M. Aschbacher and G. Seitz Nagoya Math. J. Vol. 72 (1978), 135-136

CORRECTIONS TO "INVOLUTIONS IN CHEVALLEY GROUPS OVER FIELDS OF EVEN ORDER"

(Nagoya Math. J. 63 (1976), 1-91)

M. ASCHBACHER AND G. SEITZ

- p. 1, delete the last sentence on the page.
- p. 4, In (3.1) (ii) replace " $U_{\alpha+\beta}(st)$ " by " $U_{\alpha+\beta}(st)$, $U_{\alpha+\beta}((st)^q)$, $U_{\alpha+\beta}(st^q)$, or $U_{\alpha+\beta}(s^q t)$, the answer depending on $\{a, \beta\}$."
- p. 17, matrix Q at bottom of page should be: " $Q = \begin{bmatrix} b & \beta \\ r & L \end{bmatrix}$."
- p. 21, add the following term to the right side of the equation on top of page:

" $\alpha(g_{i,n-\ell-1}^2 + g_{i,n-\ell}^2)$, where $\alpha = 0$ if $\varepsilon = 1$ and as in §5 if $\varepsilon = -1$."

- p. 22, (8.8) (1) (i) should read: " $\tau_i^2 = Q(Y_i)$ for $1 \le i \le n 2\ell$, where τ is the last column of *P*."
- p. 36, ℓ . 9, all sentence: For the remainder of this section assume $G \ncong S_z(q)$ or ${}^2F_4(q)'$.
- p. 36, ℓ . 17, delete "or if $G \cong {}^{2}F_{4}(q)$."
- p. 36, ℓ . 19, replace "m = 1" by "m = 7".
- p. 38, ℓ 22, delete ${}^{_{2}}F_{_{4}}(q)$
- p. 52, (14.2) (iii) should read: " $C_G(v) \le P_2$ "
 - (14.3) (ii), replace "q + 1" by "(q + 1)/(3, q + 1)"
 - (14.3) (iii), replace with:

 $\begin{array}{ll} \text{``(iii)} \quad C_{G}(v) = \overline{U}_{0}\overline{L}_{0} \ \text{with} \ \overline{U}_{0} = O_{2}(C_{G}(v)) \ \text{of order} \ q^{27} \ \text{and} \ \overline{L}_{0} \\ \cong L_{2}(q) \times U_{3}(q). \ \text{Moreover} \ [\overline{U}_{0}, \ \overline{U}_{0}, \ \overline{U}_{0}] = U_{r_{8}}U_{r_{24}} \ \text{and} \ P = \\ Z(C_{G}(v)) = \{U_{\alpha}(c)U_{\beta}(c): c \in F_{q}\}. \ \text{Finally} \ [\overline{U}_{0}, \ \overline{L}_{0}] = \overline{U}_{0} \ \text{and} \ C_{G}(v)' \\ = \overline{U}_{0}\overline{L}_{0}'. \end{array}$

(14.4) should read: "For q > 2 there is an element $h \in H$ such that $PP^{h} = U_{\alpha} \times U_{\beta}$ contains q - 1 conjugates of t, q^{-1} conjugate of u, and $(q - 1)^{2}$ conjugates of v."

Received December 2, 1977.

p. 58–59, (15.5) (i) replace "SL(6, q)" by "PSL(6, q)"

(15.5) (iii) replace "SL(3, q)" by "PSL(3, q)".

p. 76, (19.1) replace " $C_G(\sigma)$ " by " $O^2(C_G(\sigma))$ ".

Remarks 1) The changes are all straightforward with the exception of those in (14.2) (iii) and (14.3) (iii), where we sketch a proof. Let notation be as in §14 and set

$$ar{U}_0 = \langle U_0, U_{r_{11}}(d) U_{r_2}(d+d^q), U_{r_{21}}(d) U_{r_{15}}(d+d^q) \colon d \in F_{q^2}
angle \ ar{L}_0 = \langle U_{\pm a_1}
angle imes \langle s_4, U_{-a_5}(c) U_{a_3+a_4}(c^q) U_{a_4}(e) \colon c, e \in F_{q^2}, \ e+e^q = cc^q
angle \,.$$

Easy computations (using (3.1) as corrected) show that $\overline{U}_0 = C_{Q_2}(v)$, $\overline{L}_0 \leq C(v)$, $[\overline{U}_0, \overline{U}_0] = Q_2^2 Q_3^2$, and $[\overline{U}_0, \overline{U}_0, \overline{U}_0] = Q_3^2 = U_{r_8} U_{r_{24}}$. Clearly $X = \overline{U}_0 \overline{L}_0 \leq P_2$. Also $\overline{L}_0 \cong U_3(q)$ and $Q_2 \overline{L}_0$ is the centralizer in P_2/Q_2 of $vQ_3^2 \in Q_2^2 Q_3^2/Q_3^2$. From here get $X = C_{P_2}(v)$.

(14.3) (iii) now follows from (14.2) (iii) and the proof of this is much easier than the original arguments. Indeed suppose $X \leq P_i^q$. Then P_i^q contains an $L_2(q) \times U_3(q)$ section and so $i \neq 3$. If $i \neq 2$, $\overline{U}_0 \leq O_2(P_i^q)$ as the latter group has class 2, so a proper parabolic subgroup of $P_i^q/O_2(P_i^q)$ contains an $L_2(q) \times U_3(q)$ section. This is impossible, so i = 2. But then $\overline{U}_0 \leq O_2(P_2^q)$ and $Q_3^2 = (Q_3^2)^q$. This forces $g \in P_2$ as P_2 $= N_G(Q_3^2)$.

2) The change in (15.5) (iii) results in a shorter proof of (15.4) (iii). This is evident once all occurrences of $L_0 \cong SL(3,q)$ on pages 56-57 are replaced by $L_0 \cong PSL(3,q)$.

3) The changes here do not affect the results in [2]. The only change required is that in the definition of *degenerate*, just preceding (8.4), omit the case $\overline{A} = {}^{2}E_{\theta}(q)$.

University of Oregon

136