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ON THE DOI-NAGANUMA LIFTING ASSOCIATED
WITH IMAGINARY QUADRATIC FIELDS

TETSUYA ASAI

Introduction

Similarly to the real quadratic field case by Doi and Naganuma
([31,[9]) there is a lifting from an elliptic modular form to an auto-
morphic form on SL,(C) with respect to an arithmetic discrete subgroup
relative to an imaginary quadratic field. This fact is contained in his
general theory of Jacquet ([6]) as a special case. In this paper, we try
to reproduce this lifting in its concrete form by using the theta func-
tion method developed first by Niwa ([10]); also Kudla ([7]) has treated
the real quadratic field case on the same line. The theta function method
will naturally lead to a theory of lifting to an orthogonal group of
general signature (cf. Oda [11]), and the present note will give a proto-
type of non-holomorphic case.

Let an imaginary quadratic number field be fixed once for all
throughout this paper, and let o denote the ring of integers of the field.
For simplicity’s sake we assume that the class number is one and the
discriminant —D is odd prime, less than —3. For a positive even in-
teger » we denote by #,,, the space of cusp forms of weight v 4+ 1 of
Neben type y with respect to I'(D), where y denotes the Kronecker

character (—'D ) We shall show that each cusp form f in &%,,, can

*
be lifted to a C**'-valued automorphic form F' on SL,(C) with respect
to SL,(0), belonging to an irreducible representation of SU,(C) of degree
2v 4+ 1, which is also an eigen-function of the Casimir operator with
the eigen-value (2 — 1). We shall give the Fourier expansion of F' ex-
plicitly. It may be remarkable that the lifted image F' is cuspidal if and
only if f is orthogonal to 6%}, in &, .,, where 6,(z) = §>,., r* exp Crirrz).

In our argument, a special polynomial of four variables, which is
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nothing but a classical Laplace’s spherical harmonics in essential, plays a
fundamental role, so that we shall devote the first section to summariz-
ing its properties. One of virtues of Niwa’s method is in connecting
a theta function with so-called Rankin’s method, and we shall follow
this, but in a little more direct fashion, namely we try to avoid using
Eisenstein series there. The exceptional behaviour of %), is related to
the fact that 6*), is the unique primitive form in &,,, whose Fourier
coefficients are all real. As an application of the Doi-Naganuma lifting
we shall give a proof of this in the last section.

§1. The spherical harmonic polynomial

1.1. We shall denote by p,(¢9) the n-ply symmetric tensor product
of ge GL,C), i.e.

(@, b)'9)n = pa(9)'(@, D),

with indeterminants ¢, beC and (a,b), = (@*,a*"'b, ---,ab*},b"). Put
G = SL,(C) and K = SU,C). Each p, gives an irreducible representa-
tion of K as is well known. Let us put

V ={XeM(C);X =X},

which is a vector space of dimension four over R, and so we regard
M,(C) as Vo=V ®zC. The group G acts on V in such a way that
X9 =t5Xg for XeV and geG. The action restricted to K gives a
representation on V equivalent to g, @ p,. Let us define two symmetric
bilinear forms @ and R on V by

RX,Y) = —tr (XY), R(X,Y) = tr (XY); X, YeV,

where ¥ = (, ")*Y(, ). Q(X) and R(X) denote the associated quadratic
forms Q(X,X) and R(X, X), respectively. The form @ is of signature
(8,1) and G-invariant, i.e. @(X? = Q(X) for every g € G, while the form
R is positive definite and K-invariant, i.e. R(X*) = R(X) for every xc K.
We should note the form R(X?) is a minimal majorant of Q(X) for each
g€ G. For a non-negative integer v, let #* denote the C-linear space
of polynomial functions on V spanned by Q(X, A)’, where A ¢V, such
that Q(X,A) = R(X,A) and Q(4) = R(A) =0. An element of s#* is
called a spherical harmonic polynomial with respect to @ and its majorant
R. The dimension of s#* is 2v + 1, in fact, we can get a natural basis
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as follows.

Let us put 4 = “a, b)(@,b)(; eV, then the form Q(X,A) is a
homogeneous polynomial of degree v (resp. 2v) with respect to X (resp.
a,b). Hence we may define a homogeneous polynomial 5, .(X) of degree
v as the coefficient of a*~*b*** in Q(X, A)* for each «,|a| <v. We thus
put:

7X@, b),, = Q(X, A)",

(1)
70X = (,,_(X), - -+, 7,,(X)) .

Obviously we have

LEMMA 1. The polynomials 7,,.(X), |a| < v, form a basis of #”.

Since the forms Q and R are K-invariant, s#” is regarded as a
representation space of K, which is irreducible. In particular, we have

LEMMA 2. 7,,(X*) = 5.,,(X)p,(k) for every ke K.

Proof. We have 7.,(X9a,b), = QX" A = QX, A**)’, which is
equal to 7,,,(X)'((a, D)k);, = 74,(X) 0. (k)" (a, D),,, since A*™* = ‘((a, b)'r)((a, D)'k)
(b Y for ke K.

We should note that Lemmas 1 and 2 characterize the polynomials
7,..(X) up to a constant multiple, in fact, by a simple observation we
can show that the polynomials 7, .(X) are essentially the same as clas-
sical Laplace’s spherical harmonics (cf. [4], Chap. XI).

1.2. We write a general element X of V as follows:

(2) X=<m 7“);m,neR,aﬂeC,
F n

and this parametrization will be kept throughout the paper. It is, then,
easy to see that 5,(X) =1 and 7,/(X) = (-7, m — n,7r), while we can
compute more by use of a recursion formula

(3) 9, X) = (=P_r,e0i(X) + (M — 1)1 (X)) + ()91,04(XD)

where we understand 7,,(X) =1 and », (X) = 0 if |e| > v. The follow-
ing is an explicit formula which we need later.

LEMMA 3. For |a| £ v, we have
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1 _

4 vl X)) =1 > = 270 [ 2rF)H (m — 1) ,
(4) N1,a(X) vﬂZ:r(a-l-,B)!-r! 2 2rT)H ( )
where L§” and H, are Laguerre’s and Hermite's polynomials respectively,
and the sum is taken over all mon-negative integers B,y such that 28
+r=v—aand a+ f=0.

Proof. We put ¢ = m — n for abbreviation. By the definition (1)
we have

exp (—7a* + qab + 1098) = 32 33 7, (Kar-brret .
v=0 a=~—p p!
It follows from a generating function formula of H, (e.g. [8], p. 253)
that

exp (qabt — la’b’tz) = i} H,(Q)a’b’—ﬁ )
2 =0 r!

On the other hand, we have

1

exp ((——'T'a"“’ + o)t + Eazbztz) = i exp (—mzt)(l + 1
£=0

2

¢ (rb2t)t
4!

r“‘a%)

¢
2= 4= Q)b

“—-p!

by use of a generating function formula of L{® (e.g. [8], p. 242).
Equating these, we obtain the proof.

i

o
£=0 8

For convenience’ sake let us define another quadratic form on V by
(5) PX) = QX) + RX),
then it can be immediately seen that P is K-invariant, and 0 < P(X)

< 2R(X) for XeV.

LEMMA 4. |9, (X g( 2 )(2”)"1P(X)» for XeV.

Yy — & v

Proof. It is sufficient to prove

(6) % (2 ) maor=(*)"Pr.

a=~—y \Y

Denote by J a diagonal constant matrix of degree 2v + 1 satisfying
(@, b),,J* (@, b),, = (a@ + bb)*, then Jp,(k)J ' is a unitary matrix for every
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re K. Hence the left-hand side of (6), which is 7,,(X)J?p,,(X), is K-
invariant as well as the right-hand side. We may, therefore, assume
X = ("g 3) Then both sides are equal to (2; >—1 (m — n)*. This com-
pletes the proof.

1.3. For the purpose to give another property of 7, .(X) we recall
some notions on Lie derivatives. Let S be an arbitrary element of the
Lie algebra of G, i.e. SeM,(C) with tr (S) = 0. A differential operator

S’ (or S”) on C=(G@) is defined by S'f(g) = [%f (g-exp (tS))]M (or by

replacing % with a%-, accordingly.> On the other hand, a function

FeC~(V) induces a function F(9) = F(X?) e C~(G) for each XeV.
Hence S’ (or S”) operates on C=(V) in such way that (S'F)zy = S’Fy (or
S"F)y = S"FX) It can be easily seen that S’ (or S”) on C=(V) is equal

to m’ai + n a + = a + r"a , where XS (or *SX) = ( m’ 17;) with
the parametrization X = ™ TYeV. Theelements A = 01 B = 00
F on : 00277 \10

and U = (%) _(1)) form a basis of the Lie algebra, and the Casimir op-

erators C’ and C” are given by C' = A’B’ + B’A’ 4 {U’'U’ and C” = A”B”
+ B”A” 4+ 1U”U”, while both the operators C’ and C” coincide with

each other on C=(V). Further, by an easy computation we can obtain
a formula on C*(V):

(7 C'=C" =3 + L — 3Q(X) 4, ,
9 &
here I — m.0_ 9 50 and 4,=270 _ 9 £.
where Mom T "an + Tar + Tar e do = to or aman (e
[13], p. 95).

LEMMA 5. Put
(8) ¥ X) = 9, [XPX)~ ¥,
then we have C'yp¥, = C'p¥, = $0* — 1)yp¥,.

Proof. Since »*,(X) is a homogeneous function of degree —(v + 1),
Lyp¥, = —@ + Dy¥,. On the other hand, dgp¥, = 0 as well as 47, , = 0.
These combined with the formula (7) complete the proof.
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The function 7*,(X) is also called a spherical harmonics of degree
—(@ + 1), which coincides with 7, ,(X) on the surface: P(X) = 1.

§2. Poincaré series and theta series

2.1. Let o be the ring of integers of an imaginary quadratic field
of odd prime discriminant —D. It is, as in the introduction, assumed
that the class number is one and the units are 1 and —1 only. Let us
define a lattice & of V over Z by & =V N M,(0), and denote by R(4)
the subset of 2 consisting of all elements of determinant —¢ for each
¢teZ. Let A denote the discrete subgroup SL,(0) of G. Each subset
(4) is A-invariant. For each positive integer £ we define a C**'-valued
function on G by
(9) ke d9) = 76X , 9e®,

Xegw

where 7% (X) = (F_,(X), -- -, 7¥(X)) and ¥, (X) is given by (8). This
series is, as we shall see below, absolutely convergent for v > 1, hence
the function A, , can be regarded as a type of Poincaré series, consid-
ering that the set 2(4) is a union of some A-orbits. This combined
with Lemmas 2 and 5 leads to

LEMMA 6. For each positive integer ¢ and v > 1, it holds
(1) h(u),t(]’gﬁ) = h(»),e(g)pz,,(lc) f07‘ 7€ A and ke K.
(1)) Chyy, = C'hyy,e = 302 — Dhy, .

For the purpose to prove that the series (9) is convergent absolutely
and uniformly on any compact subset of G, it is sufficient to combine
Lemma 4 with next two lemmas.

LEMMA 7. If ¢ is positive, a series > xcew P(X)™° is absolutely
convergent for Res > 1.

Proof. By noting P(X) = 417 4+ (m — n)? for X = (7;_} ,:;) eV, di-
vide the summation on 2(4) into the following three parts: one with
r =0, one with 77 = ¢ and the others. The first, then, is a finite sum,
and it can be easily seen that the second and the third are majorized
by some constant multiples of >3,.; (44 + n®)™™° and >, (7)) B2
respectively, where ¢ is chosen so that Res — 1> ¢ > 0. These imply

the lemma.
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LEMMA 8. For arbitrary ge G there exists a positive constant c
such that P(X?) = ¢P(X) for every X e V with non-positive determinant.
Proof. Since P(X) is K-invariant, we can assume that g is diagonal:

g = (g ﬁ()_l). Take ¢ to be the minimum of |8|* and |8[™*, then we have

PX%) =4r7 + (m|BF — n|BI™)? = P(X) + (m? + n)(c — 1), which is not
less than ¢P(X) because P(X) = m® + n? and ¢ < 1.

Remark. h,, vanishes for every odd v. Also k., can be defined
by (9) in whose summation X = 0 is excluded, and it is an Eisenstein
series satisfying the properties in Lemma 6.

2.2, For a function f(z) on the upper half complex plane  and a

real matrix ¢ = (Z’ g) of positive determinant (i.e. ¢ € GL; (R)), we write

(f1lo]l)(2) = (det (e)**(cz + d)~*f(o2)

for ke Z, where ¢z = (az + b)(cz + d)™!. We define a differential oper-
ator ¢, for 1e¢ R following Shimura ([12]) by

1 < y 0 ) 1 ., 0
0, = — (-2 — ) = = — s
= 5mi\siy T ) Tt 2!

where z = 2 4 iy, and we also put
0% = Opau—yy *** 01490, for 0 /4eZ.

The “raising” operator o, acts on functions on § and satisfies that
3 |lel) = B:f)|lol,sqe for every o e GL;(R). We need the following

LEMMA 9. (1) d&lexp Qriaz) = 4! (—4rxy)'L{Y(ray) exp 2riaz), (2,
o €R).

() Put t(z;m,n) = Vy@zy) H, (v 2zy(m — n)) exp (zi(x(—2mn)
+ ty(m* + n?)), then 6, =t,.,, 0<yreZ m,ncR). Here LP and H,
are Laguerre’s and Hermite's polynomials respectively.

Proof. We can eagily prove (i) or (ii) by induction on ¢, using a
formula (cf. [8], p. 241, p. 252):

xj}‘Lﬁ“)(x) =+ DL@ — ¢ +a+1— 2L ()
X
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or

xa%ﬂ,(x) = (@ — (¢ + V)H,@) — H,,x) ,

accordingly.

2.3. Now let us define a theta series with respect to the indefinite
quadratic form @ on V. Since the minimal majorant R(X?) is para-
metrized by g € G, our function has double variables z =« 4+ iy € § and
g€ G. Namely we put

0,.2,9) = v "]X;J 7,«(X?) exp (ri(xQ(X) + yR(X?))) ,
0(v)(z’ g) = (0u,—v(zy g): e ’6v,v(z, g)) ’

where & =V N M,(0) as before. Obviously the series is absolutely con-
vergent. We may, for non-triviality, assume that » is even, since

0..,(, 9) vanishes for odd v. For abbreviation I" will stand for the sub-

group ['(D) of SL,Z) consisting of all ¢ = (g‘ 2) with D¢, and g

denotes the character of I' defined by Kronecker’s symbol, i.e. x(o)

_ (=D =<a b)
_<—d)fora o deF.

(10)

LEMMA 10. For a non-negative even integer v, it holds that
(1) 6, .2, 9) = x0)0,,.(2,9)|[0),,, for every aceT.
(i) 6,,(z,798) = 0,,(2, 9)p,, (k) for every yc A and ke K.
(i.a) 6,,2,9°) = 0,2, 9p.( _), where ¢° = ( _Dg(* _).
(ii.b) 0.)(2,9) = 0,2, 9)p.i 7).

Proof. Due to Lemma 1.2 and Proposition 1.6 of Shintani [13], the
theta transformation formula depends only on the form @ and the
lattice &, hence it is sufficient to prove (i) in the case that « = v and

g =1 (the identity). Since 7,,(X) = for X = (’g 7’;) €2, we can
immediately see that 4,,(z,1) = 20%)(2)6,(2), where 6% =43, 7"
-exp 27ir7z) and 0y(2) = VY > m.nez XD (Ti(@(—2mn) + iy(m? + n?)). As is
well known, 6%, = y(6)6*),|[s],,, for e I, and 6, = 6,|[s]l, for o e SL,(Z)
since 6,(2) = D ¢,qez €Xp (—ny~'|cz + d) as derived by Poisson’s summa-
tion formula. We have thus proved (i). For the proof of (ii) we have
~only to consider A-invariance of L, K-invariance of R(X?) and Lemma
2. We can derive (ii.a) in the same way as (ii), though (* _) belongs
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to neither 4 nor K. Finally from the definition (1) of 7, we have
Poa(X) = (=1)%, _(X), which imply (ii.b).

2.4. For a diagonal ge G the theta function 6, .(z,¢g) splits into a

convenient form. To describe this, we define two more theta series by

1y 0 () = £ > ry PLi (4nrTy) exp (2airFz)

r€0

for 0 < e, 8eZ, and

12) 0,(z,v) = vy > (cz + A) exp (—av*y ez + dfP)
¢, deZ

for 0 <yeZ, where z =2 + iye$ and 0 <veR. We abbreviate 6,
to 6} simply. We should notice that 6“}, (or §,) vanishes for odd «
(or odd y). Due to Lemma 9 we have 6“) , = (—4n)*(8!)7'6%,,0*) and
6, = (—4%55%9, for even y, so that 6 , = x(6)0),;|[0]ar2s.1 for o€ I” and
0, = 6,|lo], for ¢ € SL,(Z). There is another expression for §,:

13) 0,(z,v) = (=" 3, t(z;mv,nv™"),
m,nEZ

where t.(z;m,n) is the same as defined in Lemma 9. We can obtain
(13) directly by Poisson’s summation formula, or by applying the rais-
ing operator 7 to the simpler case of y = 0.
Now let us put gw) = Tl_ (") for 0<wveR. Then we have
v
0,..(2, 9@) = (—=1)0, _.(2, g(v)) which, especially, vanishes for odd a.

LEMMA 11. For a non-negative even integer «,

bl 90D = 261 3] F}W—ﬁ(ﬁln)-ﬂa%,p(zw,(z, v,

where the sum is taken over § =0, y =0 with 28 + 7y =v — a.
Proof. Observing that
rQ(X) + WR(X?) = @rr2) + (@w(—2mn) + ty(m** + n*v™?)

for g = g() and X = (”; 2) €&, and considering the explicit formula

for 5, (X) in Lemma 3, we can easily obtain the lemma.
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§3. The Doi-Naganuma lifting

3.1. We hereafter make the assumption that v is even and positive.
&, will, as in the introduction, denote the space of all holomorphic
cusp forms of weight v + 1 of Neben type y with respect to I", so that
f in &,,, satisfies f = y(0)f|lol,,, for eeI', where I' = I'(D) and yx(o)
= (LdD) for ¢ = (a Z)ef. Let f be a cusp form in &,.,, and 'let

¢
us consider the following integral of Petersson’s inner product type in
view of (i) in Lemma 10:

(14) F(9) = 2”‘22'"‘"“’D“’Zj . 0,42, 9fr(R)ydady ,
\$

and define a C**'-valued function F(g9) on G by
(15) Fg) = EF_(9), -, F.(9),

where fr in #,.; is defined by fr(2) = (F|[W],,0(—2z) with W = (_, Y.
In an obvious manner we can see that 4,,(z,9) = O (exp (—ey)) when
y — oo for some positive ¢ and similar estimations hold at any other
cusps, hence the integral (14) is absolutely convergent. The correspond-
ence of f with F defines a linear map, which we shall denote by I,
from &#,,, to a space of some functions on G. This is the definition of
the Doi-Naganuma lifting in our case.

THEOREM 1. The lifted image F = I(f) satisfies the followings:
(i) F@gr) = F(9)p.k) for ye A and ke K.
(.a) F@@) =F(9)p.C _), where g° =( _Dg( _).
(lb) F@ = F(Q)Pz»(l _1)-
(i) C'F = C"F = }(u* — 1)F, where C’,C” are the Casimir operators on
G.

Proof. (i), (i.a) and (i.b) are immediate consequences of (ii), (ii.a)
and (ii.b) in Lemma 10, respectively. To prove (ii), we should recall
that the space &,,; is generated by Poincaré series for 1 < /e Z:

0,(2) = e;\rx(o) exp (2rit2)|lal,., ,

where ¢ runs over I modulo the stabilizer I'., of oo in I'. We can
easily obtain
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[, 00 DY dady = 5 PT6 + Pho ko)

where h, (g) is the same as defined by (9). The computation is valid
for v > 1. This combined with Lemma 6 implies (ii).

3.2. To give the Fourier expansion of the lifted image F = I(f)
we need some notations as follows. We should first recall that 4 has the

unique non-equivalent cusp, say oo. Let us put g(u,v) = Vlf(” %1‘)
v

for ue C and 0 < ¢ R, so that every element of G has unique expression

as g(u,v)s with some g(u,v) and «rc K. We may abbreviate g(0,v) to

g@) as before. We put Sw) =u 4+ % for weC. K,v) denotes the

modified Bessel function of order « (e.g. [8], Chap. III). For each aec Z

a grossen character £” is defined by &*() = r*|r|™* for r e 0 — {0}. Finally

we put w = , 80 that (w) is the complementary ideal of o.

1
v—D
THEOREM 2. Let feS,,,ond F = F_, ---,F)) be the lifted image
I(f). Suppose we have

J@) = fo;la(n) exp 2rinz) , fr(2) = i}l b(n) exp 2rinz) ,
and put

C(0) = 21D j F@IS @y dedy
r\g

Cr) = Cyr) + Cy(r)  for reo — {0};
C(r) = g,)n”a(n‘zﬁ) , C,(r) = (—3)D"”? I(Z)fn”b(n—zD-lw) .

Then

(16) F (9(u,v)) = 3 C(r)¢. (v, 7) exp 2riS(Tou))
for |a| < v, where
. 21) a v+l
$.0,0) = 6,0, $o(0,7) = (” 2 a)g (MK 4z |[ro| v for r 0.

We shall prove Theorem 2 in 3.5 after some preliminary lemmas.
On the other hand, Theorem 2 says that the image F = I(f) is not
always cuspidal even though f is a cusp form. To make clear we state
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this as follows, while the proof is obvious:

THEOREM 3. Let &%, be the orthogonal complement of 6%, with
respect to the Petersson metric in &,,., then the lifted image F = I(f)
of f in &L, satisfies the followings:

(iii) F(9)'F(g) is bounded on G.

(iv) L/ F(g(u,1)-g)dudu = 0 for every geG.

3.3. The next and following two lemmas are preparations to prove
Theorem 2.

LEMMA 12. Under the same conditions and notations as in Theorem
2,

an F (gw) = FEJ C(r)¢p.(v,7) .

Proof. We first notice that F,(g(v)) vanishes for odd a as well as
0,.,9(w)), and F (9(v)) = F_,(9(v)) for even «. Hence we may assume
that « is even and non-negative. We prove (17) by a direct computa-
tion of the integral (14) for ¢ = g(v). Owing to Lemma 11, it is reduced
to a computation of an integral

(18) Im 09, (200, (2, T2 @y - dwdy

with 28 +y=v—a, =0,y =2 0. By the definition (12) of ¢, it is
plain to see that

0,(z,v) = 0, + 0Xz,v) + D"*6,(Dz,v)|[W],,

where 0}(z, V)=2 7. W 3 .cror KZ, 1) |0],, k(2,n) = vy exp (—av*n’y ™)
and W =(_p Y. Hence the integral (18) decomposes into three parts.
For the first, because of Lemma 6 of [12] we have, when y = 0,

j 6%, (@Y dady =0  unless f=0 (a=1).
s
By usual method the second part is computed as follows:

[ 0,0z, vy dzay

=25 w | 09 @@z wy-dady
n=1 r\$
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= 2p**1 f n r dy ¥y texp (—rv*niy™Y) J‘l 0. ,()fr(R)dx .
n=1 0 0
Here we need a formula (cf. [5], p. 175 (33), though there is a misprint.):

r exp ( —at — %)Lf;"(at)t”ﬁ“ldt = (—1)5%a‘“/2b“/2+ﬂKa(2Vm
0 .
for a,b > 0. We thus obtain

L\@ 0%, (T2 @0z, vy dady
= (—m)PfB 2t q=tD2 5 g(r)Cy(r)K (4r |rw| v)v*+t .

r€o—{0}
The same computation holds for the third part. Thus by using a rela-

tion v! 3o e 2Byl (@ + D = (D 2_”a>, we can complete the proof
of (17).

3.4. LEMMA 13. Suppose that F = (F_,---,F)) is a function on
G, satisfying the properties (i), (i.a), (i.b) and (i) in Theorem 1, and
an additional condition that F (9()) =34, ,,B0)v + O (exp (—ev)) for
v — oo with some constants ¢ > 0 and B(0). Then, F, has a Fourier
expansion as follows:

19 F (9(u,v)) = 3 B(r)¢.(v, ) exp CriS(Tow)) ,

where ¢, (v,r) is the same as in Theorem 2 and the coefficient B(r)
(= B(—7) = B(®) does not depend on a.

Proof. This lemma is due to Weil [14], Chap. VIII. In fact, put
formally F.(9(u,v)) = > re, v.(v, 1) exp (27iS(Fwu)), then each term satis-
fies the Beltrami operator’s equation (¥, in [14], p. 72 for r = 0 or (E)
in p. 74 for r 0. So we have ,(»,0) =4, ,B(0)v. For r = 0 it first
follows that we can put +,@,7) = B(r)é,(v,7), and then we obtain
P (v, 7) = B(r)p,(v,7) recursively by using a formula zK'(x) + K (2)
= —zK,_,(x) (cf. [8], p. 67) and by noting a special role of the factor

(u 2v a)é"(r). It follows from (i.a) and (i.b) that B() = B(—7) = B(®).

LEMMA 14. For a non-negative integer £, it holds that
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20) ['a%—?“z 9(u, v))] = 220 YO @A —2,v) -

U=

Proof. We first note that 5, ,(X?) = (mu + r)* does not depend on %
for X = (";" Z;) el and g = g(u, v). Put Y = zyR(X?) which is a quad-

ratic polynomial of #, ¥,= Y and ¥,=-__¥, so that it holds
u

(—1)Y exp (Y)% exp (—Y) = Y{PH (Y, Y;V%) with Hermite’s polynomial
H,. Hence
[aa—r; exp (— Y)L=0 = (—rv ) 2ry)*H (v 2ny(mv + nv™)
exp (—ay(2rT + m? + nv7%),

which leads to the proof of (20).

3.5. Proof of Theorem 2. Since our function F = I(f) satisfies
the assumption of Lemma 13, we may write F, (9(u,v)) in the form of
(19). A simple observation of this and (17) follows that B(0) = C(0).
Next we must prove that B(r) = C(r) for any reo — {0}. Observing
that £%(a), B(a) and C(a) are well defined for each ideal a = (r) if « is
even, it is sufficient for our purpose to show

@1 2§ @B@Na™ = 2, £(@)C(@Na™

for all even e«eZ and se C with sufficiently large real part, where a
runs over all non-zero integral ideals of 0. For |¢|<v we can get (21)
by the Mellin transform

I T (F9@) — 8,,,COR)H2dy
[}
which, in fact, is equal to

l( 2 )D8(27r)‘“1“(s + ﬁ)r(s - ﬁ) 5 £e(@)C(@)Na-*
2\y — 2 2/4%

if we use (17), or the same in which C(a) is replaced by B(a) if we use
(19). For |a|> v we may assume « = v + ¢ with positive even ¢ because
& *(a) = &%(a), B(a) = B(@) and C(a) = C(d@). On one hand, it follows from
(19) that
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[%Fv(g(u, v))] = (=20'D"" 3 r*B@r)g,®,7) .
o {0}

u=0 r€o—
On the other hand, this is equal to

]
[ 2] FrGy-dsdy,
rne Low u=0

which becomes (—2r)'D~"? 3 ,co 10 7*C(r)¢, (v, 1) through a similar com-
putation to Lemma 12 by using Lemma 14. We can therefore complete
the proof of (21) for « = v + ¢ by Mellin transform again.

3.6. We give here some supplementary remarks on Dirichlet series
and their Euler products. Let F' = I(f) be the lifted image of a cusp
form f in &,,,, so that F has the Fourier expansion as in Theorem 2.
Let us put

D,(s) = D3(27z)“2s]“<s + %)F(s — %) 5 ¢ @C@Na

for even o€ Z and s e C with sufficiently large real part. Because ‘g!
= (1 _1)9<_1 1) for geG, F(g") = F(g)ph(_l 1) = F(g) and

so F(gw)) = F(g(v™Y)). Hence a variant expression of the Mellin trans-
form

J.:’ (F,,(g(fv)) . 5p,|a|C(0)v)('vzs_("“) 1+ v(u+1)—2s)_‘iﬁ

- ay,.a.C(O)( 1 1 )
28 — vy v+ 2 —2s

gives the meromorphic continuation of @,(s) and the functional equation
0,8 =0,(v+1—3s) for || Lv. In particular, &,(s) is entire for |«|
<y, while @, ,(s) is entire if and only if fe%.,,. For e« =v + ¢ with
positive even ¢(It should be noticed @, = @_, in our case.), by Rankin’s
method in the convolution of f and ¢, it is also possible to get the
meromorphic continuation of @,s) and the functional equation @.(s)
= @,(v + 1 — s), while we can say no more about the holomorphy except
the fact (s - %)(s — % + 1) (s - g— + ¢ — 1))Q7a(s) is entire.
When f in &,,, is a normalized primitive form (i.e. a common
eigen-function of all Hecke operators with a(l) = 1), it is well known
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that f, = —iD*%a(D)f and so b(n) = iD**a(Dn). Hence we can easily
show

2. &(@)C(@)Na™* = l;[ (1 — &<(p)C(PNp~* + £2(p)Np>-2)-!

for every even integer «. It should be also remarked that C(p) = a(p),

a(p?) + p* or a(p) + a(p) according as (ipp—) =1, —1 or 0 for each prime

plp. In particular, it holds

3 C@Na* = 3 atmyn~- 3 almyn* .

§4. A characterization of 6¢),(z)

4.1. As an application of the Doi-Naganuma lifting we give a proof
of the following

THEOREM 4. Let f be a normalized primitive form in <&,.,, and
assume that all the eigen-values for Hecke operators are real, then

S =0%.

Remark. Our proof will be based on the fact that the lifted image
I(f) is cuspidal if and only if f is orthogonal to 4%}, ie. feS%,. In
contrast with this, the lifted image of a holomorphic cusp form is always
a Hilbert modular cusp form in the real quadratic field case. By using
this fact we may derive an analogous result as follows: There are no

such primitive forms of Neben type (FO(A), (—A—» as all the eigen-values
*

for Hecke operators are real, where 4 is a discriminant of a real quad-
ratic field. In fact, we have already treated the case that the class
number is one and 4 is odd (ef. [2], especially Cor. to Prop. 5).

4.2. We quote a lemma on Rankin’s convolution. For the proof
and some other details we can refer to [2], p. 91 and [1], Th. 3, the
latter of which, however, contains an obvious mistake in its statement.

Let f,(2) = 2 om.a;(n) exp @rinz) (7 =1 or 2) be a normalized primi-
tive form in &,,;,, so that the corresponding Dirichlet series ¢;(s)
= > ,a,mn"* has the Euler product as follows:

$;(8) = l;[ 35,5(8);
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Q—-eNNA—-9V) iEp=+D,

¢j,p(s)_l = {(1 _ a](p)V) i p = D ’

where V = p~% and §&,;,7; are two roots of the equation 2* — a,(p)z

+ <_—D-)p = 0 for each rational prime p. The convolution of these is
»

defined by
W(s; i) = 1;1 Vo(8);
(8 = {(1 - &&EVMA — £7,V)A — pEV)A — 37,V) ifp+#D,
i A — a,a@V)1 — a,(Da(p)V) if p=D.

LEMMA 15. +(s;f.,/») can be meromorphically continued to the
whole complex s-plane and satisfies a functional equation. It is entire
of fi# [, and it has a simple pole at s =v + 1 if f, = f,

4.3. Proof of Theorem 4. Suppose that f(z) = > 7, a(n) exp @rinz)
is the Fourier expansion and put f,(2) = Y=, a(®) exp (2rinz). We have
to prove that f =+ f, if f is a normalized primitive form in &%,,. Owing
to Lemma 15, it is sufficient to prove that (s; f,f,,) is entire. Let F
= I(f) denote the lifted image whose Fourier expansion is, we may
assume, given by (16). We consider a Dirichlet series associated with
F defined by

H(s) ={_p@s — 2) 3 C(a)’Na~*,

where £_, is the Dedekind zeta function of the imaginary quadratic field
of discriminant —D. By comparing their Euler products, we can obtain

H(S) = ¥(s; [, D03 1, 1) -

This is the same as Proposition 6 in [2], though only the real quadratic
field case is treated there, hence we omit the detail here. Therefore
we have only to prove:

LEMMA 16. If fe ., then H(s) can be meromorphically continued
to the whole complex s-plane and is holomorphic except o simple pole at
s=v+ 1

Proof. Observing that F(9)J"2'F(g) is left 4- and right K-invariant
where J denote the same matrix as in the proof of Lemma 4, let us
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consider an integral

2@ = LWK F()J F@E*(g, s — v)dg ,

where the invariant volume d¢ is given by v *dududv for g = g(u,v)r
(ke K). In the above we puf E*(g,s) = D*2r)~*I'(2s),_p(2s)E (g, s) with
E(9,8) = 2 ,ciuvG9)? (Res > 1), where v(g) =v for g = g(u,v)r and
A, is the subgroup consisting of all y = (Z Z) ed with ¢=0. As is
well known, E*(g,s) can be meromorphically continued to the whole
complex s-plane and is holomorphic except two simple poles at s = 0, 1.
We first notice that F(g) decreases rapidly when v(g) — co because
fes,,. By so-called Rankin’s method we obtain, on one hand, that
the integral Q(s) is absolutely convergent for all se C except two simple
poles at s =v,v + 1, and on the other hand, that Q(s) is a constant
multiple of D*Q2r) *I'(s)’'(s — v)’H(s) when Res is sufficiently large.
In these computations we need a formula

r K. ()" 'dv = 25=['(s + a)['(s — Q) [()T'(2s)""
0
for Res > 2|a| (e.g. [5], p. 334 (45)), and an elementary identity

3 ( > )r(s + (s — )['@s)™" = I'(s —v)’I'2s — 2)7" .

=y \p —

Thus we complete the proof of Lemma 16, and so, that of Theorem 4.
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