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ON THE DOI-NAGANUMA LIFTING ASSOCIATED

WITH IMAGINARY QUADRATIC FIELDS

TETSUYA ASAI

Introduction

Similarly to the real quadratic field case by Doi and Naganuma
([3], [9]) there is a lifting from an elliptic modular form to an auto-
morphic form on SL2(C) with respect to an arithmetic discrete subgroup
relative to an imaginary quadratic field. This fact is contained in his
general theory of Jacquet ([6]) as a special case. In this paper, we try
to reproduce this lifting in its concrete form by using the theta func-
tion method developed first by Niwa ([10]) also Kudla ([7]) has treated
the real quadratic field case on the same line. The theta function method
will naturally lead to a theory of lifting to an orthogonal group of
general signature (cf. Oda [11]), and the present note will give a proto-
type of non-holomorphic case.

Let an imaginary quadratic number field be fixed once for all
throughout this paper, and let o denote the ring of integers of the field.
For simplicity's sake we assume that the class number is one and the
discriminant — D is odd prime, less than —3. For a positive even in-
teger v we denote by ^ p + 1 the space of cusp forms of weight v + 1 of
Neben type χ with respect to ΓQ(D), where χ denotes the Kronecker

character (——V We shall show that each cusp form / in ^ + 1 can

be lifted to a C2v+1-valued automorphic form F on SL2(C) with respect
to SL2(o), belonging to an irreducible representation of SU2(C) of degree
2v + 1, which is also an eigen-function of the Casimir operator with
the eigen-value |(v2 — 1). We shall give the Fourier expansion of F ex-
plicitly. It may be remarkable that the lifted image F is cuspidal if and
only if / is orthogonal to 6% in Sfv+1, where θ%(z) = JΣreo^exp (2πi?τz).

In our argument, a special polynomial of four variables, which is
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nothing but a classical Laplace's spherical harmonics in essential, plays a
fundamental role, so that we shall devote the first section to summariz-
ing its properties. One of virtues of Niwa's method is in connecting
a theta function with so-called Rankings method, and we shall follow
this, but in a little more direct fashion, namely we try to avoid using
Eisenstein series there. The exceptional behaviour of Θ% is related to
the fact that θ% is the unique primitive form in ^ v + 1 whose Fourier
coefficients are all real. As an application of the Doi-Naganuma lifting
we shall give a proof of this in the last section.

§ 1 . The spherical harmonic polynomial

1.1. We shall denote by pn(g) the n-ply symmetric tensor product
of geGL2(C), i.e.

with indeterminants a,b eC and (a, b)n = (an, an~xb, , abn~\ bn). P u t

G = SL2(C) and K = SU2(C). Each pn gives an irreducible representa-
tion of K as is well known. Let us put

which is a vector space of dimension four over R, and so we regard
M2(C) as Vc = V ®Λ C. The group G acts on V in such a way that
XQ = ιgXg for X eV and g e G. The action restricted to K gives a
representation on V equivalent to ρo®p2. Let us define two symmetric
bilinear forms Q and R on V by

Q(X, Y) = - t r (XΫ), R(X, Y) = tr (XY) X,YeV ,

where Ϋ = d "O'ΓCi *). Q(X) and #(X) denote the associated quadratic
forms Q(X,X) and R(X,X)9 respectively. The form Q is of signature
(3,1) and G-invariant, i.e. Q(Xg) = Q(X) for every # e G, while the form
i? is positive definite and Z-invariant, i.e. R(XK) = R(X) for every /ceK.
We should note the form R(Xg) is a minimal majorant of Q(X) for each
g e G. For a non-negative integer v, let Jfv denote the C-linear space
of polynomial functions on V spanned by Q(X, A)% where AeVc such
that Q(X, A) = R(X, A) and Q(A) = R(A) = 0. An element of Jfv is
called a spherical harmonic polynomial with respect to Q and its majorant
R. The dimension of 3fv is 2v + 1, in fact, we can get a natural basis
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as follows.
Let us put A = ι(a, b)(a, 6)d - 1) e Vc, then the form Q(X, A)v is a

homogeneous polynomial of degree v (resp. 2v) with respect to X (resp.
α, 6). Hence we may define a homogeneous polynomial ηVta(X) of degree
v as the coefficient of av~abv+a in Q(X, A)v for each α, |α| <̂  p. We thus
put :

Obviously we have

LEMMA 1. The polynomials ηv>a(X), \a\ ̂  v, form a basis of Jf\

Since the forms Q and R are K-invariant, 2tfv is regarded as a
representation space of K, which is irreducible. In particular, we have

LEMMA 2. ηω(Xκ) = ηw(X)p2v(κ) for every KβK.

Proof. We have η(v)(X*y(a,b)2v = Q(X',Ay = Q(X,A*-y, which is
equal to 7(l0(X)'((α, W^k - ^ ( D ^ ί α , 6)2p, since A*"1 - «((α, δ)^)((α, 6)^)
•d "0 for Λ eίC.

We should note that Lemmas 1 and 2 characterize the polynomials
η^a{X) up to a constant multiple, in fact, by a simple observation we
can show that the polynomials ηv,a(X) are essentially the same as clas-
sical Laplace's spherical harmonics (cf. [4], Chap. XI).

1.2. We write a general element X of V as follows:

(2) X = (m r); m,neR,reC ,
\r n/

and this parametrization will be kept throughout the paper. It is, then,
easy to see that ηi0)(X) — 1 and η(υ(X) = (—r,m — n,r), while we can
compute more by use of a recursion formula

(3) ηVtβ(X) = (-f)^_1)a+1(X) + (m - n)v^lta(X) + (Dη^^X) ,

where we understand ηo>o(X) = 1 and ηv,a(X) = 0 if |α| > p. The follow-
ing is an explicit formula which we need later.

LEMMA 3. For \a\ ̂  v, we have



152 TETSUYA ASAI

4) Σ 7
P,r (a

where Uβ

a) and Hr are Laguerre's and Hermite's polynomials respectively,
and the sum is taken over all non-negative integers β, γ such that 2β
+ γ = v — a and a + β ̂  0.

Proof. We put q = m — n for abbreviation. By the definition (1)
we have

exp ((-fα2 + qab + rb2)t) = Σ Σ vvJX)av"abv+a— .
0 \)\

It follows from a generating function formula of Hr (e.g. [8], p. 253)
that

exp (qabt - —a2b2t2) = f; Hr(q)arbr— .
\ 2 / r = 0 jΊ

On the other hand, we have

exp U-ra2 + rb2)t + —a2bψ) = f; exp {-ra2t)(l + ~r'ιa2t\ ^ ^
\ 2 / £=o \ 2 / ί\

by use of a generating function formula of L(

β

a) (e.g. [8], p. 242).
Equating these, we obtain the proof.

For convenience' sake let us define another quadratic form on V by

(5) P(X) = Q(X) + R(X) ,

then it can be immediately seen that P is Z-invariant, and 0 <; P(X)
for XeV.

LEMMA 4. |?v,α(X)|2 ^ ( y ̂  J ( 2 ^ P ( Z ) " /or Z e V.

Proof. It is sufficient to prove

6 ) t
— a

Denote by J a diagonal constant matrix of degree 2v + 1 satisfying
(a, b)2vJ

2t(β, h)2v = (αα + bb)2% then Jp2v(/c)J-1 is a unitary matrix for every
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K e K. Hence the left-hand side of (6), which is η(v)(X)J~2 %V)(X), is K-
invariant as well as the right-hand side. We may, therefore, assume

X = /™ ^V Then both sides are equal to (^V 1 (m - nγ\ This com-

pletes the proof.

1.3. For the purpose to give another property of ηv,a(X) we recall
some notions on Lie derivatives. Let S be an arbitrary element of the
Lie algebra of G, i.e. S e M2(C) with tr (S) = 0. A differential operator

S' (or S") on C~(G) is defined by S'f(g) = \—f(g exp (tS))] (or by

replacing — with 4r, accordingly.) On the other hand, a function
dt dt )

F e C~(V) induces a function FΣ(g) = F(X") e C°°(G) for each XeV.
Hence S' (or S'O operates on C~(7) in such way that (S'F)Z = S 7 ^ (or
(S"F)X = S/7FX). It can be easily seen that S' (or S") on C°°(F) is equal

to m'-?- + w'— + r'J- + r ' Ά , where ZS (or £SZ) = ft' %) with

theparametrizationZ = (^ ζ) e V. The elements A = (jj o ) > β = : : ( l o)

and Z7 = ί Q * Y form a basis of the Lie algebra, and the Casimir op-

erators σ and C" are given by C = A/β/ + β'A7 + \U!Vf and Cy/ = A^J?7'

+ B"A" + \U"Ό", while both the operators C and C" coincide with

each other on C°°(V). Further, by an easy computation we can obtain

a formula on C°°(V):

(7) C" = C" - |L 2 + L -

where L = wJ

[13], p. 95).

LEMMA 5. Put

(8)

Proof. Since η*a(X) is a homogeneous function of degree — (v + 1),
I^*β = ~(y + l)7*β # On the other hand, Δqη*a = 0 as well as J ^ y | β = 0.
These combined with the formula (7) complete the proof.



154 TETSUYA ASAI

The function η*a(X) is also called a spherical harmonics of degree

— (i> + 1), which coincides with ηVya(X) on the surface: P(X) = 1.

§2. Poincare series and theta series

2.1. Let o be the ring of integers of an imaginary quadratic field

of odd prime discriminant — Zλ It is, as in the introduction, assumed

that the class number is one and the units are 1 and —1 only. Let us

define a lattice £ of V over Z by £ = V Π M2(o), and denote by 2(£)

the subset of £ consisting of all elements of determinant — £ for each

£eZ. Let A denote the discrete subgroup SL2(o) of G. Each subset

Z(£) is ^-invariant. For each positive integer £ we define a C2v+1-valued

function on G by

(9) WflO= Σ ηW), (geG),

where ηfv)(X) = (q*-v(X), ,?*XX)) and ?*α(X) is given by (8). This

series is, as we shall see below, absolutely convergent for v > 1, hence

the function hiv)ti can be regarded as a type of Poincare series, consid-

ering that the set 2(£) is a union of some Λ-orbits. This combined

with Lemmas 2 and 5 leads to

LEMMA 6. For each positive integer £ and v > 1, it holds

(i) h(vh£(γg/c) = h(v)y£(g)p2Xfc) for γeΛ and tceK.

(ii) C%vhi = C"Λ(,M = i(p* - l)fcw,,.

For the purpose to prove that the series (9) is convergent absolutely

and uniformly on any compact subset of G, it is sufficient to combine

Lemma 4 with next two lemmas.

LEMMA 7. // £ is positive, a series Σxesw P(X)~S is absolutely

convergent for Re s > 1.

Proof. By noting P(X) = 4rf + (m - w)2 for X = (*? r W , di-
\ r ^/

vide the summation on Z(£) into the following three parts: one with

r = 0, one with rr = £ and the others. The first, then, is a finite sum,

and it can be easily seen that the second and the third are majorized

by some constant multiples of Σιnez(4£ + n2)-**8 and Σr6o-{o} (^)"< R e s" ε )

respectively, where ε is chosen so that Re s — 1 > ε > 0. These imply

the lemma.
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LEMMA 8. For arbitrary g eG there exists a positive constant c
such that P(Xg) ;> cP(X) for every X e V with non-positive determinant.

Proof. Since P(X) is ίC-invariant, we can assume that g is diagonal:

9 ~ (o R'1)' r ^ a ' ί e c *° ^ e ^he πiinimum of \β\i and \β\~\ then we have

P(χo) = 4rr + (m\β\2 -n \β\~2)2 ^ P(X) + (m2 + n2){c - 1), which is not

less than cP(X) because P(X) ;> m2 + n2 and c <; 1.

Remark. h{v)J vanishes for every odd v. Also hivh0 can be defined
by (9) in whose summation X — 0 is excluded, and it is an Eisenstein
series satisfying the properties in Lemma 6.

2.2. For a function f(z) on the upper half complex plane £> and a

real matrix σ = ί a Λ of positive determinant (i.e. σ e GLJ(/?)), we write

(f\Mk)(z) = (det (σ)Y'\cz + dy«f(σz)

for he Z, where σz = (az + b)(cz + d)~γ. We define a differential oper-
ator δλ for λeR following Shimura ([12]) by

2πi\2iy dz I 2πί dz

where z = x + iy, and we also put

δ\ = δ M { i _ λ ) δ λ + 2 δ λ f o r 0 <L £ e Z .

The "raising" operator δi acts on functions on $ and satisfies that
d'λ(f \[σ]λ) = (ίί/)|W i+M for every σeGL;(R). We need the following

LEMMA 9. (i) δ\ exp (2πiaz) = ̂ ! {—^πyy^Lf-^iAπay) exp (2πiaz), (λ,
aeR).

(ii) P^ί tr(z;m,ri) = Vy(Sπy)~r/2Hr(V2πy(m — ri)) ex\) (πi(x(—2mri)
+ i#(m2 + ^ 2 ))), ίfee^ <%. = ίr+2ί, (0 ^ γ e Z, m, n e R). Here L(

e

λ) and H7

are Laguerre's and Hermίte's polynomials respectively.

Proof. We can easily prove (i) or (ii) by induction on £, using a
formula (cf. [8], p. 241, p. 252):

4L*(x) {t + DLΆ(x) - (£ + a
ax



156 TETSUYA ASAI

or

accordingly.

2 3. Now let us define a theta series with respect to the indefinite
quadratic form Q on V. Since the minimal majorant R(X9) is para-
metrized by g e G, our function has double variables z = x + iy e φ and
g e G. Namely we put

(10)
θ{v)(z,g) = (0Vt_£z9g), - -,θViV(z,g)) ,

where £ = V Π M2(o) as before. Obviously the series is absolutely con-
vergent. We may, for non-triviality, assume that v is even, since
0(v)(2> 0) vanishes for odd v. For abbreviation Γ will stand for the sub-

group ΓQ(D) of SL2(Z) consisting of all σ = ft ^) with JD | C, and χ

denotes the character of Γ defined by Kronecker's symbol, i.e. χ(σ)

L E M M A 10. For a non-negative even integer v, it holds that

( i ) 0v,α(z, g) = χ(σ)βVia(z, g) \ [σ]v+1 for every σeΓ.

(ii) θM(z9γgic) = (̂v)(2;,g)p2v(/c) for every γeΛ and iceK.

(ii.a) θw(z, g°) = ί^fe, flr)^ -i), ^Λere °̂ = Q _JgQ _,).

(ii.b) ff(i0(2;, g) = ί ( l 0(

Proof. Due to Lemma 1.2 and Proposition 1.6 of Shintani [13], the
theta transformation formula depends only on the form Q and the
lattice £, hence it is sufficient to prove (i) in the case that a = v and

g = 1 (the identity). Since η9t,(X) = r for X = f™ j ) e S, we can

immediately see that 0v,v(z, 1) = 2θ%(z)θQ(z)9 where ίLwi>(«) = i Σ r e o ^
• exp (2πirf^) and 0o(z) == ̂ Σ m , n 6 z exp (7rzXα?(—2mw) + iτ/(m2 + ^2)). As is
well known, 0?i> = χ(σ)θ%\[σ]v+ι for (jeΓ, and θ0 = βo|Wo for σeSL2(Z)
since 0O(2) = Σc,ώe^exP (—πy~ι \cz + d|2) as derived by Poisson's summa-
tion formula. We have thus proved (i). For the proof of (ii) we have
only to consider Λ-invariance of 2, K-invariance of R(X°) and Lemma
2. We can derive (ii.a) in the same way as (ii), though 0 _x) belongs
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to neither A nor K. Finally from the definition (1) of η^a we have

ηv,a(X) = (-l)α^,_α(X), which imply (ii.b).

2.4. For a diagonal geG the theta function θv,a(z,g) splits into a

convenient form. To describe this, we define two more theta series by

(11) θ™Dtβ(z) = \ Σ ray-βL(

β

a)(4πrry) exp (2arirFs)

for 0 <Ξ a, β e Z, and

(12) θr(z9 v) = vr+ιy~r Σ (cz + dy e χ P (-πv2V~ι\cz + df)
CydQZ

for 0 <. γ eZ, where z — x + iy e φ and 0 < v e R. We abbreviate θ%#

to θ% simply. We should notice that θι°ί>tβ (or θr) vanishes for odd a

(or odd γ). Due to Lemma 9 we have θ%tβ = {—^πy{β\yψa+ιθ% and

θr = (—4)y/2as/2^0 for even γ, so that βLβi^ = χ(σ)θ^β\[σ]a+2β+1 for σ β Γ and

Θ7=z θr\[σ]r for σeSL2(Z). There is another expression for θγ:

(13) Θ7(z,v) = ( Σ r

m,neZ

where tr(z m, n) is the same as defined in Lemma 9. We can obtain

(13) directly by Poisson's summation formula, or by applying the rais-

ing operator δr

0

/2 to the simpler case of γ = 0.

Now let us put g(v) = — ^ C i) for 0 < v e R. Then we have
Vv

θv,a{z,g{v)) = (—l)ββyj_β(«, g(v)) which, especially, vanishes for odd a.

LEMMA 11. For a non-negative even integer a,

θv,a(zf g{v)) - 2(p!) Σ 7 ^rr^ϊ^rW-l^θ^z, v) ,

β,r (a + β)\-γ\

where the sum is taken over β J> 0, γ ^ 0 with 2β + γ = v — a.

Proof. Observing that

xQ(X) + iyR(Xg) = (2rrz) + (x(-2mn) + iy(m2v2 + n2v~2))

for g = r̂(̂ ) and Z = ί ̂  M e 2, and considering the explicit formula

for ηv,a(X) in Lemma 3, we can easily obtain the lemma.
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§ 3 . The Doi-Naganuma lifting

3.1. We hereafter make the assumption that v is even and positive.
S?v+1 will, as in the introduction, denote the space of all holomorphic
cusp forms of weight v + 1 of Neben type χ with respect to Γ, so that
/ in ^ v + 1 satisfies / = χ(σ)f\[σ]v+ι for σeΓ, where Γ = ΓQ(D) and χ(σ)

= ( ^ ) for a = (a b)eΓ. Let / be a cusp form in S?v+19 and' let
\ d / \c d)

us consider the following integral of Petersson's inner product type in
view of (i) in Lemma 10:

(14) Fa(g) = 2-<i-< +1>D " ϊ f θv,a(z,

and define a C2 v + 1-valued function F(g) on G by

(15)

where fτ in ^ υ + 1 is defined by fτ(z) = (f\[Wl+1)(-z) with W = (_D *).
In an obvious manner we can see that θv%a(z,g) = 0 (exp (—εy)) when
y -> oo for some positive ε and similar estimations hold at any other
cusps, hence the integral (14) is absolutely convergent. The correspond-
ence of / with F defines a linear map, which we shall denote by /,
from ^v+1 to a space of some functions on G. This is the definition of
the Doi-Naganuma lifting in our case.

THEOREM 1. The lifted image F = /(/) satisfies the followings:
(i) F(γgκ) = F(g)p2v(κ) for γeΛ and fceK.
(i.a) F(g°) = F(g)p2v(

ι ^ , where g° = C ^ C _x).
(i.b) F(0) - FGrtftΛ -1).
(ii) C7F = C"F = K^2 — l)^7^ where C, G" are the Casίmir operators on
G.

Proof, (i), (i.a) and (i.b) are immediate consequences of (ii), (ii.a)
and (ii.b) in Lemma 10, respectively. To prove (ii), we should recall
that the space Sfv+1i& generated by Poincare series for 1 ^ i eZ:

χiσ) exp (2πUz) | [σ]v+1 ,

where σ runs over Γ modulo the stabilizer Γ^ of oo in Γ. We can
easily obtain
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ί
J Γ\ξ>

, g)~pjz)yv~1dxdy = π-

where hMti(g) is the same as defined by (9). The computation is valid

for v > 1. This combined with Lemma 6 implies (ii).

3 2. To give the Fourier expansion of the lifted image F = /(/)

we need some notations as follows. We should first recall that A has the

unique non-equivalent cusp, say oo. Let us put g(u, v) = ,— ( -,)

Vv \ V

for ueC and 0 < v eR, so that every element of G has unique expression

as g(u, v)κ with some g(u, v) and tceK. We may abbreviate #(0, v) to

g(v) as before. We put S(u) = u + ΰ for ueC. Ka(v) denotes the

modified Bessel function of orders (e.g. [8], Chap. III). For each aβZ

a grδssen character ξa is defined by ξa(r) = ra \r\~a for r e o - {0}. Finally
we put ω = , so that (ω) is the complementary ideal of o.

V— D

THEOREM 2. Let f e ^v+1 and F = (F_v, . ., Fv) be the lifted image

/(/). Suppose we have

f(z) = χ; a{n) exp (2πinz) , fτ(z) = Σ b(n) exp (2πinz) ,
7 1 = 1 7 1 = 1

and put

C(0) = 2^D^ [
J Γ
[

Γ\ξ>

C(r) = d ( r ) + C2(r) f o r r e o - {0}

= Σ nva(n~2rr) , C2(r) = (-i)D

(16) F«(^(^, v)) = Σ C(rVβ(i;, r) exp

/or \a\^ vr where

φa(v,0) = ί,fIβ|ι; , &,(*;, r) = ( 2 * )r(r)Kα(47r|rω|^)^+1 /or r Φ 0 .

We shall prove Theorem 2 in 3.5 after some preliminary lemmas.

On the other hand, Theorem 2 says that the image F — /(/) is not

always cuspidal even though / is a cusp form. To make clear we state
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this as follows, while the proof is obvious:

THEOREM 3. Let S?l+1 be the orthogonal complement of θ% with
respect to the Petersson metric in Sfv+ly then the lifted image F = /(/)
of f in £?l+1 satisfies the followίngs:
(iii) F(gYF(g) is bounded on G.

(iv) F(g(u, X) g)dudΰ = 0 for every g eG.
JC/o

3.3. The next and following two lemmas are preparations to prove
Theorem 2.

LEMMA 12. Under the same conditions and notations as in Theorem

(17) FMv)) = ΣC(r)φa(y,r).
rθo

Proof. We first notice that Fa(g(v)) vanishes for odd a as well as
#v,«(Λ ΰ(v))> and Fa(g(v)) = F_a(g(y)) for even a. Hence we may assume
that a is even and non-negative. We prove (17) by a direct computa-
tion of the integral (14) for g = g(v). Owing to Lemma 11, it is reduced
to a computation of an integral
(18) f θί%βr

with 2β + γ = v - a, β ;> 0, γ ^ 0. By the definition (12) of θ7, it is
plain to see that

θr(z,v) = δr.ov + θ)(z,v) + D"2Pr(Dz,v)\[W]r ,

where Pr(z,v)=2Σ:-irtrΣ.erβo\r k(zfri)\[σ]r, k(z,n) = v^y
and W = (_D

 2). Hence the integral (18) decomposes into three parts.
For the first, because of Lemma 6 of [12] we have, when γ = 0,

tβ = 0 u n l e s s β = 0 (a = ι>) .
J Γ\ξ>

By usual method the second part is computed as follows:

f θ(-kβ(z)7AzWM> v)yv~1dxdy
JΓ\ξ>

= 2 Σ W f θί%β(z)fAzMz, n)yv-Hxdy
n = l J Γ\ξ>
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= 2vv+1 Σ w Γ dy yv~r~l exp (—πv2n2y-1) Γ θ(f)

D,β(z)fτ(z)dx .
n=l JO JO

Here we need a formula (cf. [5], p. 175 (33), though there is a misprint.):

Γ exp (-at - —^LMaW+'-W = (-1)'—a' a / 2b a / 2^K a(2Vab)
Jo \ ί / /3!

for α, & > 0 . We thus obtain

f θ<Xtίz)Jτ®θ){z9 v)ψ'1dxdy
J Γ\ξ>

= (-πyfβΌ-W-H'+iD""* Σ ξa(r)C2(r)Ka(άπ\rω\v)vv+1 .
reo-ίO]

The same computation holds for the third part. Thus by using a rela-

tion vl Σ2β+r^-a2
7(βlγl(a + β) I)"1 = ( ^ \ we can complete the proof

of (17).

3.4. LEMMA 13. Suppose that F — (F_v9 , Fv) is a function on

G, satisfying the properties (i), (i.a), (i.b) and (ii) in Theorem 1, and

an additional condition that Fa(g(v)) = δVylalB(0)v + 0 (exp (—εv)) for

v —> co with some constants ε > 0 and B(0). Then, Fa has a Fourier

expansion as follows:

(19) Fa(g(u, v)) = Σ B(r)φ£vy r) exp (2τrΐS(f ω^)) ,

where φa(v9r) is the same as in Theorem 2 and the coefficient B(r)

(— B(—r) = B(r)) does not depend on a.

Proof. This lemma is due to Weil [14], Chap. VIII. In fact, put

formally Fa{g(u, v)) = ΣreoΨβC^f) e χ P (2πίS(rωu)), then each term satis-

fies the Beltrami operator's equation (Z?o) in [14], p. 72 for r = 0 or (£7)

in p. 74 for r Φ 0. So we have ψβ(v, 0) = δVtaB(0)v. For r ^ 0 it first

follows that we can put ψv(v,r) = B(r)φυ(v,r), and then we obtain

ψa(v>r) = B(r)φa(v,r) recursively by using a formula xK'a(x) + aKa(x)

= —xK^ix) (cf. [8], p. 67) and by noting a special role of the factor

^ Jf α (r) . It follows from (i.a) and (i.b) that B(r) = 5 ( - r ) = B(ψ).

LEMMA 14. For a non-negative integer β9 it holds that
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(20)

Proof. We first note that ηv^v(X9) = (mu + r)v does not depend on ΰ

for X = /™ Λ e £ and # = g(u, v). Put Γ = πyR(Xg) which is a quad-

ratic polynomial of ΰ, Yx = ——Γ and Γ2 = — Y , so that it holds
du du2

- Γ ) = Yi'ΉJ&tfς1'*) with Hermite's polynomial

He. Hence

ί— exp (-Y)l = (-r^-O^πT/^HXV^ίmt; + nv1))

exp (—πy(2rr + m2v2 + n2v~2)) ,

which leads to the proof of (20).

3.5. Proof of Theorem 2. Since our function F = /(/) satisfies

the assumption of Lemma 13, we may write Fa(g(u,v)) in the form of

(19). A simple observation of this and (17) follows that B(0) = C(0).

Next we must prove that B(r) = C(r) for any r e o - {0}. Observing

that ξa(a), B(ά) and C(a) are well defined for each ideal a = (r) if a is

even, it is sufficient for our purpose to show

(21) Σ ξa(a)B(a)Na-s = £ ξa(a)C(a)Na's
a a

for all even aeZ and s e C with sufficiently large real part, where α

runs over all non-zero integral ideals of o. For |α| 5* x> we can get (21)

by the Mellin transform

Γ
Jo

which, in fact, is equal to

(
2 \v —

if we use (17), or the same in which C(ά) is replaced by B(a) if we use

(19). For |α| > v we may assume a = v + £ with positive even I because

£-«(α) = ξa(a), B(ά) = B(a) and C(a) = C(δ). On one hand, it follows from

(19) that
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^F.(0(.u,v))\ =(-2π)eD-^ Σ r'B{r)φXv,r) .
OU J M = 0 rθo-{0}

On the other hand, this is equal to

ί Γ^A^> O^ v))] -fAdy-'dxdy ,
J r\® Ldw JM=O

which becomes (—2π)eD~e/2 J^reo_{0}r
eC(r)φXv9r) through a similar com-

putation to Lemma 12 by using Lemma 14. We can therefore complete
the proof of (21) for a = v + £ by Mellin transform again.

3.6. We give here some supplementary remarks on Dirichlet series
and their Euler products. Let F = /(/) be the lifted image of a cusp
form / in £fv+1, so that F has the Fourier expansion as in Theorem 2.
Let us put

Φa(8) = D%2πY2sr(s + ^jr(s - - | ) Σ ξa(a)C(a)Na~s

for even aeZ and seC with sufficiently large real part. Because tg~1

f o r geG> ^(^" 1) = ^ ( ^ v ( _ 1

 λ) = F(g) and

so F(g(v)) = F(g(y~1)). Hence a variant expression of the Mellin trans-
form

Γ
Ji

- δv 2s - v v + 2 - 2s

gives the meromorphic continuation of Φa(s) and the functional equation
φa(s) = Φa(v + 1 — s) for \a\ <. v. In particular, Φα(s) is entire for \a\
< v, while Φ±v(s) is entire if and only if fe£?l+1. For a = v + £ with
positive even ^(It should be noticed Φα = Φ_a in our case.), by Rankin's
method in the convolution of / and θ% it is also possible to get the
meromorphic continuation of Φa(s) and the functional equation Φa(s)
= Φa(v + 1 — s), while we can say no more about the holomorphy except

the fact (s - —Vs - — + l) (s - — + (£ - l ) W s ) is entire.

When / in ^v+1 is a normalized primitive form (i.e. a common
eigen-function of all Hecke operators with α(l) = 1), it is well known
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that fτ = —iD-v/2a(D)f and so b(n) = iD~v/2a(Dn). Hence we can easily
show

Σ ξa(a)C(a)Na-s = Π d - ξa(p)C(p)Np's + f ^ W " * ) - 1

α p

for every even integer a. It should be also remarked that C(p) = α(p),

α(p2) + pv or α(p) + a(p) according as (——j = 1, - 1 or 0 for each prime

p\p. In particular, it holds

C(ά)Na~s = Σ a(ri)n-s-Σa(n)n~
l l

n = l

§4. A characterization of θ%(z)

4.1. As an application of the Doi-Naganuma lifting we give a proof
of the following

THEOREM 4. Let f be a normalized primitive form in ^ v + 1 , and
assume that all the eigen-values for Hecke operators are real, then

f = θ%.

Remark. Our proof will be based on the fact that the lifted image
/(/) is cuspidal if and only if / is orthogonal to θ%, i.e. / e ^ J + 1 . In
contrast with this, the lifted image of a holomorphic cusp form is always
a Hubert modular cusp form in the real quadratic field case. By using
this fact we may derive an analogous result as follows: There are no

such primitive forms of Neben type ίΓ0(J), ( — JJ as all the eigen-values

for Hecke operators are real, where Δ is a discriminant of a real quad-
ratic field. In fact, we have already treated the case that the class
number is one and Δ is odd (cf. [2], especially Cor. to Prop. 5).

4.2. We quote a lemma on Rankings convolution. For the proof
and some other details we can refer to [2], p. 91 and [1], Th. 3, the
latter of which, however, contains an obvious mistake in its statement.

Let fj(z) — Σn=i ftjW βxp (2πinz) (j — 1 or 2) be a normalized primi-
tive form in S?v+19 so that the corresponding Dirichlet series φj(s)
— Σn=ι dj(n)n~s has the Euler product as follows:

φj(β) = Π Φj.pis)
P
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{a_aj(p)V) if P = D,

where V = p~\ and ξj9 ηj are two roots of the equation x2 — aj(p)x

+ in—W = 0 for each rational prime p. The convolution of these is
\ p I

defined by

p (1 — a^pia^pWXl — ̂ Jp)a2(p)V) if p = D .

LEMMA 15. ψ(s;flff2) can be meromorphίcally continued to the
whole complex s-plane and satisfies a functional equation. It is entire
if fx φ f2 and it has a simple pole at s = i; + 1 if ft= f2.

4.3. Proof of Theorem 4. Suppose that fiz) — 2?-i a(n) exp (2πinz)

is the Fourier expansion and put fp(z) = Σn-i^W exp (2^m^). We have
to prove that / Φfp if / is a normalized primitive form in 5 Ĵ+1. Owing
to Lemma 15, it is sufficient to prove that ψ(s;f9fp) is entire. Let F
= /(/) denote the lifted image whose Fourier expansion is, we may
assume, given by (16). We consider a Dirichlet series associated with
F defined by

H(s) = ζ_p(2s - a,) Σ C(a)2Na~s ,
0

where ζ_D is the Dedekind zeta function of the imaginary quadratic field
of discriminant — D. By comparing their Euler products, we can obtain

This is the same as Proposition 6 in [2], though only the real quadratic
field case is treated there, hence we omit the detail here. Therefore
we have only to prove:

LEMMA 16. If f e <¥Ί+ί, then H(s) can be meromorphίcally continued
to the whole complex s-plane and is holomorphic except a simple pole at
s = v + 1.

Proof. Observing that F(g)J~2 Ψ(g) is left A- and right iί-invariant
where J denote the same matrix as in the proof of Lemma 4, let us



166 TETSUYAASAI

consider an integral

Ω(s) = ί F(g)J-*Ψ(g)E*(g,s-v)dg ,
A\G/K

where the invariant volume dg is given by v~3dudΰdv for g = g(u,v)tc

(KΘK). In the above we put E*(g,s) = Ds(2π)-2sΓ(2sK_D(2s)E(g,s) with

E(g, s) = ΣireΛ^Λ v(γg)s (Re s > 1), where v(g) = v for g = g(u, v)κ and

Jo. is the subgroup consisting of all γ = ί £ T j e J with c = 0. As is

well known, E*(g,s) can be meromorphically continued to the whole

complex s-plane and is holomorphic except two simple poles at s = 0,1.

We first notice that F(g) decreases rapidly when v(g) -> oo because

fε&Ί+i By so-called Rankin's method we obtain, on one hand, that

the integral Ω(s) is absolutely convergent for all seC except two simple

poles at s = v, v + 1, and on the other hand, that Ω(s) is a constant

multiple of D2s(2π)-4sΓ(s)2Γ(s - v)Ή(s) when Re s is sufficiently large.

In these computations we need a formula

Γ KJLv)%vu~xdv = 22s-3Γ(s + a)Γ(s - a)Γ(s)2Γ(2s)-1

Jo

for Res > 2\a\ (e.g. [5], p. 334 (45)), and an elementary identity

Σ ( 2V )Γ(8 + a)Γ(s - a)Γ(2s)-1 = Γ(s - v)2Γ{2s - 2v)'1 .
α =_ y \v _ aj

Thus we complete the proof of Lemma 16, and so, that of Theorem 4.
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