CORRECTIONS TO 'INVOLUTIONS IN CHEVALLEY GROUPS OVER FIELDS OF EVEN ORDER"

(Nagoya Math. J. 63 (1976), 1-91)

M. ASCHBACHER AND G. SEITZ

p. 1, delete the last sentence on the page.
p. 4, In (3.1) (ii) replace " $U_{\alpha+\beta}(s t)$ " by " $U_{\alpha+\beta}(s t), U_{\alpha+\beta}\left((s t)^{q}\right), U_{\alpha+\beta}\left(s t^{q}\right)$, or $U_{\alpha+\beta}\left(s^{q} t\right)$, the answer depending on $\{a, \beta\}$."
p. 17, matrix Q at bottom of page should be: " $Q=\left[\begin{array}{ll}b & \beta \\ \gamma & L\end{array}\right]$."
p. 21, add the following term to the right side of the equation on top of page:
" $\alpha\left(g_{i, n-\ell-1}^{2}+g_{i, n-\ell}^{2}\right)$, where $\alpha=0$ if $\varepsilon=1$ and as in $\S 5$ if $\varepsilon=-1$."
p. 22, (8.8) (1) (i) should read: " $\tau_{i}^{2}=Q\left(Y_{i}\right)$ for $1 \leq i \leq n-2 \ell$, where τ is the last column of P."
p. 36, ℓ. 9, all sentence: For the remainder of this section assume $G \not \equiv S_{z}(q)$ or ${ }^{2} F_{4}(q)^{\prime}$.
p. 36, $\ell .17$, delete "or if $G \cong{ }^{2} F_{4}(q)$."
p. 36, $\ell .19$, replace " $m=1$ " by " $m=7$ ".
p. 38, $\ell 22$, delete ${ }^{2} F_{4}(q)$
p. 52, (14.2) (iii) should read: " $C_{G}(v) \leq P_{2}$ "
(14.3) (ii), replace " $q+1$ " by " $(q+1) /(3, q+1)$ "
(14.3) (iii), replace with:
"(iii) $C_{G}(v)=\bar{U}_{0} \bar{L}_{0}$ with $\bar{U}_{0}=O_{2}\left(C_{G}(v)\right)$ of order q^{27} and \bar{L}_{0} $\cong L_{2}(q) \times U_{3}(q)$. Moreover $\left[\bar{U}_{0}, \bar{U}_{0}, \bar{U}_{0}\right]=U_{r_{8}} U_{r_{24}}$ and $P=$ $Z\left(C_{G}(v)\right)=\left\{U_{\alpha}(c) U_{\beta}(c): c \in \boldsymbol{F}_{q}\right\}$. Finally $\left[\bar{U}_{0}, \bar{L}_{0}\right]=\bar{U}_{0}$ and $C_{G}(v)^{\prime}$ $=\bar{U}_{0} \bar{L}_{0}^{\prime} . "$
(14.4) should read: "For $q>2$ there is an element $h \in H$ such that $P P^{h}=U_{\alpha} \times U_{\beta}$ contains $q-1$ conjugates of t, q^{-1} conjugate of u, and $(q-1)^{2}$ conjugates of $v . "$
p. 58-59, (15.5) (i) replace " $S L(6, q)$ " by " $P S L(6, q)$ "
(15.5) (iii) replace " $S L(3, q)$ " by " $P S L(3, q)$ ".
p. 76, (19.1) replace " $C_{G}(\sigma)$ " by " $O^{2}\left(C_{G}(\sigma)\right)$ ".

Remarks 1) The changes are all straightforward with the exception of those in (14.2) (iii) and (14.3) (iii), where we sketch a proof. Let notation be as in $\S 14$ and set

$$
\begin{aligned}
& \bar{U}_{0}=\left\langle U_{0}, U_{r_{11}}(d) U_{r_{2}}\left(d+d^{q}\right), U_{r_{21}}(d) U_{r_{15}}\left(d+d^{q}\right): d \in \boldsymbol{F}_{q^{2}}\right\rangle \\
& \bar{L}_{0}=\left\langle U_{ \pm \alpha_{1}}\right\rangle \times\left\langle s_{4}, U_{-\alpha_{3}}(c) U_{\alpha_{3}+\alpha_{4}}\left(c^{q}\right) U_{\alpha_{4}}(e): c, e \in \boldsymbol{F}_{q^{2}}, e+e^{q}=c c^{q}\right\rangle
\end{aligned}
$$

Easy computations (using (3.1) as corrected) show that $\bar{U}_{0}=C_{Q_{2}}(v)$, $\bar{L}_{0} \leq C(v),\left[\bar{U}_{0}, \bar{U}_{0}\right]=Q_{2}^{2} Q_{3}^{2}$, and $\left[\bar{U}_{0}, \bar{U}_{0}, \bar{U}_{0}\right]=Q_{3}^{2}=U_{r_{8}} U_{r_{24}} . \quad$ Clearly $X=$ $\bar{U}_{0} \bar{L}_{0} \leq P_{2}$. Also $\bar{L}_{0} \cong U_{3}(q)$ and $Q_{2} \bar{L}_{0}$ is the centralizer in P_{2} / Q_{2} of $v Q_{3}^{2}$ $\in Q_{2}^{2} Q_{3}^{2} / Q_{3}^{2}$. From here get $X=C_{P_{2}}(v)$.
(14.3) (iii) now follows from (14.2) (iii) and the proof of this is much easier than the original arguments. Indeed suppose $X \leq P_{i}^{q}$. Then P_{i}^{q} contains an $L_{2}(q) \times U_{3}(q)$ section and so $i \neq 3$. If $i \neq 2, \bar{U}_{0} \not \leq$ $O_{2}\left(P_{i}^{g}\right)$ as the latter group has class 2, so a proper parabolic subgroup of $P_{i}^{q} / O_{2}\left(P_{i}^{q}\right)$ contains an $L_{2}(q) \times U_{3}(q)$ section. This is impossible, so $i=2$. But then $\bar{U}_{0} \leq O_{2}\left(P_{2}^{g}\right)$ and $Q_{3}^{2}=\left(Q_{3}^{2}\right)^{g}$. This forces $g \in P_{2}$ as P_{2} $=N_{G}\left(Q_{3}^{2}\right)$.
2) The change in (15.5) (iii) results in a shorter proof of (15.4) (iii). This is evident once all occurrences of $L_{0} \cong S L(3, q)$ on pages 56-57 are replaced by $L_{0} \cong \operatorname{PSL}(3, q)$.
3) The changes here do not affect the results in [2]. The only change required is that in the definition of degenerate, just preceding (8.4), omit the case $\bar{A}={ }^{2} E_{6}(q)$.

