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P-ADIC PROPERTIES OF SIEGEL MODULAR FORMS

OF DEGREE 2

SHOYU NAGAOKA

Introduction

H. P. F. Swinnerton-D.yer determined the structure of the algebra
of modular forms modp for all prime numbers p in elliptic modular
case (cf. [10]). Using his result, J.-P. Serre investigated the properties
of p-adic modular forms and succeeded to construct the p-adic zeta func-
tions for any totally real number fields (cf. [8]).

In this paper, we shall try to generalize the result of Swinnerton-
Dyer to the Siegel modular case.

In Part I, we shall study the property of Eisenstein series of de-
gree 2.

Our result is stated as follows:

THEOREM. Let Wk be the Eisenstein series of degree 2 and of weight
k. Let Zm denote a numerator of the m-th Bernoulli number Bm. We
assume that the prime number p ^ 2,3 satisfies Zv_z ̂  0 (mod p). Then

Ψk = l (mod pm) & k ΞΞ 0 (mod pm~\ρ - 1)) .

(Furthermore we have gotten the similar result in the case of arbitrary
degree n, which will be stated in Part /.)

In Part II, we shall generalize the notion of the algebra of modular
forms modp to the case of Siegel modular forms of degree 2, and de-
termine its structure.

We shall begin with the definition of Siegel modular forms modp.
It is well known that the Siegel modular form f(Z) of degree 2 has a
Fourier expansion of the form

f(Z) = Σ α(D exp {2πi tr (TZ)}
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where T runs over all half integral positive semi-definite symmetric
matrices of degree 2. Denote by £)p the local ring of Q at p, i.e. the
ring of all rational numbers with denominators prime to p. Let Ik>p

be the ©^-module of Siegel modular forms of degree 2 with even weight
k whose Fourier expansions have all their coefficients in £)p, and let
ϊkfP be the space of all formal power series

/ = Σ 0(5*) exp {2πί tr (TZ)}

where f(Z) == 2] a(T) exp {2πi tr (TZ)} runs over all the elements of IktP

and the tilde denotes the reduction mod p. Then we can define the Fp-
algebra M2 of modular forms mod p of degree 2 by M2 = 2]

A;: even

Our main result can be stated as follows:
Let χ10 and χ12 are Siegel modular forms of degree 2 and of weight 10
and 12 respectively, which will be defined in Part I.

MAIN THEOREM. Let Ψk be the same as in the above theorem. Let
p ±r 2,3 be a prime number satisfying Ψp_λ = 1 (mod p). Then

M2^FP[U,V,W,X]/(B-1).

Here B is the polynomial with coefficients in €>p satisfying Wpmml = B(W4,
WβyXioyXu) and B is the reduction moάp of B. The isomorphism is in-
duced by corresponding U, V, W and X to W4, Ψ6, χ10 and χ12, respectively.

The author wishes to express his hearty thanks to Prof. Y. Morita
and Prof. T. Oda for their valuable advices.

Notations

We denote by Z9Q,C the ring of rational integers, the field of
rational numbers, and the field of complex numbers, respectively.

For any prime number p, let QP,ZP and Fp be the field of p-adic
numbers, the ring of p-adic integers, and the finite field with p elements.

We denote by Mn(C) the ring of all matrices of size n with entries
in C. For any element A of Mn(C)9 we denote the trace of A and the
determinant of A by tr (A) and det (A), respectively.

For a complex symmetric matrix Z, we write Z > 0 (resp. Z ^ 0 )
if Z is positive definite (resp. positive semi-definite).

Hn denotes the Siegel upper half plane of degree n, namely the
space of all complex symmetric matrices Z = X + %Y of degree n with
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imaginary parts Y > 0.
We denote by Γn(= Sp (n,Z)) the homogeneous Siegel modular group

of degree n.

Part I

§ 1 . Siegel modular forms

In this section, we shall recall the fundamental properties of Siegel
modular forms.

First, we define the Siegel modular form of degree n. Γn = Sp (n, Z)
operates on Hn by

HnsZ^ σ(Z) = (AZ + B)(CZ + D)~l

for a = (n Z))eΓn w i t h A> B> C a n d D 6

A holomorphic function f(Z) on Hn is called a Siegel modular form
of weight k if it satisfies the following conditions:

(1) For every element σ of Γn, f(Z) satisfies

f(σ(Z)) = det {CZ + DYf{Z) .

(2) f(Z) is bounded in any domain {Z\ Y ^ Yo > 0} in the case n = 1.
It is well known that /(£) has the Fourier expansion of the form

f(Z) = 2 α(T) exp {2πi tr (ΓZ)}

where the sum extends over all half integral positive semi-definite sym-
metric matrices.

The Eisenstein series of degree n and of weight k is defined as
follows

Ψk(Z) = Σ det (CZ + D)-« , ZeHn.

The sum extends over all inequivalent bottom rows of elements of Γn

with respect to left multiplications by unimodular integer matrices of
degree n.

In [9], Siegel gave the formula for the coefficients of Fourier ex-
pansion of Eisenstein series.

For a modular form f(Z) of degree n, we put



46 SHOYU NAGAOKA

0 %λ

Then Φ maps modular forms of degree n to modular forms of degree

n — 1 of the same weight and it is called the SiegeΓs operator. If f(Z)

is a modular form of degree n and a(T) are its Fourier coefficients, then

Q1 Q). In

particular, Eisenstein series are mapped by Φ to Eisenstein series.
The SiegeΓs operator Φ gives rise to a homomorphism of the graded
rings of modular forms.

A modular form is called a cusp form if it is in the kernel of Φ.
Here, for the Eisenstein series Ψk of degree 2, we shall put

χ10 = 22.3-5.5-2 7-1.53-1.43867(?Γ4?Γ6 - ¥10) ,
χ12 = 2-13 3-7 5"s 7-2.337-1 131-593(3I 72?'J + 2-5Ψ1 - 69ir i2) .

Then these are cusp forms of degree 2 and of respective weight 10 and
12.

For two Siegel modular forms with rational Fourier coefficients
f(Z) = Σ <*>AT) exp {2πί tr (TZ)} and f\Z) = Σ &AT) exp {2πi tr (TZ)} and
for any rational integer a, we write

/ = /'(modα)

if af(T) = ^.(Γ) (mod α) for all Γ.

§2. Congruence properties of Eisenstein series

Let Ek be the normalized Eisenstein series of degree 1 and of weight
k. It is known that the Eisenstein series Ek satisfies following prop-
erties (cf. [8]).

Ek = l (mod pm) & k = 0 (mod pm~\p - 1)) p * 2 ,

Ek = 1 (mod 2m) ^ fc = 0 (mod 2W"2) .

In the case of degree n ^ 2, we can obtain following results.

THEOREM 2.1. Assume that k > n + 1.
(1) Suppose that p ^ 2 is a regular prime. Then we get

Ψk = l (mod pm) & k = 0 (mod p 7 7 1 - 1 ^ - 1)) .
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(2) Let n = 2 and Zm be the numerator of the m-th Bernoulli number Bm.
If p ^ 2,3 and Zp_3 φ. 0 (modp), then we get

Ψk = 1 (mod pm) φ fc = 0 (mod pm~\p - 1)) .

In both (1) cwid (2), we should remark that the condition of the left hand
side always implies the condition of the right hand side for all odd prime
numbers p.

Proof. (1) We refer the following result from [9]. Let Ψk(Z)
= Σ ^u(T) exp {2πi tr (TZ)} be the Fourier expansion of Ψk. If T is a non
zero matrix and p ^ 2, then the rational number

&,(Γ) = αA(T).^-Π-^^- Π ^

is a p-adic integer, where bm is the denominator of — ^ and γ(T) is
m

an integer which depends on T (cf. [9]).
If we put

then we obtain

| M ^ π ΐ t r

The proof of «=). Let vv be the normalized, p-adic additive valu-
ation of Qp. First, we estimate the value vp (k/Bk). Since k = 0
(mod p7 7 1"1^ — 1)), we can apply the von Staudt's theorem and obtain

vp(k/Bk) = pp(fc) - yp(βΛ) ^ (m - 1) - (-1) = m .

Next, we shall estimate the value vp(ck(T)). It is well known in num-
ber theory that prime number p is regular if and only if p doesn't
appear in the numerators of the Bernoulli numbers B29 Z?4, , Bp_z.
Using Rummer's congruences for Bernoulli numbers and the above
fact, we see that
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Therefore we obtain vp (ck(T)) ^ 0. Thus we get vp (bk(T)/ck(T)) ̂  0,
and Ψk = 1 (mod pm).

The proof of (=». Since we assume Wk = l (mod pm), we see
Φ*~Wk) = Ek = 1 (mod pm). By the result of the case of degree 1, we
obtain k = 0 (mod pm~ι(p — 1)).

It is obvious from the above proof that the left hand side always
implies the right hand side without the condition of regularity for prime
number p.
(2) In the case n = 2, Maass has proved the following result (cf. [6]).

Let Nm be the denominator of the m-th Bernoulli number Bm. We
assume that k = 0 (mod 2), k > 3 and T > 0. Then

β>(2° ΊΓ2JΓΓ2

is a rational integer, where <? is the greatest divisor of (k — l)N2k_2,
whose prime factors p satisfy p = — 1 (mod 4) and N2k_2 = 0 (modp).
From this, if we write

ψk(Z) - 1 + k(2k 1 2 ) Σ bk(T) exp {2;τi tr (ΓZ)}
Q B B τ>ofc-2 Γ > 0

+ y J 6;(Γ0 exp {2πi tr (Γ'Z)} ,

then 6fc(Γ), δJ(ΓOeZ. Here, we assume J Ξ O (modp^Gp — 1)). Then
we obtain vp(k/Bk) ^ m as in (1). Using the condition Zp_3 ^ 0 (mod p),
we can get following inequality.

fc(2ft-2)\ f l / * \ , f j /2fc

This shows that Ψk = 1 (mod pm). Now the rest of the proof of (2) is
the same as (1). Thus we completed the proof of Theorem 2.1.

Remark. We have seen that the condition Zv_z ^ 0 (mod p) is valid
for all prime numbers p smaller than 4001 (cf. [1]). Obviously, if p
is regular, then Zp_3 ^ 0 (mod p). We will show in Appendix that there
exists a prime p which does not satisfy the condition of (2) in Theorem
2.1 and, for this p, Ψp^ Ξ£ 1 (modp).
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Part II

§ 1 . Fourier expansion of Siegel modular forms of degree 2

Let Q{qo,Qi,Q2}
+ denote the ring of all formal power series of the

form

Σ α(Γ) exp {2πi t r (TZ)} = Σ a>(T)qfrq£q*

a(T) eQ,Z= (*° * ) , qά = exp

where T runs over all half integral positive semi-definite symmetric

matrices.

Let Qp{q09 q19 q2}
+ be the subring of Q{qQ, q19 q2}

+ consisting of all ele-

ments of Q{q09 q19 q2}
+ with a(T) e£>p — QnZp. For any element f(q0, ql9 q2)

= Σ aίT)q*qϊq\r of Q{q0, qlf q2}
+, we define / by f(qQ, qlf q2) = Σ ^QWM2

where the tilde denotes the reduction mod p, and denote by Fp{q0, ql9 q2}
+

the Fp-algebra consisting of / with / in €}p{q09ql9q2}
+-

In the rest of this paper, we shall mainly deal with the case of
degree 2.

First of all, we shall define a linear order among the half integral

positive semi-definite symmetric matrices T =

t ι

*» t
as follows:

1. We arrange in order of tr (Γ).
2. When the traces are equal, we arrange them in order of ί0.
3. When both the traces and ίo's are equal, we arrange in order

of tx.
We arrange the half integral positive semi-definite symmetric ma-

trices T, and write them TQ, T19 T2, according to this order. Then

f(Z) = ± aWn) exp {2πi tr (TnZ)} .
Q

Here, we shall prove some lemma which is required later.

LEMMA 1.1. Let p be a prime number. Suppose f9ge€)p{qQ9q19q2}
+

and h e Q{q09 q19 q2}
+. Furthermore, we assume that the first non zero
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coefficient of g is a p-adic unit. If f = gh, then we get h e €)p{q0, ql9 q2}
+.

Proof. Let g(Z) = £?-» a(Tk) exp {2πi tr (TkZ)} (a(Tn) # 0) and
== χ;;=5S6(Γi)exp{2πitr(ΓZ)} (6(Γ,) Φ 0) be the series expansions of /
and g. By our assumption, a(Tn) is a p-adic unit. Suppose that
h^€}p{q0,qlfq2}

+. We assume 6(ΓTO) is the first coefficient which does
not belong to Op. Then the coefficient of exp {2πi tr (Tn + Γm)} in the
series expansion of g(Z)h(Z) is a(Tn)b(TJ + Σ a(Tj)b(Tk), where the sum
runs over all matrices Tj and Γ̂  (k <m and / > n) satisfying Tj + Tk

— Tn + Tm. By our assumption, the second sum of above expression
must be contained in Op. Hence we get a(Tn)b(Tm) e Op. Since a(Tn) is
a p-adic unit, we have b(Tm) e Dp, which is a contradiction.

§ 2 . The graded ring of modular forms of degree 2

The structure of the graded ring of modular forms of degree 2 was
determined by J. Igusa (cf. [3]). Later, E. Freitag gave an elementary
proof of Igusa's result (cf. [2]).

For real vectors A = yι\ B = ί,1), we defined the theta series

9(Z;A,B) over H2 by

9{Z;A,B) = Σ exp MfCG + A)Z(G + A) + 2ίβG}]

where the summation is taken over all vectors G — I £M with entries in

Z.

We define (1 ^ i ^ 10) as follows

Z;

m
9

V
2

0

9

o V

1
2
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9,{Z) = 9 •0 = 9

Z\

•

Z;

0

1
2

1
2

>

1]
2

°J.

2

1
2

Now we can state the theorems of Igusa and Freitag.

THEOREM 2.1 (J. Igusa [4]). Put Θ,{Z) = 3 2Σf= 1^ 2 4(Z) - 22ΛIΨ\(Z)

+ 2Ψ&Z). Then

(1) ΘX{Z) is a cusp form of weight 12.

(2) χl2(Z) = 2~15 3~4 11~1Θ1(Z), where χ12 is the cusp form which is

defined in Part /, § 1.

THEOREM 2.2 (E. Freitag). Put Θ2(Z) = Πiθ=i£'(£), then we have

(1) Θ2(Z) is a cusp form of weight 10.

(2) χιo(Z) = Θ2(Z), where χ10 is ίfce c^sp /orm which is defined in

Partl9 §1.

(3) Θ2(Z) vanishes on JYj> jΛeJJ,!^ = θ | .

(4) // /(Z) is α modular form of even weight k such that f(^Q j

= 0 (identically), then f(Z)/Θ2(Z) is a modular form of weight

(k - 10).

Let Ak be the vector space over C of modular forms of even weight

k. Then the graded ring A = @k. e v e n 4̂A; will be called the graded ring

of modular forms of degree 2 and of even weight. Using the result of

E. Witt (cf. [11]), E. Freitag gave the following lemma.

LEMMA 2.3. (1) // f(Z)eAk9 then we have

= Σ
4 + β 6 i 2 z

(2) 7/ /(Z) e Akf then f(Z) - P(Ψ£Z),Ψ6(Z)9Ψ12(Z)) vanishes on
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eH2\zλ = ol for a suitable polynomial P.

In relation to the above fact, we shall give some examples which
is required later.

Ψ4(
z° °) = E&dElz2) , ψjfa °) = E6(z0)E6(z2) ,

(2.1) z +

+
_ 3-73 29-733 _ 25 53 1759 _ 2 3-53 72-337

131-593-691' 2 131-593-691' 3 131-593-691

From these relations, we get

(2.2)

(2.3) V° Z

\0 2

where J(^) = e " 1 - ^ ^ ) - E&z)) = g flίΓ-iί1 - ^TO)24 is a cusp form of

weight 12, e = 28 33 and q = exp (2πis).

Making use of Theorem 2.2 (4) and Lemma 2.3, we get the fol-

lowing theorem.

THEOREM 2.4 (J. Igusa). // f(Z) e Ak, then f(Z) can be expressed

as an isobaric polynomial of Ψ4(Z),Ψ6(Z),χ10(Z) and χϊ2(Z). Namely,

A^ C[Ψ4,Ψ6,χl0,χ12\. (As a matter of course, Ψ4,ΨQ,χ10 and χ12 are

independent over C, mutually (cf. [3])).

§3 P-integral modular forms

Let Ik>p be the Gp-module of Siegel modular forms of degree 2 and

of even weight k whose Fourier expansions have all their coefficients

in O p = Q IΊ Zp.

L E M M A 3.1. (1) We have Ψ4 e I4tP9 W6 β I6fP and χ10 e I1OtP for all prime

numbers p.
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(2) If p ^ 2,3, then we have χ12el12>p.

Proof. (1) Let Nm be the denominator of the m-th Bernoulli num-

ber Bm as in Part I, §2. From the proof of Part I, Theorem 2.1, we

see that

Ψk(Z) = 1 + k(lk ~ 2 ) Σ bk(T) exp {2πi tr (TZ)}
qBkB2k_2 τ>o

+ ^- Σ K(T)exv{2πitr(T'Z)}

where g is the factor of (k — l)N2k_2 and 6fc(Γ) and &ί(Γ') are rational

integers. Since BA = -1/30, B, = 1/42 and S10 = 5/66, we have ΨAeI4,p

and Ψ6eIQtP for all prime numbers p. From the result of Part II,

Theorem 2.2 and the definition of the theta series &i(Z), we see that

all the Fourier coefficients of χ10 are algebraic integers. Moreover, it

follows from the definition of χ10 that all the Fourier coefficients of χ10

are rational numbers. Therefore, we see that all the Fourier coefficients

of χ10 are rational integers. This shows that χ10 e 71Of̂  for all prime num-

bers p.

(2) It follows from Part II, Theorem 2.1 that all the Fourier

coefficients of ΘX(Z) are rational integers. Namely, χ12 has the ^-integral

Fourier coefficients if p ^ 2,3,11. However, we can see from the defi-

nition of χ12 that all the Fourier coefficients of χ12 are p-integral if p

^ 2,3,5,7 and 337. Therefore, if p ^ 2,3, then all the Fourier coefficients

of χ12 are p-integral. This completes the proof.

PROPOSITION 3.2. Let p ^ 2,3 be a prime number.

(1) // f(Z) e IktV, then we have

z0 0\ „ ψa(zQ 0\ψb(z0 0\ (z0 0\

with rαδCeOp.

(2) // f(Z) 6 IktP, then we have

f(Z) = Σ,
4a+6b + 10c+12d=

with ωabcde€)p.
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Proof. (1) By Lemma 2.3 and (2.1), we have a following expres-

sion,

(3.1) /(J
\0 z

X

with pabc e C.

Now, put 4α + 66 + 12c = k = 2fc', then &' = & (mod 2). First assume

that k' is even. Substituting E\(z) by 2£J(s) - e-Δ(z) with β = 26 33 in

the above expression, we have

Σ ^δ^feWfe)^δfe)^dte) δabcd e C .ί ) Σ ^δ c^feWfe)^δfe)^ dte) , δabcd

By comparing the Fourier coefficients of both sides, we get δabcd e £>p if

Since / ( j ^ = / ( j ®), /(j° °) can be expressed as Op-linear

combination of the terms

with 4a + 12δ = 4c + 12eZ = fc. Furthermore, as the terms with the

suitable power of EA(zQ)E4(z2) and J(zo)J(z2) are combined together, we

can verify that ft?0 j is expressed as an isobaric polynomial of

EA(zϋ)E&2) , d(zQ)J(z2) , Eϊ{zQ)Δ\z2) + EKz2)Δb(z0) (4α = 126)

with coefficients in £)„.

The last term is nothing but {E\(zώΔ(z£)m + (El(z2)Δ(z0))m, hence

/ί Q° J can be expressed as an isobaric polynomial of

E£zQ)EA(z2) , Δ(zo)Δ(z2) , E\{z,)Δ(z2) + ^(^ 2 )J(^ 0 )

with coefficients in £)p.

By (2.2) and (2.3) in §2, we conclude that ffa £\ can be expressed

as an isobaric polynomial of ψjfa £j, ψΛ° £) and X l / j £) with

coefficients in £L if p ^ 2,3.
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If kf is odd, b is also odd. By multiplying EQ\Z^)EQ1{Z2) to both
sides of (3.1), we see

°Wf° °
z2/ \0 v

0 zj \0

with pαδc e C Now, the Fourier coefficients of the left hand side belong
to Op. Therefore the same argument is applicable to this case.

(2) Let/e/ f c i P . Then by (1), we see that /(Z) - P(Ψ4(Z), Ψ6(Z), χ12(Z))

vanishes on l(z° ZΛ eH2 zx = 0> for suitable ©^-polynomial P. There-

fore f(Z)-PQFffl, VIZ), χ12(Z))=χ10(Z)/*(Z) for some h e Λ-κ> Π Q{q0, qlf q2}
+.

It follows from Part II, Lemma 1.1 that h(Z) is an element of

J*-io,p By induction, we can see that f(Z) is expressed as an isobaric

polynomial of VA(Z), Ψ6(Z), χl0(Z) and χ12(Z) with coefficients in Dp. Thus

we have proved our theorem.

§4. The structure of the algebra of modular forms mod/;

Let IkιP be the Fp-vector space of all formal power series 2] a (^)

exp {2πi tr (TZ)} = J] αOTgJ0^1^ obtained from elements /(Z) = 2 α(Γ)
exp {2τrΐ tr (TZ)} of 7Λ)P by reducing the coefficients mod p.

We define the Fp-subalgebra M2 of Fp{qQ,q19q2}
+ by M2 = Σ*:βγβn/*fp>

which is called the algebra of Siegel modular forms mod p of degree 2.
We can similarly define the Fp-algebra Mx of elliptic modular forms

modp as in [10]. The structure of Mλ is determined by H. P. F.
Swinnerton-Dyer as follows.

THEOREM 4.1 (Swinnerton-Dyer [10]). (1) Suppose that p^5. Then
Mx = FP[Q,R]/(Ά — 1) where A(Q,R) is a Ωp-polynomial defined by Ep_x

= A(Ei9Eβ).
(2) Suppose that p = 2 or 3. Then Mx = FP[Δ\.

The main purpose of this section is to determine the structure of

M2.
Until the end of the proof of Lemma 4.3, we assume p ^ 5. It

follows from the results of §3 that there is a ring homomorphism

ΩP[U, V, W, X] • FP[U, F , W, X] - ^ > M 2
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where the left hand arrow is the extension of €>p -»Fp and π' is defined

by corresponding U, V, W and X to W4, Ψβ, χ10 and χ12. Since πf is surjec-

tive, to determine the structure of M2 we liave only to determine the

kernel of π\

The following diagram is commutative.

OP[Z7, 7, W, X] • FP[U, V, W, X] ^U M2

\φt \φ" \*

£)P[Q, R] > FP[Q, R] > Mx

where Φf and Φ" are the ring homomorphisms defined by U «-> Q, V *-* R, W

»-> 0 and I H > 0 , and Φ is the ring homomorphism defined by Φ(f(q0, q19 q2))

= /(9o>l>0) f ° r a n Y f(Qo> Qi> Q2) € Λf2. It is easy to show that Φ is sur-

jective.

LEMMA 4.2. Krull dim. M2 = 3.

Proof. Since kerπ' is non trivial, it is enough to show that

Krull dim. M2 ^ 3. Since Φ is surjective, we obtain M2/ker Φ = Λdfi

From Theorem 4.1, we have Krull dim. Mx = 1. Hence there exists a

following sequence of prime ideals;

OQkerΦ QpQ M2.

We consider the following ideal of M2;

pf — {f(qo> <?i> #2) € M2\f(qo, 1, q2) = 0} .

Using the fact that the ring of formal power series FP[[X9 Y]] is an
integral domain, we obtain that p; is prime. Since 0 ^ χ10 e p', p' is a

non zero ideal. It follows from ker Φ = {f(q0, ql9 q2) e M2\f(q0,1,0) = 0}

that p' c ker Φ. Moreover, since χ12 e ker Φ and χ12 $ p', then we get the

following sequence of prime ideals;

0 Qp' QkerΦ Qp Q M2.

Then Krull dim. M2 ^ 3. This completes the proof.

From the above lemma, we can see that kerπ' is a prime ideal of

height 1. We shall determine the structure of this ideal.
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LEMMA 4.3. Let B be the polynomial with coefficients in Ώp satis-

fying Ψp_λ = B(W49 W6, χ10, χ12) and let B be the polynomial in FP[U, 7, W, X]

obtained by B reduction mod p of coefficients. Then B — 1 is irreduc-

ible in FP[U,V,W,X].

Proof. We assume that B — 1 is reducible. Then we can write

B - 1 = (φn + φn_x + . . + φQ)(ψm + ψ m _ x + + ψ0)

where φι and ψj are isobaric polynomials of weight ί and j , respectively.

From the definition of Φ", we have Φ"(B — 1) = A — 1 where A is

polynomial satisfying Ep_λ = A(Eif J576). Since (the weight of Φ"(φn + •))

+ (the weight of Φ"(ψm + •••)) = p - 1, Φ"(φn + •) and Φ"(φm + •)

are not constants. This contradicts the fact that A — 1 is irreducible.

Now we shall fix a prime number p ^ 2,3 satisfying ^ . . i = 1 (mod p).

Then JS — 1 is contained in ker π'. From the above lemma, (B — 1) is

a prime ideal. It follows from Lemma 4.2 that ker πf = (B — 1). Con-

sequently, we obtain the following result.

THEOREM 4.4. Let p ^ 2,3 be a prime number satisfying Ψp_λ = 1

(mod p). Then we obtain

§5. Congruence relations between Siegel modular forms of degree 2

In this section, we shall study some congruence relations between

Siegel modular forms of degree 2.

From now until the end of the proof of Proposition 5.2, we shall

fix a prime number p ^ 2,3 satisfying Ψp_λ = l (modp).

PROPOSITION 5.1. Let felk>p and f'elk>>p. If we assume that

f = / ' ^ 0 (mod p), then we have k = kf (mod p — 1).

Proof. Let / = D(Ψ4, Ψβ, χ10, χ12) and / ' = Z ) ^ , Ψ6, χ10, χ12) where Z>

and Z)/ are isobaric polynomials with coefficients in £>p. Furthermore,

D and U denote the polynomials obtained from D and Όf by reduction

mod p. By Theorem 4.4, we obtain D — ΐ)r e (B — 1), namely D — D'

= (B — l)(φm + φm_λ + + φj) where φv is a isobaric polynomial of

weight v and φm ^ 0, φs ^ 0. We may assume fc > fc7. Comparing the

term of same weight of both sides, φm-iB = 0 for ΐ ^ 0 (mod p — 1).
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Since φj ^ 0, m — / = m — kf = 0 (mod p — 1). Comparing the highest
term, we also see that m + (p — 1) = k. Hence we have k = k'
(mod p — 1).

This proposition is a partial generalization in the case of Siegel
modular forms of degree 2 of Serre's result [7].

Since Ψp_λ = 1 (mod p), we have following sequences for any even
integer a (0 ^ a <; p — 1).

If we put /; = Um^o /«+m(p-i).p» then we obtain the following.

PROPOSITION 5.2. In the above definition, we obtain M2 = θo^«^-i /£,
namely M2 is the graded algebra graded by Z/(p — 1)Z.

Proof. Let fel;PiPp and / ^ 0. Then feϊa+mp-ι)tp Π ̂ +m<p-i).p for
some integer m ^ 0. Hence we can denote f=g = h^0ίorge Ia+m(p-i)tP

and h e /^+TO(p-i)fp. It follows from previous proposition that a + m(p — 1)
= β + m(p — 1) (mod p — 1). Then α = β (mod p — 1). Consequently, we
obtain /; = Pp. This completes the proof.

Remark 1. A p-adic Siegel modular form can be defined by fol-

lows:
For a formal power series f(Z) = Σ b(T) exp {2ττi tr (TZ)} φ(T) e Qp),

we put vp(f) = infΓ^o vp(6(Γ)). Formal power series g(Z) = £] α(Γ)
exp {2ττi tr (TZ)} (a(T) e Op) is called a p-adic Siegel modular form of
degree n when there exists a sequence {/*(£)} of Siegel modular form
of degree n with rational Fourier coefficients which satisfy vp(g — ft)
—> oo. Then author studied the property of p-adic Siegel modular form,
but could not obtain complete results.

Remark 2. The same argument holds in the cases of symmetric
Hubert modular form of real quadratic fields with discriminant 5 and
8.

Appendix

Recently, the author got the following result in relation to the fact
of Part I, §2.

There exists a prime number p satisfying Ψp_λ ^ 1 (mod p). Indeed,
he made sure in case of p = 16843 that
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1 i
2

0 (mod p) .

This fact is obtained by the following argument. Let vp be the nor-
malized p-adic additive valuation. From the result of Maass [6], we
see

( 1 )

i 1

2

2 1

4fe. B t_lt(=i)

where BUtX is the generalized Bernoulli number with Dirichlet character

X
On the other hand, it is known that p = 16843 satisfies Zv_z = 0

(modp) (cf. [5]). We put k = p - 1, p = 16843 in (1). Then we

obtain

( 2 ) ^nl —-

Next, we shall estimate the value vp(J?(P-i)-if(z§))- In general, the fol-

lowing formula for the generalized Bernoulli number Bna with Kronecker's

symbol χ holds: Let / be the conductor of χ. If we assume 0 < / ^ p — 1

and (/, p) = 1, then we have

( 3 )

Therefore, we have

Bv

(modp).

(mod p)

But, we have made sure that

,Sp N I \ 6

Therefore, we see that vp(Bp_2t^) = 0. Thus we get



60 SHOYU NAGAOKA

1

1
2

11
2

1

Consequently, we have αp_J

1 i1 0 (mod p) for p = 16843.
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