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CONSTRUCTION OF FUNDAMENTAL SOLUTIONS OF

HYPOELLIPTIC EQUATIONS BY THE USE

OF A PROBABILISTIC METHOD

T. MATSUZAWA

§ 1. Introduction

A. Friedman, [5] has constructed the fundamental solutions for a

class of degenerate parabolic equations of the second order by making

use of a probabilistic method and obtained the estimates for the funda-

mental solutions, especially near the degenerating manifolds (obstacles)

of given operators, where a probabilistic method plays an important

role.

Being suggested by this method, we shall discuss the case where

the operators are hypoelliptic. Such a case is rather simple to be dealt

with since there is no obstacle in the sense of A. Friedman. We shall

consider the differential operator

L = Σ aiAx> s)-^r-~— + Σ bj(x, s) (atj = aH) ,

where α o (#, s) and bj(x,s) (i, j — 1, -,n) are real valued, infinitely

differentiable functions defined in a neighborhood Ω of Rn x [0, Γ], and

assume:

I. The matrix (aί:j(x9 s)) is nonnegative definite for all (x9s)eΩ.

II. The coefficients a^ix, έ), DxaiS(x9 s), Dl^^x, s), bό(x, s) and

Dxbj(x,s) (i,j — 1, -,n) are uniformly bounded in Rn x [0, T].

III. The operators

L + A. , L* - ±-
ds ds

are hypoelliptic in Ω, where L* is the formal adjoint operator of L.
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104 T. MATSUZAWA

Our first aim is to construct the fundamental solution of the equa-
tion

(1.1) L ^
da

under the assumptions I, II and III. For this purpose, we introduce
the auxiliary equation

(1.2) Lεu + ™- = 0 , Lβ = L + εΔ , Δ = Σ -^— > ε > 0 .

For the equation (1.2), being uniformly parabolic in Rn x [0, T], the
classical fundamental solution K*(x, s;y,t) is constructed by the para-
metrix method [3]. In §2, we shall show that the fundamental solution
K*(x, s y, t) of (1.1) is obtained by taking the limit of Kf(x,s;y,t) as
ε —> 0. Let c(x, t) be a bounded measurable function in Rn x [0, T]. We

shall construct the fundamental solution for the operator L + c + —
ds

in § 3. In § 4, as an application of the properties of K* obtained in
§ 2, we shall prove the continuity of bounded generalized solutions of
the equation

(1.3)

where / is a given bounded measurable function, which is a main
result of this paper. More restricted results have been obtained by the
different method in [1], In § 5, we shall investigate the Cauchy pro-
blem (backward) for the equation (1.3). Finally in §6, we shall give
some remarks on a first boundary value problem (Fichera problem).

§ 2 . Construction of fundamental solution

As is mentioned in § 1, the fundamental solution Kf(x, s y, t) is

constructed by the parametr ix method [3]. I t satisfies the followings:

(2.1) LεKf + JLK* = 0
ds

in Rn (0 < s < t ^ T) for (y, t) fixed in Rn x [0, T] .

W e h a v e K*(x, s y, t) > 0 f o r 0 ^ s < t < T, Kf(x, s;y,t) = Q f o r

0 < t < s < T and
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ί K*(x, s y, t)dy = 1 for (x, s, t) fixed in Rn x [0, T]2, s < t ,
(2.2) jRUy

[ Kf(x, s y, ί)<fo = 1 for (y, s, t) fixed in Rn x [0, T]2, s < t .

For any bounded continuous function f{x) the function

(2.3) tt(a>, s) = ί X * ( a ; , s y , t)f(y)dy 0 < s < t ^ T

satisfies

U.u + ~ - 0 in Λ* x [0, ί) , 0 < t £ T ,
(2.4) <̂  ds

[u(x, s) —> fix) as s / t .

Now there exists uniquely, [2] a nonnegative definite matrix σ(x, s)

— (pij(%j s)) such that

|<7(α;, s)2 = (aυix, s)) , (x, s) e Rn X [0, T] .

Each element of σ(x, s) is Lipschitz continuous in any compact subset

of Rn x [0, T]. Set b = (b19 , bn) and consider the ^-dimensional

stochastic differential equations

(dξit) = σ(ξ(t), t ) d w ( t ) + b(ξ(t), t ) d t 0 ^ s < t ̂ T ,
\Δ,D) {

[ξ(s) = x , x e Rn ,

where wit) = iwλit)9 , wn(t)) is the n-dimensional Brownian motion.

It is well known (c.f. [4]) that this system has a unique solution f(ί)

= ξXtS(t) for any initial conditions ξ(s) = x e Rn. The process ξ(t) defines

a diffusion process and gives the transition probability measure

(2.6) pis, x, t, A) = PΛtβ(£(ί) e A) = P(ξXt8(t) e A) ,

where x e Rn, 0 <= s < t <^ T and A is a Borel set in Rn. We shall de-

note by BiRn) the σ-field of the Borel sets in Rn and introduce the

notation

S = {(x, s)eRn x [0, T] det iaίόix, s)) = 0} .

THEOREM 2.1. Under the assumptions I, II and III, ίfeβrβ exists

a function K*ix, s;y9t) infinitely differentiate in the complement of

diagonal set of iRn

x x [0, T)] x (K$ x [0, T]) with the folloτoing properties:

(2.7) K*(x, s y, t) - lim K*(x, s 2/, ί) in ®7(«; x [0, T] x Rn

y x [0, T]) ,
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from where we have K*(x, s y, t) = 0 for 0 <; t < s <^ Ύ.

The convergence in (2.7) is uniform in any compact subset of

R«χRn

yχ(0^s<t^T)Γ\ {(x, s;y,f); (x, s) e S, (y, t)eS} .

(2.9) Px s(ζ(t) G A) = f K*(x, s y, t)dy , (x9 s) e Rn x [0, Γ] ,
J A

0 ^ s <t^T , Ae B(Rn) ,

in particular,

(2.10) f K*(x,s;y,t)dy = 1 (x, s) e Rn x [0, T] , s < t ^ Γ .

(2.11) f L β + 4-)K*(χ> s' V> ί } = ~δ(χ - V > t - * ) >\ ds I

(2.12) (L* - 4-)κ*(χ>s' v> <) = ~δ(χ - v>t - s > '
\ ot /

where L* is the formal adjoint of L.

If the coefficients aij9 bt are independent of t, then i£*(x, s;y,t)

— K*(x, O;y,t — s) = X(a;, t — s,y) Jϊ(a?, ί, /̂) satisfies the equation

(2.13) (L - — W a , t, 2/) - -d(x - y, t) in Rn

x x R; x [0, Γ] .
\ ot /

THEOREM 2.2. Let aίj9 bt be independent of t and in addition to

the assumptions I, II and III we assume that So = {x e Rn det (α^ ) = 0}

is a compact set in Rn. Then for any compact set F in R% x ΛJ\S0 X So

and for any positive numbers T and ε0, we have

(2.14) 0 ^ K(x, ί,y) ^ Cί"n / 2 (x,y)eF , 0 < t < T ,

(2.15) 0 ^ X(α?f ί, i/) ^ C exp ( - z ^ ) (x,y)eF, \x-y\^eQ, 0<t<T9

where C and c are positive constants. If So consists of finite isolated

points (2.14) and (2.15) hold for arbitrary compact set F in K% x R%.

Furthermore, for any compact set E in Rn

9 we can take p sufficiently

large so that we have

(2.16) 0^K(x9t9y)^Cexp\-^^\ yeE-9 \x\ > p , 0<t<T9

where C and c are positive constants depending only on E and T.
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THEOREM 2.3. Under the same assumptions as in Theorem 2.2, we
have for sufficiently large p

(2.17) 0^K(x,t,y) ^ C e x p Γ - ^ M l xeE, \y\>p, 0<t<T,

where C and c are positive constants depending only on E and T.

We shall prove the above theorems in the following. First the

proof of Theorem 2.1 will be given in several steps.

For each ε > 0, consider the ^-dimensional stochastic system

&(£•(*), t)dt 0 rg s < t ^ T ,

ξε(s) = x , x e Rn ,

where σε is a matrix such that ^σε σε = (α^ + e^^).

The solution fε(ί) = fJiβ(ί) defines a diffusion process with the differential

operator Lε + — — L + εΔ + — . Since Le + — is uniformly para-
ds ds ds

bolic (backward) in Rn x [0, Γ] we have (c.f. [4])

(2.19) P*,,(?(i) e A) -

x,yeRn , 0 ^s <t ^T , Ae B(Rn) .

It can be shown that for any N > 0 we have

(2.20) sup EX9t\ξ'(t)-ξ(t)\-»O as e-> 0 . (cf. [4], Vol. 1. Ch. 5)

As easily follows from the relation (2.19) we have for any φeC^(Rn)

(2.21) EXt8[φ(ξ (jb))] - f K * { x 9 s y , t)φ(y)dy x e R n , 0 ^ s < t ^ T .

Now setting

ίδ(x — y) for t = s
KT(.x,a;y,t)=ι Q f ^ f <

we have for any φ(y, t) e Cϊ(Rn x [0, T\)

(2.22) EXiS[φ(ξε(ί), t)]dt = Kf(x,s;y,
Js J 0 J R%

Then we have from (2.20)
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), t)]dt - £ Ex,s[φ(ξ(ί), t)]dt

,, |p(f (ί), t) - Ψ(ξ(t), t)\dt

^ C(φ) • T sup E If i,,(ί) - f x,,(ί) 1 - 0 a s e ^ O ,

where C(ψ) is a Lipschitz constant for φ. Thus we have for any

φ e Cs{Rn x [0, Γ])

(2.23) Γ f K*(x, s y, t)φ(y, t)dydt - Γ ExJΨ(ξ(t), t)]dt as ε -» 0 ,
Jo JR% Js

(2.24) sup I f f K*{x,s;y,t)Ψ{y,t)dydt ^T sup \ψ\ .
(χ,s)eRnxlo,τ] I J o J i ? ^ i2wx[o,!Γ]

On the other hand, it is well known that

(L% - —Λκ*(x9 s;y,t) = O for (y, t) Φ (x, s) ,
\ ot /

where L* is the formal adjoint of Le. As a consequence of the above

consideration, there exists a distribution K* such that

(2.25) ( L * - 4r)K*(χ> s;y,t)= -δ(x- y, t - s) .

Similarly we have

(2.26) ( L Λ + ~)κ*{xy s;y,t)=-δ(x- y91 - s) .

By the assumption III and (2.25), we have for any fixed (x, s) e Rn x (0, T)

K*(ic, s y, t) is infinitely differentiate in (y,t) in i?^ x (0, T)\{(x, s)}.

Now we can show that K*(x, s;y,t) is infinitely differentiate in

the complement of the diagonal set of {Rn

x x (0, Γ)) X (Rn

y X (0, T)) by the

similar argument as in [1], §6. Take two disjoint bounded open sets

U and V in Rn x [0, T]. Considering (x, s) e V as an parameter,

{K*(x, s;y,t); (x, s) e V} is bounded in 3)r(JJ) by (2.24). Furthermore by

assumption III it is bounded in C°°-topology in U (c.f. [1], Cor. 5.1).

For each T e <T(£7) set

s) = <T,K*(£,s; , •)> (x,s)eV .

Take a sequence <pn(x, t) e Cf(U) such that
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φn-»T in δ\U) as n -» oo .

K*φn(x, s) = Γ f X*(α, β », t)φn(y, t)dydt e
Jo JR%

+ l ) κ * ψ n = 0 in F : (2.26) .
as /

We have

and

On the other hand, we have K*φn(x, s) -» Z*Γ(x, 5) for each (x, s) e V as
n—> 00, furthermore by the above consideration K*φn{x, s) converges
boundedly to K*T(x, s) from where we have

(LX + —)K*T = 0 in V .

Thus we have

K* : ί'(l7) -> δ(V) .

In such a case, by the results on distribution kernels given in [10], we
have K* e C~(V x U).
We note that from (2.23) we have for any φ e

(2.27) ExJφ(ξ(t))] - f K*(x, s y, t)φ(y)dy

from where we have K*(x, s y, t) ^ 0 and we can prove (2.9). In fact
it is sufficient to prove (2.9) in the case where A is an open ball. Take
a sequence of functions ψj(x) e Co(Rn) such that supp ^ c A , f = l,2, ,
and φj(x) y i for all xeA as j —» 00. Then we have the relation (2.9)
in such a case taking the limit as j —> 00 for each side of (2.27) with
9? replaced by ^ . The proof of Theorem 2.1 is completed except the
assertion (2.8) which is proved by almost the same method given in [5],
We shall merely give the proof of (2.8) for a simple case in the proof
of Theorem 2.2.

Now we are going to prove Theorem 2.2 and Theorem 2.3.
a) We shall first prove (2.14). Let B be any bounded open set

with B Π So = 0. Then K£x, t, y) is a fundamental solution for Lε —

— in the cylinder Q = B x (0, 00). Since L is non degenerate outside
dt
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of SQ, we can easily see from the manner of the construction of Ke (c.f.

[3], p. 24) there is a constant C independent of ε (0 < ε ̂  1) such that

(2.28) 0 < KXx, t, y) ̂  Ct~n/2 x,yeB, 0 <t ^ T .

Thus for any sequence {εm}, εm -* 0 as m—> oo, and for any compact set

W in (JfS\So) X (0, oo) x (K$\SQ), Kεm is uniformly bounded in W. On the

other hand we have

..,, + L* ,„ - 2^KβM(x91, y) = 0 i n ?

and Lβja? + Lβ>y — 2 — (ε > 0) is uniformly parabolic in W. Then by
dt

the Schauder type interior estimates (c.f. [3]) applied to Kεm as a func-

tion of (x, t, y) we conclude, by diagonalization, that there is a sub-

sequence {ε'm} of {εm} such that

(2.29) K(x, t, y) = lim K^(x, t,y) xe Rn\SQ , y e Rn\SQ , 0 < t < oo ,

where the convergence is uniform in any compact set in (R%\S0) X (0, oo)

X (Ry\S0). This proves the assertion (2.8) in such a case.

Next let Q be any compact set in RN\S0 then by (2.28) and (2.29)

we have

(2.30) 0 ̂  K ( x , t , y) ̂  C t ~ m x e Q , y e Q , 0 < t < T ,

where the positive constant C depends only on Q and T. Hence the

estimate (2.14) is obvious if the estimate (2.15) is proved.

b) Now we shall prove (2.15). For any compact set E with E Π So

— 0, we can see by the way of construction of Ke (c.f. [3], Ch. 1) that

(2.31) 0 < KXx,t,y) ^ Cexp(-— \ x eE , y eE , \x-y\^ε0, 0<t<T

where C and c are positive constants depending only on E, ε0 and T.

Then by (2.29) we have the estimate (2.31) with Kε replaced by K. Let

M and E be arbitrary bounded open sets in Rn such that So c M,

M Π E = 0. Suppose that the boundaries of M and E are smooth.

Then by the argument given above we have

(2.32) 0 ̂  K(x, t, y) ^ C exp ( - — \ x e dM , y e E , 0 < t ^ T .
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For any fixed y in E consider the function

v ( x , t) ΞΞ K ( x , t, y) i n (x, t)eM x ( 0 , T) .

Then we have by (2.32) and (2.7)

0 ^ v(x, t)^C exp ( ~ —) (x, t)edM X (0, T) ,

- v(x, 0) = 0 xeM ,

(L - —)v(x, t) = 0 in M x (0, T) .
\\ dt I

Hence by the maximum principle it follows that

0 ^ v(x, ί) ^ C exp (-—) fe, *) e M x (0, Γ) ,

i.e.,

( 2 . 3 3 ) 0 ^ K ( x , t, y) ^ C e x p ( — — \ xeM,Q<t^T,yeE.

Next take any bounded open sets M and E such that So a E and M Π E
— 0 and consider the function

v(ί, y) Ξ X(a;, ί, i/) in (ί, j/) e (0, Γ) X ί7

for any fixed x e M. Then by the similar way as above we have the
estimate of type (2.33). Combining these investigations we have (2.15).
It is clear, from the method given above, that (2.14) and (2.15) hold
for arbitrary compact set F if So consists of finite isolated points.

c) We shall prove the estimate (2.16) by the similar way as in [5],
§4. Let Bm = {xeRn;\x\<m}, m = 1,2, ••-. Denote by Gm^x9t9y)

the Green function for the operator

in the cylinder Qm = Bm x (0, oo). Therefore Gm?s(α;, ί, #) e C°°(5m x (0, oo)

X i?m) and as a function of (x, t) we have

LεGm e — — G m β = 0 in (α;> t) e Qm (y fixed in Bm) ,

Gm,s --> 0 a s ί - ^ 0 i f ^ ^ 2 / , ^ 6 ^ T O ,

Gm,ε - 0 if t-*0 , xedBm.
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Furthermore, for any continuous function f(y) with support in Bm, the
function

u(x, t) = f Gm,£x, ί, y)f(y)dy
J Bm

satisfies:

ί3

L,ιι(x, t) — —-u = 0 in Qm ,
ot

u(x, t) -* /(a?) as t -+ 0 , a? e £ m

, ί) = 0 f or t -> 0 , x e dBm .

(2.34)

It is well known (c.f. [3], p. 82) that such a function Gm?e is constructed

by using Ke = Kf(x, O t, y) and is uniquely determined by the above

properties. We have

(2.35) 0 ^ GTOf. ^ GTO+1,f ^ X.(a;, ί, 2/) if (a;, t)eQm, yeBm,

(2.36) UL.(ίc, ί, 2/) = lim GTO,.(α, ί, l/) », 3/ e Rn , ί > 0 .
m-*o°

The inequalities in (2.35) are proved by the maximum principle. In
fact for any continuous and nonnegative function fk(y) with support in
Bm, we have

0 ^ f Gmt.(x, t, y)fk(y)dy ^ f Gm+he(x, t, y)fk(y)dy

^ f KAx, t, y)fk{y)dy

by the maximum principle. Taking a sequence fk converging to the
Dirac measure at y eBm, the inequalities in (2.35) follow. Now we can
use the Schauder type estimate as in a) to conclude that the following
limit exists:

(2.37) G£x, t, y) - lim Gm,Ax, t,y) x, y e Rn , t > 0 .
TΠ-* 00

The convergence in (2.17) is uniform in any compact set of Rn

x X (0, 00)

X Rn

y. Setting

ίδ(x ~ y ) for ί = 0
{ 0 for t -> 0 ,

we can easily see that
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Recalling that Ke has the same property as Gs, we have for any fixed
yeRn that

?. — JSΓ.) = 0 ί > 0 ,

(G. - Ks) ί=0 = 0 ,

Hence we have Gε — Kε = 0 by the well known uniqueness theorem for
the Cauchy problem for uniformly parabolic equations. This proves
(2.36). After these preparations we can prove the estimate (2.16).
Consider first the case where E Π S — 0. For any positive integers p
and m, m > p, let

Nm,p — {x e R n p < \x\ < m] , Jp = {x;\x\ = p} , Δ m = {x ;| x | = m } .

We shall compare the function v(x, t) — Gm,ε(x> t> y) (y fixed in E) with
a function

(2.38) («,) Cev(

in the cylinder iVmj/0 x (0, T). We have

- | - W , ί) - W Σ (ttii + e ί^a ;^ - 2rί|~Σ (α« + ε)
at / I ί , j = i Lί=i

+ Σ & Λ ] - r I^Γ c

We have Lεw — wt < 0 for (#, ί) e NmtP x (0, Γ) if we take γ sufficiently
small and p sufficiently large which can be taken independent of γ and
ε by the assumption II. With p now fixed, we further decrease γ (if
necessary) so that

v(x, t) ^ w(x, t) f or x e Δp , 0 < t < T

for some positive constant C in (2.38), which is possible by virtue of
(2.31). Notice that v(x9 0) — 0 by (2.31) and applying the maximum
principle, we get

Gm,e(x, t, y) = v(x, t) ^ w(x91) for (x91) e Nm,p x (0, T) .
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Frota this the assertion (2.16) for such a case follows by taking first

m -» oo and then ε -* 0.

Now let E be any compact set in Rn. Let Σ be a sphere contain-

ing both E and So in its interior Δ. From what we have just proved

we know that for x e NmtP

(2.39) Gn,Xx, t, y) S w{x, t) (y, t) e Σ x (0, T) .

Considering as a function of (?/, t), w(x, t) satisfies:

= (δ(y) - X. \xήw(x, t)< 0

if ^ is sufficiently large and y e Δ, 0 < t < Γ. By using the maximum

principle we have (2.39) also for yeΔ, 0 < t < T. Taking m —> oo and

then ε -* 0, (2.16) follows.

d) As easily seen, we can apply the proof of Theorem 2.2 to the

adjoint L* of L and obtain Theorem 2.3.

§ 3. Fundamental solution for the operator L + c(xf s) + —
ds

1. Let L satisfy the assumptions I, II and III given in § 1. Let

c(x, t) be a bounded measurable function in K% x [0, T] and we shall

construct a solution of the equation

(3.1) (L + c(x9s) + JL)r*(x,8; y91) = -δ(x -y,t-s) .

First we suppose c{x, s) ;> 0 and we try to find Γ* in the form

(3.2) Γ*(x9 s;y,t) = K*(x, s y, t) + Γ ί K*{x, s ξ, σ)Φ*(f, a T/, ί)dfdσ

0 ^s <t^T ,

and we define Γ*(x, s;y,t) = 0 0 ^ ί < s ^ Γ.

The integral in the right hand side of (3.2) has a meaning by the

Chapman-Kolmogorov's equation if we have

(3.3) 0 ^ Φ*(x, s ; y , t ) ^ O R : * ( z , s ; y , t ) O ^ s < t ^ T ,

where C is a positive constant. Suppose there exists such a solution

Γ*, then if we operate L + c(x, s) + — for both sides of (3.2) in the
ds
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distribution sense we have

— δ(x — y t — s) = —δ(x — y t — s) + c(x, s)i£*(a;, s;y,t)

- Φ*(χ, s y , t) + c(x, s) Γ ί K*(x, s ξ, σ)Φ*(ξ, σ y , t)dξdσ .
J s J Λ |

Hence the problem is reduced to solve the integral equation

Φ*(x, s;y,t) = c(x, s)Γκ*(x, s y91)
L(3.4) ί

 L

+ Γ ί K*(x, s ξ, σ)Φ*(ξ, σ y, t)dξdσ] ,

which will be solved by recursive approximation. Define

Φ*(x, s;y,t) = c(a;, s)X*(a;, s 2/, ί)

and

Φί(«, s y, t) - c(x, 8) Γ ί X(a;, s ξ, σXP?.^, σ », Odfdσ fe = 1, 2, . .
Js J R%

Then we have

(3.5) 0 ^ Φ*(a;, 8 1/, ί) ^ Mk+'(t ~fr K*(x, s T/, t) ,

where ilf = supφ: , s) in /?n x [0, Γ], Hence the solution Φ* of (3.4) is

obtained by

(3.6) Φ*(a, 8 i/, ί) = f; Φf(», β y, t)

and we have

(3.7) 0 ^ Φ*(x, s;y,t)<> Meu-s)MK*(x, s;y,t) , O ^ K ί ^ ϊ 1 .

Thus we have obtained the fundamental solution Γ* of the operator

L + c(#, s) + —- and it holds that
ds

(3.8) 0 ^ Γ * ( x , s ; y , t ) ^ e u ~ s ) M K * ( x , s ; y , t ) , 0 ^ s < t ^ T .

Now let c(ίc, ί) be an arbitrary bounded measurable function in

Rn x [0, T] then we can construct as above the fundamental solution

Γ* for the operator L + c(x, s) + μ + — with μ = — inf c(x, s) in Rn x

[0, T]. By (3.8) we have
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0 ^ Γ*(x, s;y,t)£ e(M+«)U-s)K*(x, s;y,t) , M = sup c(x, s) .
Λrax[O,Γ]

The fundamental solution of the operator L + c + — is given by Γ*
ds

= e~μit~8)Γ* and we have the estimate

(3.9) 0 ^ Γ*(x, β y, ί) ^ ^ " - ' ^ ( a ? , « y, ί) 0 ^ s < t ^ T .

n 32 n

2. Let L = T] α̂ Gc) h 2 &*(#) be independent of £ and sat-

isfy the assumption in Theorem 2.2 and let c(x) be a bounded measur-

able function in Rn. We shall construct a fundamental solution for the

operator L + c(x) — λ in Rn where λ is a real number such that λ >

sup c(x). We note that the fundamental solutions K(x, t, y) = K*(#, 0 y, t)
x£Rn

and Γ(x, t, y) = Γ*(x, 0 #, ί) for the operators L — — and L + c — —

dt dt

have been constructed in the paragraph 1. For any positive numbers

t and s0 we have

(3.10) K(x, t + s0, y) - f K(x, t, ξ)K(ξ, sQ, y)dξ .

Let E be any compact set in Rn then by applying (2.10) and (2.16) in

the right hand side of (3.10), we have

(3.11) 0 g K(x, t + s0, y) ̂  Mo (a, ί) e Rn x (0, oo) , y e E ,

where Mo is a positive constant depending only on E and s0. Therefore

the function

(3.12) G(x, y) = Γ e~λsΓ(x, s, y)ds
Jo

is well defined for x = 7/ by virtue of the fact that K(x, t, y) e C°°(/?J x

(—oo, oo) x Rn

y\{x = y, t = 0}: Theorem 2.2 and 0 ̂  Γ(x, t, y) ^

e{M"λ)tK{xyt,ιj) t>Q: (3.9). As is easily seen, it holds that

(L + c(») - )̂G(a;, 2/) = -δ(x - y) .

Hence —G(x,y) is a fundamental solution for the operator L + c(x) — Λ

in #*.

Finally we note that the singularity of G(x, y) is uniformly integr-

able, that is,
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ί G(x, y)dy = f Γ e{M'X)tK(xf t, y)dydt ^ — - — x e Rn .
JR% JR% Jo λ — M

§4. Continuity of bounded generalised solutions

Let Ω be a bounded open set in Rn. We shall consider the con-
tinuity property of solutions of the equation

(4.1) (L + c(x, s) + -|~ W , s) = /(a?, s) in Ω X (0, Γ) ,
\ ds I

n β2 n 3

where the operator L = 2 α^(^> ̂ ) + Σ &i(^>s) satisfies the
ί,j=i dXidXj 3=1 dXj

conditions I, II and III given in § 1 in Ω x [0, T] and c(x, s) is a bounded
measurable function in Ω x [0, T],

THEOREM 4.1. Let u and f be bounded measurable functions in
Ω x (0, T) which satisfy the equation (4.1) in Ω x (0, T) in the sence of
distributions. Then u is a continuous function in Ω x (0, Γ).

Proof. It is sufficient to prove the theorem in the case c = 0 since

we have [L + — ) u = — cu + / and the right hand side is bounded
\ ds /

measurable in fix (0, Γ). For simplicity we assume that β is an open
ball BN = {xeRn;\x\ < N}.

We shall first treat the case where supp. / c BN x (0, Γ). We note
that the coefficients aίj9 bj (i, j = 1, , n) can be extended to be infinitely
differentiable bounded functions in e Rn X [0, T] so that L is elliptic in
(Rn\BN) x [0, T]. Then the conditions I and II are satisfied for extend-
ed L, and by the same proof as in Theorem 2.1 there exists a distribu-
tion kernel K*(x, s;y,t) such that

K* is infinitely differentiate in the complement of the diagonal
( 4 ' 2 ) set of (Bζ x [0, T]s) x (Bζ x [0, T]t) ,

(4.3) ( | W S », t) - -ί(a; - y, t -s) in B^ x [0, Γ] ,
ds I

(4.4) P * f , ( f ( ί ) e A ) = ̂  K * ( x , s y , t)dy Q ^ s < t ^ T ,

for any (x, s) e BN x [0, Γ] and A e B(BN) , A a BN .



118 T. MATSUZAWA

Consider now the function

u(x, β) = - Γ f K*(x, s y, t)f(y, f)dydt (x, s) e BN x [0, T] .
JO J B$

Clearly we have by (4.4)

We shall show that

(4.5) (L + - | - W , s) = f(x, s) in BN x [0, T]
\ ds /

in the sense of distributions. In fact, take a sequence of functions
ψj(x, s) e Co(BN x [0, T]) such that

lim φj(x, s) = /(a?, β) (x, s) e BN x [0, Γ] ,

, 7 = 1,2, . . . .

Then we have by (4.3)

ί L + —\uj(x, s) = ^(a?, s) ,

, s) = - ί ί #*(&, s ?/, O9/2/, t)dydt , = 1,2,
Jθ J B%

lim w/α;, s) = ^(x, s) (x, s) e BN x [0, Γ] ,

from where (4.5) follows. We get the continuity of u(x, s) as follows.
For 0 ^ s0 < 8 ^ T and x0, x e BN,

u(x, s) - u(xQ, s0) = — I I K*(xf s y, t)f(y, t)dydt
Js JBN

+ Γ f K*(x09 s0 y, t)f(y, t)dydt

= Γ f [-K*(x,s;y,t) + K*(x0, s0 y, t)]f(y, t)dydt
Js J BN

+ Γ ί K*(x0, s0 y, t)f(y, t)dydt = A + 72 .
J So J B^

By (4.4) the last term I2 will be arbitrarily small if we close s and s0

sufficiently. We have for small δ > 0
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17,| ^ Γδ ί \K*(x, s y, t) - K*(x0, s0 y, t)\ \f(y, t)\ dydt
J s J BK

Cτ Γ+ \K*(x, s;y9t) — K*(x0, s0 ;y,t)\ \f(y, t)\ dydt

The first term in the right hand side becomes arbitrarily small if we
take δ (independent of (x, s) e BN x [0, T]) sufficiently small. Finally for
any fixed δ > 0, we have K*(x, s;y,t) — K*(x0, sQ y, t) -> 0 uniformly in
(x, s)y (y, t)eBN x [0, T] as (x, s) -> (x0, s0) if t - s0 ^ δ by virtue of (4.2).

Now we shall consider the general case where u and / are as in
Theorem 4.1. For any (x09 s0) e BN x (0, Γ), take a function a(x, t) e
CQ(BN x (0, T)) with a = 1 in a neighbourhood of (a;0, «0). Then by the
argument given above the function

u£x, s) = — X*(aj, s 2/, t)a(y, t)f(y, t)dydt

is continuous in BN x (0, T). On the other hand we have

-ua) = f-af = (X- cdf in BN X (0, T) .

Since L + — is hypoelliptic in BN x (0, T), we have u — ua is infininitely
ds

differentiable in a neighbourhood of (x0, t0) where a = 1. We get
Theorem 4.1 since (xo,to) is taken arbitrarily in BN x (0, T).

§ 5. The Cauchy problem

Under the assumptions I, II and III, we first consider the Cauchy
problem:

(5.1) Lu(x, s) + —u(x, s) = 0 in Rn x (0, T) ,
3s

(5.2) lim u(x, s) = φ(x) in @'(Rn) ,

where L is the operator given in § 1.

THEOREM 5Λ. Lβί ψ{x) be a bounded measurable function in Rn,
then the solution of the Cauchy problem (5.1), (5.2) is given by

(5.3) u(x, s) = ExJφ(ξ(T))] - f K*(x, s y, t)φ(y)dιj ,

(x, s)eRn x (0, T) .
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We have u e C°°(Rn x (0, T)) and

(5.4) sup \u(x,s)\ <* sup \φ(x)\ .

Furthermore if φ(x) is continuous at xoeRn, then

(5.5) u(x, s) -> φ(xQ) as (x, s) -> (x0, T) .

Hence, if φ(x) is a bounded continuous function, u{x, s) is a classical

solution of (5.1) and (5.2).

Remark 5.1. The uniqueness of the solution of the problem (5.1)

and (5.2) follows from the Itό-formula and the assumptions I, II and

III.

Proof of Theorem 5.1. The second equation in (5.3) is obtained by

the standard argument by using (2.9). For any bounded measurable

φ(x) with compact support in Rn,

u{x, s) = ί K*(x, s y, T)φ(y)dy
J Rn

is a solution of (5.1) and we have ueC°°(Rn x (0, Γ)) by (2.11) and the

assumption III. Now let ψ{x) be merely bounded measurable function

in Rn. Let

_ jφ(x) \x\ ^ m ,

^x)-\θ \x\>m, m = l,2, >

and

um(x, s) = EXtt[φm(ξ(Γ))] - ί K*(x, s y, T)φm(ξ)dξ
J Rn

(x, s)eRn x (0, T) .

Then for each (x, s)eRn x (0, T) we have

um{xy s) -> u(x, s) = K*(x> s y, T)φ(y)dy as m -> oo

and we have

(5.6) (L + -?-)um(x, s) = 0 in Λ» x (0, Γ) ,
\ ds J

(5.7) sup \um(x, 8)| ^ sup |p(aθ| , m = 1,2, - : (2.10) ,
Λ«X(0,Γ) β«
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Hence by the Lebesgue bounded convergence theorem ιιm —> u in

L]oc(Rn x [0, T]) as m ^ o o , which means um-*u in 9'(Rn x [0, T]) as

m —> oo. By the assumption III and by (5.6), we have u e C°°(i?n x (0, T))

and Lu + —u = 0 in Rn x (0, Γ).
as

The estimate (5.4) follows from (5.7).

By Theorem 2.1 we have

K*(x, s;y,T)->δ(x - y) as s -> T in 0'(jβj)

for any 7/ e 2?w, whence we have %(;r, s) —> ^(^) in Q)f{Rn) as s / Ύ,

Finally, let xQeRn be a point of continuity for ^(x). Let us re-

member that

(5.8) £Xt,(T) = x

From (5.8) we have easily

(5.9) E |^,S(T) - a,,I ^ C(\x - xo\ + (Γ - s)1/2)

for some positive constant C independent of x and s. Hence ξx,s(T)

x0 in probability as x -> x0 and s —> T, i.e. for any δ > 0,

(5.10) P(|f I i e(T) - xo| > 3) -* 0 as a? -> £0 , t -> Γ .

On the other hand for any ε > 0, there exists δ > 0 such that

\φ(χ) — φ(xo)\ ^ ε if \x — ίco| ^ 5 .

Thus we have

\U(X,S) - φ(xo)\ = |ί?

(Γ) - xQ\ ^ 3) + ε .

By (5.10) and since ε is arbitrarily taken, the left hand side can be

made arbitrarily small as (x, s) —> (x0, T). Consequently u is continuous

at (x09 0). Q.E.D.

Next we shall consider the Cauchy problem:

(5.11) Lu + ^ = f(x, s) in Rn X (0, Γ) ,
OS

(5.12) u(x, 0) = 0 on Rn .
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THEOREM 5.2. Let f(x,t) be a bounded measurable function in

Rn x (0, T), then the solution of the Cauchy problem (5.11), (5.12) is

given by

u(x,s) = -EXtl

(5.13) τ

= - Γ f K*(x, s y, t)f(y, t)dydt .
J s J Rn

We have u e C(Rn x [0, T\) and

(5.14) \u(x, s)\ ^ (Γ - s) sup \f{x, t)\ , (x, s) e Rn x (0, T) .

Therefore u(x,s) satisfies (5.12) in the ordinary sense.

Proof. The second equation in (5.13) is obvious by (5.3). The

estimate (5.14) follows from (5.13) and (2.10). Now let f(z,t) be a

bounded measurable function in Rn x [0, T] and let

Jm\X, t) — {

[ 0 I a? I > m , m — 1, 2,

Then, as in the proof of Theorem 4.1, the functions

{x, s) = - I I UL*(CC, s y, t)fm{y, t)dydt , m = 1, 2,u

satisfy (5.11) with / — fn in the weak sense and (5.12) in the ordinary

sense. We have um(x, s) -+ u(x, s) as m-^oo and

\um(xfs)\^T sup \f(x,s)\, m = 1,2, -' .

By the Lebesgue convergence theorem we have um(x, s) —> u(x, s) in

&'{Rn x [0, Γ]) as m ~> oo, hence tt satisfies (5.11) in the weak sense and

u is continuous in Rn x [0, T] by Theorem 4.1.

Now let c(x, s) be a bounded measurable function in Rn x [0, T].

We shall finally consider the Cauchy problem:

(5.15) Lu + c(x, s)u + — = f{x, s) in i?w x (0, T) ,
ds

(5.16) lim u(x, s) =
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THEOREM 5.3. Let fix, s) and φ(x) be bounded measurable func-
tions defined in Rn X [0, T] and in Rn respectively. Then the solution
of (5.15) and (5.16) is given by

(5.17) u(x, s) = Ex,sψ(ξ(T)) exp [ £ c(£(λ), λ)dλ\

- Ex,s |V(f(ί), t) exp [£ c(ξϋ), «dψt

= I Γ*(x,s;y,t)φ(y)dy
J Rn

- Γ f Γ*(x, s y, t)f(y, t)dydt , (x, s) R" x (0, T) ,
J s J Rn

where Γ* is the fundamental solution for L + c + — constructed in
' ds

§ 3. u(x, s) is continuous in Rn x [0, Γ] and we have by (3.9)

(5.18) \u(x, s)\ ̂  β(7T-s)^fsup \φ(x)\ + (T -s) sup \f(x, s)\) ,

where M = sup c(a;, s).

Furthermore if φ(x) is continuous at x0 e Rn, then we have

(5.19) w(a, s) -> ^ o ) as (a?, s) / (»0, T) .

Proof. We set

ttCa, s) = ί Γ*(x, s y, t)Ψ(y)dy - Γ f Γ*(x, s y, ί)/(l/, t)dydt .

Then by almost the same way as in the proof of Theorem 5.1 and 5.2
and by using the estimate (3.9) we can show that u(x,s) is a solution
of (5.15) and (5.16). u(x,s) is continuous in Rnχ[0,T] by Theorem
4.1. It remains to prove the equality of two expressions in (5.17).
We shall merely prove the case where / = 0, i.e.

u(x, s) - Ex,sφ(ξ(T)) exp U c(f(«,«d;] = j ^ Γ*(x, s y, t)φ(y)dy .

The remaining part can be proved similarly. First take two series of
functions such that

cm(x, s) e C2(Rn x [0, T]) , φm{x) e C\Rn) ,

g \\φ{x)\\L- m = l,2,. ,
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lim cm(x, s) = c(x, s) (x, s)eRn X [0, T] ,

lim φm(x) — <p(x) x e Rn .

By the results of [8], there exists C2-solution um of the problem

(5.20) Lu + cm(x, s)u + — = 0 in Rn x (0, T) ,
9s

\D.ώL) ίt/\Ju9 1 ) — ψm\'*/) *** xv

As an application of Itό-formula to the function

um(ξXt8(λ)9 X) exp c(ξ(σ), σ)(

Us
and the process (2.5), we have

um(x, s) = ^ f l 9 > Λ ( f ( Γ ) ) exp f Γ cm(ξ(X),

We can easily show by using the Lebesgue convergence theorem that
for any Brownian motion w

(5.22) φm(ξχ,8(T)) exp

converges boundedly (in w) to

φ(ξχ,»(T)) exp

Hence we have for each (x9 s) eRn x [0, Γ],

c, s) = EXiSφ(ξ(T)) exp c(£(>l),>l)(Z>l| m —» 00 .

Obviously this is a bounded convergence in (x, s) e Rn x (0, T). Hence
u satisfies (5.15) with / = 0 in the sense of distributions. (5.16) is
proved as in the proof of Theorem 5.1.

§6. Remark on the Fichera problem

Let

L= Σ MaO-r-?— + Σ h&) % e Rn
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be independent of t and satisfy the assumptions in Theorem 2.2. Let

G be a bounded domain in Rn and for simplicity suppose the boundary

dG is smooth: 3GeC\ As in [9], we denote by Σ2 the set of dG where

b(x) = Σ (bjix) - ^Λvj < 0 ,

where (2̂ , , vn) is the interior normal vector at xe dG. The set of

boundary points where

Σ ξj > 0 ξ e Rn ,

will be denoted by Σz. Let c(x) be a bounded measurable function in

G and e(#) <; 0 xeG. We shall consider the first boundary value pro-

blem:

(6.1) Lu+ cur= f in G ,

(6.2) tt = flr on Σa = J 2 U I's ,

where / is a given bounded measurable function in G and g is a given

continuous function on Σ22 ~ Σ2 U Σ3.

Under the assumption that either c(x) be uniformly negative or

(6.3) sup Exτ < oo ,
xeG

where τ ~ inf {t ^ 0 ξXi0(t) £ G}, the solution satisfying (6.1) in the sense

of distributions and (6.2) in the ordinary sense is given by

(6.4) nix) = Exg(ξ(τ)) exp

-Ex £ f(ξ(τ)) exp [ £ c(ξ(β))(te]dί (c.f. [11]) .

By applying our results obtained in §4, we have u(x) e C(G U Σ23).

Furthermore by (6.3) and (6.4) we have the estimate

(6.5) \\u\UtO

where C is a constant independent of / and g.
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