S. ShiraiNagoya Math. J.Vol. 71 (1978), 87-90

A REMARK CONCERNING THE 2-ADIC NUMBER FIELD

SUSUMU SHIRAI

1. Introduction

Let Q_2 be the 2-adic number field, T/Q_2 be a finite unramified extension, ζ_{ν} be a primitive 2°-th root of unity, and let $K_{\nu} = T(\zeta_{\nu})$. In a previous paper [1, Theorem 11], we stated the following theorem without its proof.

THEOREM A. Let $R=T(\zeta_{\nu}+\zeta_{\nu}^{-1})$, and let σ be a generator of the cyclic Galois group G(R/T). Assume $\nu\geq 3$. If $N_{R/T}\varepsilon=1$ for $\varepsilon\in U_R^{(4)}$, then

$$arepsilon \in (N_{K_{
u}/R}K_{
u}^{ imes})^{\sigma-1}$$
 ,

where $U_R^{(i)}$ denotes the i-th unit group of R.

The aim of the present paper is to prove this theorem, which is a detailed version of Hilbert's theorem 90 in the 2-adic number field.

2. Preliminaries

Let $\theta = \zeta_{\nu} + \zeta_{\nu}^{-1}$. Since $1 - \zeta_{\nu}$ is a prime element of K_{ν} ,

$$N_{\rm K}/_{\rm R}(1-\zeta_{\rm u})=(1-\zeta_{\rm u})(1-\zeta_{\rm u}^{-1})=2-\theta$$

is a prime element of R. Set $\pi=2-\theta$ and denote by ν_{π} the normalized exponential valuation of R. The Galois group $G(K_{\nu}/T)$ is isomorphic to the group of prime residue classes mod 2^{ν} , and hence we can choose the generator σ of G(R/T) such that

$$\theta^{\sigma} = (\zeta_{n} + \zeta_{n}^{-1})^{\sigma} = \zeta_{n}^{5} + \zeta_{n}^{-5} = \theta^{5} - 5\theta^{3} + 5\theta$$

without loss of generality. Then

(1)
$$\pi^{\sigma} = \pi^{5} - 10\pi^{4} + 35\pi^{3} - 50\pi^{2} + 25\pi.$$

Lemma 1. Notation being as above, if $\nu \geq 3$, then

Received June 10, 1977.

$$\nu_{\pi}(\pi^{\sigma}-\pi)=3.$$

Proof. Immediate from (1).

LEMMA 2. If $\nu \geq 3$, then

$$u_\pi((\pi^n)^{\sigma-1}-1)iggl\{ =2 \qquad when \ n \ is \ odd \ , \ \geqq 4 \qquad when \ n \ is \ even \ .$$

Proof. By Lemma 1, we have

$$\nu_{\pi}(\pi^{\sigma-1}-1)=2,$$

and hence we can write

$$\pi^{\sigma-1} = 1 + a\pi^2$$
, $(a, \pi) = 1$.

Therefore, for $n \geq 1$,

$$(\pi^n)^{\sigma-1}-1=\pi^2(na+n(n-1)/2\cdot a^2\pi^2+\cdots)$$
.

We have $\nu_{\pi}((\pi^n)^{\sigma-1}-1)=2$ if n is odd. Since $\nu_{\pi}(2)=2^{\nu-2}\geq 2$, we have $\nu_{\pi}((\pi^n)^{\sigma-1}-1)\geq 4$ if n is even. For $n\leq -1$, according as n is odd or even, we obtain

$$(\pi^{-n})^{\sigma-1} \in U_R^{(2)} - U_R^{(3)} \quad ext{or} \quad \in U_R^{(4)}$$
 .

This completes the proof.

LEMMA 3. If $\nu \geq 3$, then

$$\nu_{\bullet}(\beta^{\sigma-1}-1)\geq 4 \quad for \ \beta\in U_R^{(2)}$$
.

Proof. We may write

$$\beta = 1 + a\pi^2$$
, $a \in O_R$, the ring of integers of R .

Then

$$\beta^{\sigma-1} - 1 = (a^{\sigma}(\pi^{\sigma})^2 - a\pi^2)/\beta$$
.

Since R/T is totally ramified, $\{1, \pi, \dots, \pi^{2^{p-2}-1}\}$ is an integral basis for R/T. Set

$$a \equiv a_0 + a_1\pi + a_2\pi^2 + a_3\pi^3 \quad \text{mod } \pi^4, \ a_i \in O_T.$$

Then

$$a^{\sigma} \equiv a_0 + a_1 \pi^{\sigma} + a_2 (\pi^{\sigma})^2 + a_3 (\pi^{\sigma})^3 \mod \pi^4$$
.

By (1) and $\nu_{\pi}(50) = 2^{\nu-2} \ge 2$, we have

$$\pi^{\sigma} \equiv 35\pi^3 + 25\pi \mod \pi^4$$
.

Hence

$$egin{align*} a^{\sigma}(\pi^{\sigma})^2 - a\pi^2 &\equiv 624a_0\pi^2 + 15624a_1\pi^3 \ &= 2^4 \cdot 3 \cdot 13a_0\pi^2 + 2^3 \cdot 3^2 \cdot 7 \cdot 31a_1\pi^3 \ &\equiv 0 \mod \pi^4 \; . \end{split}$$

Next, let $[T:Q_2]=f$, and let ξ be a primitive (2^f-1) st root of unity. It is well-known that $T=Q_2(\xi)$ and $\{1,\xi,\cdots,\xi^{f-1}\}$ is an integral basis for T/Q_2 , and moreover $U_R^{(1)}/U_R^{(2)}\approx \bar{R}=\bar{T}$ is a module of type $(2,\cdots,2)$, where \bar{R} , \bar{T} stand for the residue class fields of R and T,

respectively. As a complete system of representatives for $U_R^{(1)}/U_R^{(2)}$, we can choose

$$\{\gamma=(1+\pi)^{n_0}(1+\xi\pi)^{n_1}\cdots(1+\xi^{f-1}\pi)^{n_{f-1}};\,n_i=0\,\,\,{
m or}\,\,\,1,i=0,1,\cdots,f-1\}$$
 .

LEMMA 4. Notation being as above, if $\nu \geq 3$ and $\gamma \neq 1$, then

$$\nu_{\pi}(\gamma^{\sigma-1}-1)=3.$$

Proof. Since

$$\gamma = (1 + n_0 \pi)(1 + n_1 \xi \pi) \cdots (1 + n_{f-1} \xi^{f-1} \pi)$$
,

we have

$$\gamma^{\sigma} - \gamma = (\pi^{\sigma} - \pi)(n_0 + n_1 \xi + \cdots + n_{f-1} \xi^{f-1}) + ((\pi^{\sigma})^2 - \pi^2)(\cdots + \cdots + \cdots + n_{f-1} \xi^{f-1})$$

From Lemma 1, we obtain

$$\nu_{\pi}(\pi^{\sigma}-\pi)=3$$
, $\nu_{\pi}((\pi^{\sigma})^2-\pi^2)\geq 4$, \cdots .

Thus it suffices to show that

$$n_0 + n_1 \xi + \cdots + n_{f-1} \xi^{f-1} \not\equiv 0 \mod \pi$$
.

Suppose $\equiv 0 \mod \pi$. Then we have

$$n_0 + n_1 \xi + \cdots + n_{f-1} \xi^{f-1} \equiv 0 \mod \pi_T$$

 π_T being a prime element of T. Since $\{\xi^i \mod \pi_T; i = 0, 1, \dots, f-1\}$ is a basis of the residue class field extension $\overline{T}/\overline{Q}_2$, we conclude all

 $n_i = 0$, a contradiction.

3. Proof of Theorem A

We first note that

$$\pi = 2 - \theta = N_{K_{\nu}/R}(1 - \zeta_{\nu}) \in N_{K_{\nu}/R}K_{\nu}^{\times}, \quad \xi \in N_{K_{\nu}/R}K_{\nu}^{\times}, \quad U_{R}^{(2)} \subset N_{K_{\nu}/R}K_{\nu}^{\times},$$

in which the second follows from that the order 2^f-1 of ξ is prime to $[R^\times:N_{K_\nu/R}K_\nu^\times]=2$ and the third from that the π -exponent of the conductor of K_ν/R is two. Now, let ε be an element in $U_R^{(4)}$ such that $N_{R/T}\varepsilon=1$. Then we can write, by Hilbert's theorem 90,

$$arepsilon = lpha^{\sigma-1}$$
 , $lpha \in R^{ imes}$.

Since $R^{\times}=\langle\pi\rangle\times\langle\xi\rangle\times U^{\text{\tiny (1)}}_{\scriptscriptstyle R}$ (a direct product) and $U^{\text{\tiny (1)}}_{\scriptscriptstyle R}\supset U^{\text{\tiny (2)}}_{\scriptscriptstyle R}$, we may set

$$lpha=\pi^n\!\cdot\!\xi^m\!\cdot\!\gamma\!\cdot\!\beta$$
 , $eta\in U_R^{\scriptscriptstyle(2)}$,

here γ is as in Lemma 4. By virtue of the above remark, it completes the proof that we obtain $\gamma = 1$. Assume $\gamma \neq 1$. Then we have

$$\varepsilon = (\pi^n)^{\sigma-1} \cdot \gamma^{\sigma-1} \cdot \beta^{\sigma-1}$$
,

in which Lemmas 3, 4 give $\beta^{\sigma^{-1}} \in U_R^{(4)}$ and $\gamma^{\sigma^{-1}} \in U_R^{(3)} - U_R^{(4)}$, respectively. If n is even, then we have, by Lemma 2, $(\pi^n)^{\sigma^{-1}} \in U_R^{(4)}$, a contradiction. If n is odd, then we have, by Lemma 2, $(\pi^n)^{\sigma^{-1}} \in U_R^{(2)} - U_R^{(3)}$ from which follows $(\pi^n)^{\sigma^{-1}} \cdot \gamma^{\sigma^{-1}} \in U_R^{(2)} - U_R^{(3)}$, a contradiction, and the proof is complete.

REFERENCE

[1] S. Shirai, On the central class field mod m of Galois extensions of an algebraic number field, Nagoya Math. J., 71 (1978), 61-85.

Toyama Medical and Pharmaceutical University