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THE RANK OF SYZYGIES UNDER THE ACTION

BY A FINITE GROUP

SHIRO GOTO

1. Introduction

Let S be a Noetherian local ring with maximal ideal J and k the
residue field of S. Let G be a finite group of order n and suppose that
G acts on S as automorphisms. Let R = SG and / = JG. We denote by
S[G] (resp. R[G]) the twisted group ring of G over S (resp. the group
algebra of G over R). Recall that the multiplication of S[G] is defined
as follows: sg th = s#(£) #ft for s, teS and #, fteG. Let ίG(S)
= {ΣgeG g(s)/s e S} and call it the trace ideal of S. Note that tG(S) = R
if n is a unit of S. We say that S has a normal basis if S = R[G] as
12[G]-modules. This condition says that there is an element s of S so
that {g(s)}geG forms an i?-free basis of S.

Let M be a finitely generated S-module and let i ^> 0 be an integer.
We put βf(M) = dimΛ Torf (k, M) and call it the i-th rank of syzygies of
M. It is well-known that, if . . -> Ft -> > F2 -> Fo -> M -> 0 is a
minimal free resolution of M, the number βf(M) is equal to the rank of
Ft. The purpose of this paper is to find the relation between βf(M)
and βf{MG) for an S[G]-module M (In this paper all S[G]-modules are
assumed to be left modules.). The existence of normal bases will play
an important role in this subject and this point of view was suggested to
the author by Professor S. Endo.

The main result is

THEOREM (1.1). Suppose that tG(S) = R and let H = Ker (G —> Aut k).
Then the following two conditions are equivalent.
(1) S has a normal basis relative to H.
(2) S is a finitely generated free R-module of rank n, and the inequality
βf(M) 2> βf(MG) holds for every finitely generated S\G\-module M and for
every integer i ^> 0.

Received January 28, 1977.



2 SHIRO GOTO

In this case, if n is a unit of S, then S must have a normal basis
relative to G.

When S is an integral domain, we can improve this as follows:

COROLLARY (1.2). Suppose that S is an integral domain and that G
is a subgroup of Aut S. Then the following conditions are equivalent.
(1) S has a normal basis relative to G.
(2) S is a free R-module and tG(S) = #.
(3) Let M be a finitely generated S[G]-module. Then MG is a finitely
generated R-module and βξ(M) ̂  β*(MG).
(4) Let M be a finitely generated S[G]-module. Then MG is a finitely
generated R-module and βf(M) ^ βf(MG) for every integer ί ^ 0.

(1.2) is a supplement of the Chevalley-Serre theorem. More precisely,
suppose that S is an integral domain with tG(S) = R and that G is a
subgroup of AutS. Then it can be shown that S is a free JK-module
if H is generated by generalized reflections on S (i.e., such elements
•g of AutS that (s - g(s)/s eS) c tS for some teJ). When S is a
regular local ring, the converse is also true (c.f. [2] and [7]). In these
cases (1.2) is applicable (c.f. (5.2)).

If G is a subgroup of AutS, the conditions (1) and (2) of (1.2) are
equivalent for an arbitrary (i.e., not necessarily Noetherian) local domain
S. Therefore, in case S is an integral domain and tG(S) — R, S has a
normal basis relative to G if and only if S has a normal basis relative
to H (c.f. (5.1)). (Of course this is not true in case S is not an integral
domain. Counterexamples are easily given.)

In Section 2 we give a few remarks on the ideal tG(S) and the func-
tor [ ]G, which we shall need later. In Section 3 we will show that the
equality βξ(M) = β?(MG) holds for every S[G]-module M and for every
integer i ;> 0 if G acts on k faithfully. In Section 4 (resp. Section 5)
we prove Theorem (1.1) (resp. Corollary (1.2)). In Section 6 we will
give some consequences of Theorem (1.1), from which the motivation
for this research has come.

2 The exactness of the functor [ ]G

In this section S need not be Noetherian.

LEMMA (2.1). S[G]G = dS where d = ΣQBG 9- The map f: S-*S[G]G,
f(s) — ds for se S, is an R-isomorphism.
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Proof. Of course ds — ΣgeGg(s)g is invariant for every seS. Let

a = Σgeo Q>q9 be an element of S[G]G (ag e S). Then, as ga = α, we have

Ugh = Qiβh) for all g, heG. Hence ag = fl^) and so α — ds for s = ax.

The second assertion is trivial.

We put tG(M) = {2 g e G g(m)/meM} for an S[G]-module ikf. ίβ(ilί) is

an β-submodule of MG and the operator tG : M -*MG, tG(m) = Σ & G G 0(W),

is an i2-homomorphism.

PROPOSITION (2.2). Tfee following conditions are equivalent.

(1) [ ]G is exact.

(2) tG(S) = R.

(3) AS is α (finitely generated) protective S[G]-module.

(4) tG: M -> MG is a (split) R-epimorphism for every S[G\-module M.

(5) Let M be an S[G]-module. Then M is a protective S[G]-module if

(and only if) M is a free S-module.

(6) Let E: 0 —> Mf —> M -»M^ -> 0 be an exact sequence of S[G]-τnodules.

Then E splits as a sequence of S[G]-modules if (and only if) it splits as

a sequence of S-modules.

Proof. (1)=M2) Let f: S[G]-^ S be the £[G]-epimorphism given

by f(a) = αl for all aeS[G]. Then f(S[G]G) = R by the assumption.

Hence tG(S) = R, as f(S[G]G) - tG(S) (c.f. (2.1)).

(2) =^ (4) Let M be an S[G]-module and let s e S such that Σoeσ ff(s)

= 1. We define a map f:MG-+M by /(a?) = s# for all x e MG. Then

tGof=z lMG as Σgee^C^) = 1. Hence tG is a split β-epimorphism.

(4) => (1) Since the functor [ ]G is left exact in general, it suffices

to show that [ ]G preserves epimorphisms. Now let f:M-+N be an

S[G]-epimorphism. Then MG = tG(M) and NG = tσ(N) by the assump-

tion. Hence, as / is compatible with tG, we have f(MG) = AΓG.

(2)==>(6) Let seS such that Σ*ea 9(fi) = 1. Let £7: 0 -^M 7 — If

— > M7/ -> 0 be an exact sequence of S[G]-modules and assume that £7

splits as a sequence of £-modules. We choose an S-linear map f: M" —> ikf

so that fof' = lM.,. Now let f" = ΣgeQrM(g)QsfΌrM,,(g-1) where

ĵf(ff) (resp. r^/ίflr"1)) denotes the action of g (resp. g~ι) on ikf (resp. ilf").

Then a direct computation shows that the S-linear map f": M" —»M is

compatible with G-action and that fof"z= 1M,,.

(6) φ (5) =^ (3) This is trivial.

(3) ^ (2) The S[G]-epimorphism / : S[G] -> S defined by f(a) = αl



4 SHIRO GOTO

for all a e S[G] splits by the assumption. Hence f(S[G]G) = R, and so
we have tG(S) = R as /(S[G]G) = fσ(S) by (2.1).

3. The case where G acts on k faithfully

In this section S need not be Noetherian. We assume that G is a
subgroup of AutS.

LEMMA (3.1). Suppose that S is a field. Then there exists an S-
basίs of S[G] consisting of invariants.

Proof. By the Galois theory of fields, S must have a normal basis.
Let seS such that {g(s)}geG is an β-basis of S. Then the matrix
[(gh)(s)]9theG is invertible and so {ZlgeG(ffh)(s)g}heG forms an S-basis of
S[G]. Of course these elements are G-invariant.

PROPOSITION (3.2). The following conditions are equivalent.
(1) G acts on k faithfully, i.e., Ker(G —> Autfc) = 1.
(2) S is a finitely generated R-module, tG(S) = R, and J = IS.
(3) £ has a normal basis relative to G and J = IS.
In this case S[G] has an S-free basis consisting of invariants.

Proof. Suppose (1) and we will prove the last assertion. First
notice that tG(S) = R. In fact, tG(k) Φ (0) as the field k has a normal
basis relative to G, and so tG(S) <£ I. Now let / : S[G] -> k[G]
= S[G]/JS[G] be the canonical epimorphism. Then we have f{S[G]G)
= k[G]G since the functor [ ]G is exact by (2.2). Hence there is a family
{βt}is«» of elements of S[G]G such that k[G] = Σ?= 1 fc/(e*), because k[G]
has a fc-basis consisting of invariants (c.f. (3.1)). Thus we have S[G]
= Σ?-iSe< by Nakayama's lemma. Notice that {e<}iSî n

 a r e linearly
independent over S as S[G] is a finitely generated free S-module of
rank n.

(1) φ (3) We have S[G]G = Σ?=i^^ as S[G]* = ίG(S[G]) by (2.2).
Therefore S is a finitely generated free J?-module of rank n, since
S^S[G]G as β-modules by (2.1). In particular d i m ^ S/IS = n. On the
other hand, since the field extension S/J over R/I is finite and Galois
with Galois group G, we have d i m ^ S// = n. Thus / = IS as dim^/j S/J
= dimΛ// S/ZAS. NOW let us prove that S = R[G] as #[G]-modules. For
this purpose we have only to show that S is a cyclic #[G]-module, be-
cause S and R[G] are free JS-modules of the common rank n. By
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Nakayama's lemma it suffices to prove that S/IS is cyclic as an (R/I)[G]~

module. But this is obvious since J = IS and since S/J has a normal

basis (Recall (S/IS)G = R/L).

(3) => (2) This is trivial.

(2) => (1) We put H = Ker (G -> Aut fc). Then tH(S) = SH and, as

the functor [ ]H is exact by (2.2), we have SH/JH = S/Λ On the other

hand J = / * £ as / == /£ by the assumption. Therefore S = S* + / * S .

Hence we have S ~ SH by Nakayama's lemma and this completes the

proof.

COROLLARY (3.3). Suppose that G acts on k faithfully. Then the

equality βf(M) = βf(MG) holds for every S[G]-module M and for every

integer i >̂ 0.

Proof. Let N be an i?-module. We regard S (g)Λ 2V as an S[G]-module

by the following G-action: g(s <g) a?) = #(s) (8) a? for g eG, se S, and # e JV.

Let fN:N ->[S®R N]G be the β-linear map defined by /^(a?) = 1 <g) a; for

all a? e 2V. Conversely let M be an S[G]-module and consider S ®R MG to

be an £[G]-module as above. Then, since MG is an /2-submodule of M,

there is an ιS[G]-linear map gM: S ®R MG —> M such that gM(l (g) x) = a?

for all a; e MG. To prove the assertion it suffices to show that fN and

gM are isomorphisms for every β-module N and for every £[G]-module

M. Now consider fN. It is a monomorphism, as S is a free .R-module

by (3.2). On the other hand [S®RN]G = Im/y, since [S®RN]G

= tG(S ®RN) by (2.2). Thus fN is an isomorphism.

Let us consider gM and suppose that Fί->F0->M-»0 is a presen-

tation of M by free S[G]-modules F< β Then, as [ ]G is exact, we have

a commutative diagram

S ®R FG > S ®R FG • S ® Λ MG • 0

F1 > Fo > M > 0

of >S[G]-modules with exact rows. Hence to show that gM is an iso-

morphism we may assume that M = S[G], In this case it is an epi-

morphism by the last assertion of (3.2). Thus we have verified that

gsίG1 is an isomorphism, since both of the S-modules S[G] and S®RS[G]G

sere finitely generated and free of rank n.
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4. Proof of Theorem (1.1)

Proof of Theorem (1.1). (1) => (2) First notice that tH(S) = SH by
(2.2), as tG(S) = R. Then we have SH/JH = S/J, since the functor [ ] f f

is exact. Hence the group G/H acts on the residue field SH/JH = S/J
of SH faithfully. Therefore we have by (3.2) that SH is a finitely gen-
erated free iϋ-module of rank \G/H\. Thus S is a finitely generated
free JS-module of rank n, as S is a finitely generated free S^-module
of rank |JEΓ| by the assumption. Now let I be a finitely generated
SfGl-module. Then, by (3.3), we have βfH(MH) = βf(MG) for every integer
i ^> 0. Therefore, to show that (1) implies (2), it suffices to prove in
case H = G. Moreover we may assume that R is complete.

We put M = M/JM. Notice that k[G] is a semisimple ring, since
n is a unit of S. Therefore, as R is complete and as k = #//, we can
find a finitely generated protective iϋ[G]-module L so that L/JL = M as
fc[G]-modules (c.f. Proposition 2.12, p. 90, [1]). Now let f:L-»M be
the epimorphism of i?[G]-modules which is induced by the isomorphism
L/IL = M and the canonical map L -» L/IL. We put F = S ®RL and
consider it to be an £[G]-module by the following G-action: g(s ® x)
= fl^(s) ® ̂ (») for geG,se S, and α e L. Then, since M is an S[G]-
module, the epimorphism f: L —> M of i?[G]-modules can be extended to
an epimorphism f :F = S®RL ->M of S[G]-modules. Notice that F
is a finitely generated free S-module as L is a finitely generated free
#-module. Then, by (2.2), F is a finitely generated projective S[G]-
module. Thus the epimorphism f'\F -*M is factorized as follows

F h—>M

where g: M -> M denotes the canonical epimorphism. Notice that h is
an epimorphism by Nakayama's lemma.

Now let {e<}1JSi!Sr be an R-free basis of L (r = rank L). Since fα

= tσ(F) by (2.2), we have that FG = 2<-i βίσ(β ® e<) where s is an ele-
ment of S such that {g(s)}geG forms an iϋ-free basis of S. Thus we have
known that the rank of the finitely generated free β-module FG is at
most r. Therefore, as [ ]G is exact, we have that MG is a finitely gen-
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erated β-module with βf(MG) <̂  r. Notice that r = βo(M), as r = dim*. JkL
Then we have βS(M) ̂  βf(MG). Repeating the argument above we shall
have that βf(M) ^ βf(MG) for every integer i ^ 0. Thus we complete the
proof of the assertion (1) => (2).

LEMMA (4.1). Suppose that tG(S) = R and let H = Ker (G -> Aut AO.
// MG is a finitely generated R-module with β£(MG) <̂  βo(M) for every
finitely generated S[G]-module M, then S is a cyclic SH[H]-τnodule. In
particular, if n is a unit of S, then S is cyclic as an R[G]-module.

Proof, First we discuss in case n is a unit of S. By the assump-
tion S[G]G is a finitely generated i?-module. Therefore so is S, since
S = S[G]G as .B-modules (c.f. (2.1)). Hence, to show that S is cyclic as
an #[G]-module, it suffices to prove that S/IS is a cyclic (R/I)[G]~
module. Therefore we may assume without loss of generality that R is
a field. In this situation, R[G] is a semisimple ring since n is a unit
of S. Now assume the contrary. Then there is a simple i?[G]-module
V such that (m + 1)V is a direct summand of S as an #[G]-module,
where m denotes the multiplicity of V in R[G], We put Ύ = Hom^ (V, R)
and regard it as an i2[G]-module by the following G-action: g(J) = / og~ι

for ^ e G and / e Hom^ (V, R). Now consider the S[G]-module M =
S^R

lV. Of course I is a finitely generated S-module with βξ(M)
= dim^ 7. Hence we have βl(M) = dimΛ 7 ^ ^(MG) = dimΛ MG by the
assumption. On the other hand, since M contains (m + \)(Y ®R

ιV) as
an jR[G]-submodule, we see that dim^ MG ^ (m + D dim^ (V ®R Ύ)G.
Therefore we have that dim^ MG > m dim^ Endi2[G] V, since dim^ (V (8)Λ

 £1^)G

= dimΛ EndΛl:G] 7 (c.f. (43.14) Theorem, [3]). Thus we conclude that
dimBM

G > dim^ 7 by virtue of the well-known fact dim^ 7 = ra
dim^ EndΛi:G] 7. This is a contradiction, and we have verified that S is
a cyclic #[G]-module.

Now back to the proof of the first assertion. As \H\ is a unit of
£ it suffices by the second assertion to show that NH is a finitely gen-
erated S^-module with β$H(NH) ^ βo(N) for every finitely generated
SLHl-module N. Let {g^^r (T = |G/£Γ|) be a system of representa-
tives of G mod ίf. Then a straightforward computation shows that
tG(S[G] ®sm N) = {£Li r̂, ® tj(αj)/a? e N). Hence, as ίG(S) = JB and as
tH(S) = SH, we have (S[G] ®8m N)G = {Σl=1 flr4 ® xfx e NH}. Therefore
we have that (S[G] ®5 [ f l ] N)G ̂  ]VH as β-modules. Thus, by the assump-
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tion, we conclude that NH is a finitely generated β-module with βξ(NH)
= $*((£[£] ®sm N)G) ^ βs

0(S[G] ®8m N). Of course NH is a finitely gen-
erated £*-module. Now let Nt = {gr, <g> a/s e N} in S[G] ®sυn NQL^i^r).
Then Nt is an S-submodule of S[G]ΘsίH1N and £[<?] Θ ^ N = Θ[=12V*
as S-modules. Hence, as iV* is a finitely generated S-module with /}?(#*)
= j8?(2SO, we have that #(£[(?] ®β [ f l ] N) = r β*(N). Summarizing the
-above results we see

βg(N) = l/r βg(S[G]®8mN)

On the other hand, we have that l/r β*(NH) = β$H(NH), as dimΛ/I

= r by (3.2). Thus we conclude that f̂(ISO ^ β$*(NH) as desired.

Proo/ 0/ Theorem (1.1) (continued). First we prove that (2) implies
the last assertion. If n is a unit of S, S is a cyclic i2[G]-module by
(4.1). This implies that £ s R[G] as β[G]-modules, because £ and R[G]
are finitely generated free i?-modules of rank n.

(2) :φ (1) As £ is a cyclic S^LfiΠ-module by (4.1), it suffices to show
that £ is a finitely generated free £H-module of rank |Jϊ|. Now consider
the equality άimB/I S/IS = dimE/I SH/JH'dimSH/JH S/IS, which follows
from the fact JH = ISH (c.f. (3.2)). Then, as dimB/IS

H/JH = \G/H\ by
(3.2) and as dim^j £//£ = n by the assumption, we have dim5^/Jff S/JHS
= \H\. Hence £ is a finitely generated S^-module with βξ*(S) = |£Γ|
This implies that £ is a free SH-module, since £ is a finitely generated
free β-module of rank n by the assumption and since SH is a finitely
generated free β-module of rank |G/JΪ| by (3.2). Thus we have verified
the assertions of Theorem (1.1).

Remark (4.2). Suppose that n is a unit of S and let H =
Ker (G —> Aut k). US has a normal basis relative to H, then £ has a normal
basis relative to G.

5. Proof of Corollary (1.2)

PROPOSITION (5.1). Suppose that S is a (not necessarily Noetherian)
local domain and that Gis a subgroup of Aut S. Let H = Ker (G —> Aut k).
Then the following conditions are equivalent.
(1) S has a normal basis relative to G.
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(2) S has a normal basis relative to H and tG(S) = R.

(3) S is a free R-module and tG(S) = R.

Proof. (1) => (3) This follows easily from (2.2).

(3) => (1) Let L (resp. X) be the quotient field of S (resp. R). Then

the field extension L/K is finite and L = K®RS. Therefore S is a

finitely generated β-module. Hence S is a finitely generated protective

jβ[G]-module, as S is protective as an S[G]-module by (2.2) and as S[G]

is a free #[G]-module. Thus, to prove S = R[G] as iϋ[G]-modules, it

suffices to show that L ^ K[G] as i£[G]-modules (c.f. Proposition 5.1, p.

590, [1]), and this follows from the Galois theory of fields.

(2) :φ (1) By the assumption S is a free £P-module. On the other

hand SH is a free ^-module by (3.2). Hence S is a free j?-module with

tβ(S) = R.

(1) => (2) It follows from (2.2) that tG(S) = β and so we have tH(S)

= SH. Thus, by virtue of the equivalence of (1) and (3), we have only

to prove that S is a free S^-module. Consider the equality dimR/IS
H/JH

dimSH/jπ S/IS = dim^/j S/IS, which follows from the fact JH = ISH (c.f.

(3.2)). Then we have dimSHfJH S/JHS = |H| . Let Z 7 be the quotient field

of SH. Then [L:K'] = | H | and L = X ' Θ ^ S . Hence S is a free SH-

module of rank \H\ as /3Γ(S) = |£Γ|.

Proo/ o/ Corollary (1.2). (1) φ (2) This is proved by (5.1).

(1) => (4) This follows from (5.1) and (1.1).

(4) => (3) This is trivial.

(3) =̂> (2) By the assumption S[G]G is a finitely generated β-module

with β?(S[G]°) ^ n. Thus so is S, since S = S[G]G as β-modules. Recall

that the field extension L/K is finite of degree n and that L = K(g)RS,

where L (resp. K) denotes the quotient field of S (resp. R). Thus we

have that S is a free β-module of rank n. Now let us prove that tG(S)

= R. Notice that (S/IS)G = #//, because β*((S/IS)G) ^ /30*(S//S) = 1 by

the assumption. Then, to show that tG(S) = iϋ, it suffices to prove that

tG(S/IS) Φ (0). Consider the exact sequence

( * ) 0 • K > (S/IS)[G] - U S/IS > 0

where / : (S/IS)[G] —• S/IS denotes the epimorphism given by f(a) = al

for all ae(S/IS)[G]. Then we have an exact sequence
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0 • KG > ((S/IS)[G])G - U (S/IS)G = R/I

of ^//-modules. Recall t h a t f(((S/IS)[G])G) = tG(S/IS) (c.f. (2.1)). Now

assume t h a t tG(SIIS) = (0). Then we have KG = ((S/IS)[G])G, and so

βo(KG) = n by (2.1). On the other hand, as t h e sequence (*) is a split

exact sequence of S/JS-modules, we have t h a t β%(K) = n — 1. Therefore

β$(K) = n — 1 < β*(KG) = w—this is a contradiction. Thus we have

tG(S/IS) Φ (0), and so tG(S) = # . This completes the proof of Corollary

(1.2).

Summarizing with the Chevalley-Serre theorem (c.f. [2] and [7]), we

have

T H E O R E M (5.2). Suppose that S is a regular local ring and that G

is a subgroup of A u t S . Let H = Ker (G —> Aut k). Then the following

conditions are equivalent.

(1) tG(S) = R, and H is generated by generalized reflections.

(2) R is a regular local ring and tG(S) = R.

(3) S is a free R-module and tG(S) = R.

(4) S has a normal basis relative to G.

(5) Let M be a finitely generated S[G]-module. Then MG is a finitely

generated R-module and the inequality β?(M) ^ βf(MG) holds for every

integer i ^ 0.

6. Application

In this section suppose that S is a Noetherian local ring with
tG(S) — R and that S has a normal basis relative to H = Ker (G —> Aut k).

Now recall some definitions. For the moment let (A,m) be a
Noetherian local ring and let M be a finitely generated A-module. Then
M is said to be a Macaulay A-module if dim^ M = depths M. In this
case we put rJM.) = dim^/m Έxtd

A(A/m,M) (d = dim^M) and call it the
type of M. Various properties of the invariant rA(M) are discussed in
[6]. By definition the ring A is a Gorenstein local ring if A is a
Macaulay local ring and r(A) = 1. Let hd4 M denote the homological
dimension of M and let grade^ M be the common length of maximal A-
regular sequences contained in the annihilator of M. Recall that
grade^ M = inf {i e Z/Exti (ilί, A) Φ (0)}. Hence hd4 M ^ grade^ M in
general. M is called a perfect A-module if hd^ M = grade^ M. A proper
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ideal a of A is said to be perfect if A/a is & perfect A-module.

THEOREM (6.1). Let M be a finitely generated S[G]-module and assume

that MG Φ (0). Then

(1) hds M ^ hd^ MG.

(2) If M is a Macaulay S-module, then MG is again a Macaulay R-module

and dim^ MG = dim^ M.

(3) Suppose that S is a Macaulay local ring. If M is a perfect S-module,

then MG is again a perfect R-module and grade^ MG = grade^ M. In

particular rs(M) >̂ rR(MG).

Proof. (1) This follows immediately from (1.1).

(2) Note that MG is a direct summand of M as an β-module. Thus

MG is a Macaulay jfϋ-module, because so is M as an iϋ-module. Of

course dim^ MG = dim^ M = dim5 M.

(3) MG is a Macaulay β-module with dim^ MG = dim5 M by (2),

since M is a Macaulay S-module. Thus, as dim R = dim S, we have

hd^ MG

= dim R - ^

= dim S — dim5 M

= grade5 M

- hds M .

Hence hdΛ MG = gradeΛ MG as hd 5 M ^ hdΛ MG by (1). Therefore MG is

a perfect .R-module and grade^ MG = grade^ Λf. For the second asser-

tion notice that rs(M) = βs

d(M)>r(S) and that ^ ( M 0 ) - /3f(ikfG) r(i2) where

<Z = dim^ M = dim^ M f f. These equalities are proved similarly as Propo-

sition 2.1 of [4]. On the other hand, since S is a flat j?-module, we

see r(S) ^ r(R) (c.f. Satz 1.24, [6]). Hence we have rs(M) ^ rR(MG) as

βi(M) ^

COROLLARY (6.2) (c.f. [5]). Suppose that S is a Macaulay local ring

and let b be a perfect ideal of S. Assume that b is G-stable. Then

r(S/b) ;> r(i?/α) where a — bG. In particular, if S/b is a Gorenstein

local ring, then so is the ring R/a.

COROLLARY (6.3) (c.f. [5]). Suppose that S is a Macaulay local ring

and let b be a G-stable ideal of S. If b is generated by an S-regular

sequence, then a = bG is again generated by an R-regular sequence.



12 SHIRO GOTO

Proof. By the assumption we have βξib) — grade^ S/h. Hence
grade^ R/a ;> β*(a) as grade^ R/a = grade5 S/h by (6.1). This shows that
a is generated by an 72-regular sequence.
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