) + \sum_{\substack{\nu=a+1\\\nu=a+1}}^{\nu(N:1,e_0)-1} \nu\{(g_N(\nu) - 1) - (g_N(\nu - 1) - 1)\}$$

$$+ \nu(N:1,e_0)\{(g_N(\nu(N:1,e_0)) - 2) - (g_N(\nu(N:1,e_0) - 1) - 1)\}$$

$$+ \sum_{\substack{\nu=\nu(N:1,e_0)+1\\\nu=a}}^{\infty} \nu\{(g_N(\nu) - 2) - (g_N(\nu - 1) - 2)\}$$

$$= ag_N(a) + \sum_{\substack{\nu=a+1\\\nu=a+1}}^{\infty} \nu(g_N(\nu) - g_N(\nu - 1)) - a - \nu(N:1,e_0)$$

$$= Nf - (\lambda + a).$$

Hence we get $(H_1: H'_{N+1}) = p^{N_f} = (H_1: H_{N+1})$, as desired.

Finally it is clear that $H_{te+N+1} \cong H_{N+1}^{pt}$ for each $t \ge 0$ by Proposition 6. Thus we have the direct decomposition of H_{te+N+1} . q.e.d.

§6. Proof of Theorem 2 and Theorem 3

From Theorem A, Proposition 11, (4) and (13) we have Theorem 2. Now we shall prove Theorem 3. Suppose that k_{ν} contains ζ_{μ} ($\mu \ge 1$), but does not contain $\zeta_{\mu+1}$.

(I). In the case where $1 \leq N \leq e + e_1$, it is verified by (17) that (8₁) is a basis of H_1/H_{N+1} . Hence the direct decomposition of $G(\mathfrak{p}^{N+1})$ is obtained by (4), (13) and (14).

(II). In the case where $e + e_1 \leq N < (\mu + 1)e + e_1$ and $\nu(N:1, e_0) = \lambda$, we know by (17) that (8_2) is a basis of H_1/H_{N+1} . Hence the direct decomposition of $G(p^{N+1})$ is obtained by (4), (15) and (16).

(III). In the case where $e + e_1 < N < (\mu + 1)e + e_1$ and $\nu(N:1, e_0) > \lambda$, we see by Proposition 11 and (7) that $\eta_*, \eta_{is}((i, s) \in S)$ are independent modulo \mathfrak{p}^{N+1} , that is, $\eta_*^{x_s} \in \prod_{(i,s) \in S} \eta_{is}^{x_{is}} \equiv 1 \mod \mathfrak{p}^{N+1}$ if and only if $x_* \equiv 0 \mod p^a$ and $x_{is} \equiv 0 \mod p^{\nu(N:i,s)}$ for all $(i, s) \in S$.

From the relation (6) we have a congruence

(18)
$$\eta_{le_0}^{p^{\lambda}(p^{\nu(N:1,e_0)-\lambda-1)}} \prod_{\substack{(i,s)\in S\\\nu(N:c,s)\geq \mu+1}} \eta_{is}^{\beta_{is}p^{\mu}} \equiv 1 \mod \mathfrak{p}^{N+1} .$$

Since $(H_1: H_{01}) = p^{\lambda}$ and H_{N+1} is a subgroup of H_{01}, p^{λ} is the least positive integer such that $\eta_{1e_0}^{p\lambda} \equiv \eta_0 \mod p^{N+1}$ for some $\eta_0 \in H_{01}$. Hence the structure of H_1/H_{N+1} having a system of canonical generators (8₂) is determined by (18) only. We put

It is then clear that instead of (8_2)

$$\{\eta_{1e_0}^{p^{\nu(N;1,e_0)-\lambda-1}}H_{N+1}, \eta_*^{\beta'*}H_{N+1}, \eta_{is}^{\beta'is}H_{N+1}\}_{(i,s)\in S}$$

is also a system of canonical generators for H_1/H_{N+1} .

Let *M*, a free *Z*-module, and $\psi: M \to H_1/H_{N+1}$ be as defined in §2. Put

$$a_{is} = \min \{ \nu(N:i,s), a'_{is} \}$$
 for $(i,s) \in S$

Then from Proposition 11 and by (18) a system of canonical generators for Ker ψ is given by

$$\left\{p^a ilde\eta_*,p^{{}^{
u(N.1,e_0)}} ilde\eta_{1e_0},p^{{}^{
u(N:i,s)}} ilde\eta_{is},p^{i} ilde\eta_{1e_0}+\sum\limits_{\scriptscriptstyle (i,s)\in S}p^{a_{is}} ilde\eta_{is}
ight\}$$

where $(i, s) \in S$. Then the rank of Ker ψ is equal to (ef + 1) because the rank of H_1/H_{N+1} is equal to (ef + 1) from Theorem 1. The direct decomposition of $H_1/H_{N+1} \cong M/\text{Ker }\psi$ is determined by elementary divisors of the matrix (9) of Theorem 3. Thus (III) of Theorem 3 is proved.

Finally, (IV) of Theorem 3 is trivially obtained from Lemma 7. Thus Theorem 3 is completely proved.

§7. Proof of Corollary 4

Let \mathfrak{p} be an unramified prime ideal of k, lying above a rational prime p. Assume that p is odd. Then by Theorem 2 we observe that $b_1(1) = f$ and $b_1(\nu) = 0$ for $\nu \ge 2$. Let p = 2. Then $e = e_1 = 1$ and $\lambda = \mu = 1$. Therefore, we have by (I) and (II) of Theorem 3

$$b_1(1) = f$$
, $b_1(\nu) = 0$ for $\nu \ge 2$,
 $b_2(1) = 2$, $b_2(2) = f - 1$, $b_2(\nu) = 0$ for $\nu \ge 3$.

Thus Corollary 4 is obtained from Theorem 2 and Theorem 3.

§8. Supplement to Theorem 3

We assume that $k_{\mathfrak{p}}$ contains $\zeta_{\mu} (\mu \geq 1)$ but does not contain $\zeta_{\mu+1}$. Suppose that $\lambda > \mu \geq 1$ and $ae + e_1 \leq N < (a + 1)e + e_1$ $(1 \leq a \leq \mu)$. In this section we shall prove that if one of exponents ν (N:i,s) satisfies a certain condition, then the direct decomposition of H_1/H_{N+1} is induced by that of H_1/H_{N-e+1} .

If $\lambda > \mu \ge 1$, then a Z_p -basis of H_1 is given as follows (cf. [2, p. 232– 233]). Let H_{01} be the free Z_p -group of H_1 defined by (7). By (6) we observe that $\gamma_{1e_0}^{p\lambda-\mu}\zeta_{\mu}^{-1}$ does not belong to $H_{01}^p = \{\gamma_0^p | \gamma_0 \in H_{01}\}$. There exists $\beta_{i_0s_0}$ such that $\beta_{i_0s_0}$ is prime to p. If β_* is prime to p, we may take $\beta_{i_0s_0} = \beta_*$. Hence $\gamma_{i_0s_0}$ can be written in the form

(19)
$$\eta_{i_0s_0} = \zeta^{\alpha_{\mu}}_{\mu} \prod_{\substack{(i,s) \in S' \\ (i,s) \neq (i_0,s_0)}} \eta^{\alpha_{is}} \cdot \eta^{p^{\lambda-\mu_{\alpha_1e_0}}}_{ie_0} ,$$

where $S' = S \cup \{*\}$, α_{μ} is a rational integer, prime to $p \ (1 \leq \alpha_{\mu} < p^{\mu})$, α_{is} are *p*-adic integers and α_{1e_0} is a *p*-adic integer, prime to *p* (cf. [2, II in p. 209]). We then have a \mathbb{Z}_p -free part \tilde{H}_{01} of H_1 , expressed as direct product:

$$ilde{H}_{01} = \prod_{\substack{(i,s) \in S' \ (i_0,s_0)}} \langle \eta_{is}
angle imes \langle \eta_{1e_0}
angle \qquad (ext{direct}) \;.$$

From Proposition 6 we find that $H_{N-e+1}^p \cong H_{N+1}$, where $ae + e_1 \leq N < (a + 1)e + e_1$ and $1 \leq a \leq \mu$. Therefore by Proposition 11 we have

$$H_{N-e+1} = \langle \eta_*^{p^{a-1}} \rangle \times \prod_{(i,s) \in S} \langle \eta_{is}^{p^{\nu(N;(i,s)-1)}} \rangle \qquad (\text{direct}) \; .$$

It then follows from (19) that $H_{N-\ell+1}$ is a subgroup of \tilde{H}_{01} if and only if $\nu(N:i_0,s_0)-1 \ge \mu$. We note that $\nu(N:*) = a \langle \mu + 1$ (see (16)). If $\nu(N:i_0,s_0) \ge \mu + 1$, one see also that

$$H_1/H_{N-e+1} \cong \langle \zeta_{\mu} \rangle \times \tilde{H}_{01}/H_{N-e+1}$$
 (direct).

The direct decomposition of $G(p^{N-e+1})$ is obtained from (I) ~ (III) of Theorem 3 and by Lemma 7, say of type $(p^f - 1, p^{\mu}, p^{c_1}, \dots, p^{c_{\ell f}})$. Then $G(p^{N+1})$ is of type $(p^f - 1, p^{\mu}, p^{c_1+1}, \dots, p^{c_{\ell f}+1})$ by Lemma 7.

§9. Examples

(i). Let p be an odd prime and ζ_1 be a primitive p-th root of unity. Put $k = Q(\zeta_1)$ and $\mathfrak{p} = (1 - \zeta_1)$. Then we have an expression of $G(\mathfrak{p}^{N+1})$ as direct product for each $t \ge 0$:

$$G(\mathfrak{p}^{N+1})$$

$$\approx \begin{cases} Z(p-1) \times Z(p) \times \dots \times Z(p) , & \text{if } 1 \leq N$$

(ii). Let d be a square free rational integer such that $d \equiv 2 \mod 4$. Put $k = Q(\sqrt{d})$ and let \mathfrak{p} be a prime ideal of k, lying above 2. Then $e = e_1 = 2, \lambda = 2$ and $\mu = 1$. By (I) of Theorem 3 we have

By [4] we see that for $N = e + e_1 = 4$, $\nu(4:1,1) = 2 = \lambda > \mu$. Hence for each $t \ge 0$ we obtain by (II) and (IV) of Theorem 3

$$G(\mathfrak{p}^{2t+5})\cong Z(2) imes Z(2^{1+t}) imes Z(2^{2+t})$$
 .

Furthermore, it is shown in [4] that $-\eta_{11}^2 \equiv \eta_{13} \mod \mathfrak{p}^4$. It then follows that for $N = 5(e + e_1 < N < 2e + e_1)$, $\nu(5:1,1) = 3 > \lambda$ and $\nu(5:1,3) = 2 = \lambda > \mu$. Hence from the arguments of §8 we see that H_4 is a subgroup of the free part of H_1 . From the result of §8 and by Theorem 1 the direct decomposition of $G(\mathfrak{p}^6)$ is induced by that of $G(\mathfrak{p}^4)$, that is, expressed as follows:

$$G(\mathfrak{p}^{\scriptscriptstyle 6})\cong Z(2) imes Z(2) imes Z(2^{\scriptscriptstyle 3})$$
 .

Therefore, we see by (IV) of Theorem 3 that for each $t \ge 0$

$$G(\mathfrak{p}^{2t+6})\cong Z(2)\times Z(2^{1+t})\times Z(2^{3+t})$$
.

For N = 5 the matrix (9) of Theorem 3 is equal to

{2	0	0]
0	2^2	0
0	0	2 ³
2	2	2²

It is then clear that

ſ	1	0	0	0][0	2	0	0]	1	0	ן 0		(2	0	0]	
1	-1	0	0	1	0	2^2	0	0	1	-2		0	2	0	
	0	0	1	$\begin{array}{c} 0\\ 1\\ 0 \end{array} \right \left[\begin{array}{c} 0\\ 0\\ \end{array} \right]$	0	0	2³	lo	0	1)	=	0	0	2^3	,
l	2	1	1	-2	2	2	2^2							0]	

which shows the direct decomposition of H_1/H_6 , too.

BIBLIOGRAPHY

- [1] Albis Gonzalez, V. S., A remark on primitive root and ramification, Rev. Columbiana Math., 7 (1973), 93-98.
- [2] Hasse, H., Zahlentheorie, Akademie-Verlag, Berlin, 2 Aufl., 1963.
- [3] —, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Physica Verlag, 1965.
- [4] H.-Koch, F., Einseinheitengruppen und prime Restklassengruppen in quadratischen Zahlkörper, J. Number Theory, 4 (1972), 70-77.
- [5] Narkiewicz, W., Elementary and analytic theory of algebraic numbers, Monogr. Math., 57, PWN-Polish Sci. Publishers, 1974.
- [6] Ranum, A., The group of classes of congruent quadratic integers with respect to composite ideal modulus, Trans. Amer. Math. Soc., 11 (1910), 172–198.
- [7] Serre, J.-P., Sur les corps locaux à corps résiduel algébriquement clos, Bull. Soc. Math. France, 89 (1961), 105-154.
- [8] Takenouchi, T., On the classes of congruent integers in an algebraic körper, J. College of Sci. Tokyo Imp. Univ., XXXVI, Article I (1913), 1-28.
- [9] Wyman, B. F., Wildly ramified Gamma extensions, Amer. J. Math., 91 (1969), 135-152.

Department of Mathematics College of Liberal Arts Toyama University