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ON THE MAXIMAL ABELIAN ^-EXTENSION OF A FINITE

ALGEBRAIC NUMBER FIELD WITH

GIVEN RAMIFICATION

HIROO MIKI*>

Let k be a finite algebraic number field and let I be a fixed odd

prime number. In this paper, we shall prove the equivalence of certain

rather strong conditions on the following four things (1) ~ (4), respec-

tively :

(1) the class number of the cyclotomic Z^extension of k,

(2) the Galois group of the maximal abelian ^-extension of k with

given ramification,

(3) the number of independent cyclic extensions of k of degree £,

which can be extended to finite cyclic extensions of k of any ^-power

degree, and

(4) a certain subgroup Bk(m,S) (cf. §2) of kx/(kxym for any natural

number m (see the main theorem in §3).

Bertrandias-Payan [2] made some examples of k satisfying our con-

dition on (3), which implies the non-vanishing of the ^-adic regulator

of k (Leopoldt's conjecture for (β, fc)), and satisfying the condition \Sk\

= 2, for £ = 3 and 5, where \Sk\ is the number of places of k lying

above £. In § 4, we shall prove the existence of k satisfying our con-

dition on (1) and the condition \Sk\}>n, for each natural number n and

each regular odd prime number L

In § 1, we shall transform Kubota's theorem [16] into our useful

form to prove the equivalence of our conditions on (2), (3) and (4) in

§3.

In §2, we shall discuss a certain relation between Bk(m,S) and the

class number of a cyclotomic Z^-extension. It is already noted in

Satz 8.1 of Neukirch [20] that our condition on (1) implies our condition
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on (4). The converse can be proved by using Iwasawa-Yokoyama's
method [10], [24] (cf. Theorem 2 in §2).

In § 3, by using the results of § 1 and 2, we shall give a complete
proof of the main theorem.

In §4, we shall also prove the following statement: Let ζt be a
primitive ίι-th root of unity, and put kt = k0 (ζ*), where ko/Q is a total-
ly real finite Galois extension such that £ is completely decomposed in k0.
Suppose that the class number of kx is not divisible by I. Then the class
number of kt is not divided by £ for any i ^> 1. Note that this state-
ment is a generalization of Iwasawa [10].

In § 5, we shall give another proof of a part of the main theorem,
based on Kummer theory (cf. [17], Proposition 3)(1) and a cohomology
theoretic method of Iwasawa [9].

I wish to express my sincere thanks to Professors Y. Kawada, T.
Kubota and S. -N. Kuroda for their helpful advice and encouragement.

Notation and terminology

(1) Z: the ring of rational integers. JV= {neZ\n ^ 1}. N'= N
U {0} U {oo}. Z£: the ring of ^-adic integers. Q4: the field of ^-adic

numbers. F£: the finite field with £ elements. \X\: the cardinal num-
ber of a set X. (£m): the cyclic group of order βm for each non-nega-
tive integer m. (S°°): the additive group of Zt. C(τn,s): the direct
product of s copies of (βm) for each m, se N'. G(K/k): the Galois group
of a Galois extension K of a field k. Kx: the multiplicative group of
a field K.

(2) ί\ a fixed odd prime number, ζ*: a primitive ^-th root of
unity for i ^ 0. k: a finite algebraic number field. n0: the non-negative
integer such that ζno e k and ζno+1 $ k. r1: the number of real places of
k. r2: the number of complex places of k. kt = ft(ζ*). kΌ: the comple-
tion of k with respect to a prime divisor v of k. UΌ: the group of
units of kυ if v is non-archimedean, and k% otherwise. Sk: the set of
all the prime divisors of k lying above i. S: a finite set of non-archi-
medean prime divisors of k, containing Sk. St = {veS\ζiekv,ζi+1§kΌ}
for each i >̂ 0. s< = |S<|. <S*: the set of all prime divisors of kt lying

(1) Note that Corollary to Proposition 3 of [17] is the same as Theorem 1 of
Bertrandias-Payan [2] when the basic field contains a primitive #-th root of unity.
The author did not know their result when he wrote [17].
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above S for each i ^ 0. T: a finite set of prime divisors of k. An

algebraic extension K of k is called T-ramified (or unramified outside T)

if X/fc is unramified for any prime divisor v$T.

k(T): the maximal T-ramified abelian ^-extension of k. Gk{T)

= G(k(T)/k). Uk(m, T) = {xekx\ (x) = cT, x e kx£m for v e T}, where (x)

is a principal ideal of k generated by x, a denotes a fractional ideal

of k. Bk(m,T) = Uk(m9T)fkx£m. Ik: the group of ideals of k. Pk: the

group of principal ideals of k. Clk: the ideal class group of k, i.e.,

Clk = Ite/Pk. Clk(S) = Clk/<S>, where <S> is the subgroup of Clk gen-

erated by all ideal classes containing prime ideals in S. J: the idele

group of k. Ck: the idele class group of k. W: the group of ^-power

roots of unity in fc. Wυ: the group of ^-power roots of unity in kv for

a prime divisor v of k. nv: the non-negative integer such that ζnv e kn

and ζnυ+ι$kυ, i.e., ζnv is a generator of Wυ. Uτ = {x = (xυ) eJ\xυeUv

for v §T, xv = 1 for v e T}. .B .̂: the group of units in k. Ek(S)

— {x e kx I x e Uυ for any v 6 S).

§ 1. Kubota's theorem and its corollaries

To introduce some of Kubota's results [16], we need some notations.

Let £, k, Sk, T and Bk(v, T) be as in Notation. For each v e N, let k(v, T)

be the maximal Γ-ramified abelian ^-extension of k such that σev = 1 for

all σe G(k(v, Γ)/fc), and let k(v)/k be the composite field of all cyclic ex-

tensions K of k of degree ΰm with m ^ v such that for any neN, K/k

can be extended to a cyclic extension K of k of degree £m+n. Let

Gt(i/, Γ) = GQcb, T)/k) and Ht(y) = G(k(v)/k). Let iV = [k: Q\. For each

v e Γ , let Nv = [kυ: Q£] or 0 according as v\£ or T;^^, and let ^v>ί, be the

number of roots of unity in k* whose orders divide £\ Let hv be the

^"-class number of k, i.e., the number of the ideal classes of k whose

orders divide ί\ Put

ZJ*(v, T) = {x e kx I (x) = α'v, x e Wυ(kx)£v for all veT}

and β?(^, Γ) = C7?(v, T)/(kx)£% where Ή7V is as in Notation.

THEOREM 1 (Kubota [16]). Under the above notation and assump-

tions, the following two statements hold:

(i) \Gk(v, T)\ = fev. Π (tvN«wv,v)-(Bk(v,φ):Bk(v, Γ))"1;
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(ii) \Hk(v)\ = hv βN»(Bk(v,φ)

Remark 1. Kubota [16] stated the statement (i) in Theorem 1 when
T = Sk, but in the same way as his, the general case follows.

Now we transform Kubota's result quoted above into a useful form
for our purpose. For this we need the following elementary

LEMMA 1. Under the above notation and assumptions,

where wv is the number of roots of unity in kx whose orders divide ί\

Proof. We have an exact sequence

1 — * E*IEζ - £ * Bk(v, φ)Jl+H.—>l,

where Hv is the group of the ideal classes of k whose orders divide 1%
φ^i) = ε mod (kxyv with ε = ε mod Eζ, εeEk, and φ2(x) = a mod Pk with
x = x mod (kxyv, x e Uk(v, φ), (x) = a£v and a e Ik. From this exact se-
quence, we obtain \Bk(v,φ)\ = \H9\ \Ek/E£\. From this equality and
Dirichlet's unit theorem, the assertion follows.

Remark 2. When v = 1, the above Lemma 1 is contained in the
proof of Theorem 1 of Safarevic [22], and the above proof is the same
as his.

By Theorem 1 and Lemma 1, we obtain immediately the following

COROLLARY 1. Under the above notation and assumptions, the fol-
lowing two statements hold:

(i) \Gk(v,T)\= Π ( ^ w^) |B*(y,Γ)|.(^+'--1) '.w,)-1;
veT

In particular,

\Gk{v, T)\ = '̂•+1>"( Π w, i βW\Bk(v, T)\ if Tz>Sk;
\veτ /

(ii) \Hk(v)\ = \B*(v, Sk)\-t«*+l)*u):1 .

Proof. If T D Sk, then ΣVGT NV = N and JV = rx + 2r2. From this

equality, Theorem 1 and Lemma 1, the assertion follows.

Remark 3. The statement (i) in the above Corollary is the same
as Theorem 1 of Safarevic [22], when v = 1.
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COROLLARY 2. Let the notation be as in Notation. Then the follow-

ing three statements are equivalent:

1i) The essential rank of Gk(S) is r2 + 1, i.e., the number of inde-

pendent Z^extensions of k is equal to r2 + 1.

(ii) There exists an integer c depending only on k and S such that

\Bk(m, S)\ < c for all ra ^ 1.

(iii) There exist integers c and m0 depending only on k and S such

that \Bk(m,S)\ = c for all m >̂ m0.

Proof. It is obvious that the statement (i) is equivalent to that

\Gk(m + 1, S)\/\Gk(m, S)\ = £r2+1 for sufficiently large m. By the statement

(i) of Corollary 1 to Theorem 1,

\Gk(m + l,S)\/\Gk(m,S)\ = S^+1'\Bk(m + l,S)\.\Bk(m,S)\-1

for sufficiently large m. Hence the statement (i) is equivalent to that

there exists an integer m0 such that \Bk(m + 1, S)\ = \Bk(m, S)\ for all

m^>m0, i.e., that the statement (iii) holds. It is clear that (iii) implies

(ii). Now suppose that the statement (ii) holds. By Lemma 2,

\Bk(m + 1,S)\ ̂  \Bk(m,S)\ for sufficiently large m. Hence the condition

(ii) implies the condition (iii).

Remark 4. (1) According to Iwasawa, the condition (i) in the above

Corollary 2 is equivalent to the non-vanishing of the ^-adic regulator of

k (Leopoldt's conjecture for (£, k)) (see [12], p. 254).

(2) By Corollary 1 to Theorem 1 and Lemma 2,

\Gk{m + l,S)\l\Gk(m,S)\ = £r*+1\Bk(m + l,S)\\Bk(m,S)\-1

and \Bk(m + 1,S)| ̂  \Bk(m,S)\ for sufficiently large m. This gives that

the essential rank of Gk(S) ;> r2 + 1 (a part of Theorem 2 of Iwasawa

[12]).

LEMMA 2. Let the notation and assumptions be as in Notation. Then

the β-th power homomorphism f from Uk(m, S) to Uk{m + 1, S) induces

the injection from Bk(m9 S) to Bk(m + 1, S) for sufficiently large m. In

particular, \Bk(m,S)\ ^ \Bk(m + 1,S)\ for sufficiently large m.

Proof. By definition, Uk(m, SY c Uk(m + 1, S) for m ^ 1. Let

xeUk(m,S) be such that xee(kxYm+1. Then x' = y£m+1 with a yekx,

hence x = ζ{y*m with an reZ. Let voeSk. Then we see easily that
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Ci § (Koy
m for sufficiently large m. Since SZ) Sk, xe Uk(m, S) implies that

Cί € (fc*ym, hence r = 0 (mod £), i.e., a? = ^ m e (fc*)"\ Therefore we have
the assertion.

To apply Theorem 1 to the proof of the part "(iii) & (v)" of the
main theorem, we need moreover the following Lemma 4, and for the
proof of Lemma 4 we need the following

LEMMA 3. Let the notation and assumptions be as above. Moreover
suppose that ζno e k and ζWo+1 § k with nQ ̂  1. Then Bk(l, S) = 0 implies

that Bk(y, S) = 0 for 1 ^ v ^ n0.

Proof. It suffices to prove that Bk(v + 1, S) = 0 with a v <Ξ w0 — 1

under the assumption that Bk(m,S) = 0 for 1<; all m <: v. Let

a?ei7*(v + l,iS). Then βΛ(];,S) = 0 implies that x = yίv with a yek*.

Then # e Z7fc(ρ + 1, S) implies that y = ζί «{ with r v e Z , zΌ e ifĉ  for each

v eS. Since y ̂  ^0 — 1> 2/ e fc{ for each v eS, hence ?/ e Uk(l, S). Hence

Bk(l,S) = 0 implies that # = z' with a ^ i x , hence α? = y£v = ^ + 1 . This

implies that # f e 0 + 1, S) = 0.

LEMMA 4. Lei ίfee notation and assumptions be as above. If & e &,

suppose moreover that there exists vQ e Sk such that ζTOo+1 $ kVo. Then

the following three statements are equivalent:

( i ) Bk(vfSk) = 0 for all v ^ 1.

(ii) \B%Q.9 Sk)\ — ί or \ according as defc or not.

(iii) t7*(l,S*) = <C

Proof. The equivalence of (ii) and (iii) is obvious. First suppose

that (i). Let xe U%(l,Sk). Then there exists a positive integer w such

that xίn e Uk(n + 1, Sk). By (i), ίû n = y£n+1 with ayekx. Hence a? = ζ y

with an reZ. This implies that E7f(1, Sk) = <CWo>(fcxy, i.e., the state-

ment (iii) follows. Conversely suppose that (iii). We prove the asser-

tion (i) by induction on v. Since [7^(1, Sk) c C7J(1, SΛ), (iii) implies that

Uk(l, Sk) = (kxy, i.e., Bk(l,Sk) = 0, when ζ^k. When defc, by the

assumption that ζno e fc^0 with a ^0 e SΛ, we have ζno e [7^(1, Sk). Hence

(iii) gives Uk(l, Sk) = (kx)\ i.e., B 4(l,S 4) = 0. Then by Lemma 3,

Bk(nQ9 Sk) = 0 if tι0 ̂ > 1. Now suppose that Bk(v, Sk) = 0 for a v

^ max (%0,1). Let x e Uk(v + 1, Sk). Then it follows from Bk(v, Sk) = 0

that # = ^ v for a zekx. By definition, zeUi(lfSk). From (iii), we

obtain 2 = ζj^w' with s e Z , wekx. Hence x = ^ y = w'v+1, since
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v >̂ max (no,l). This implies that Bk(v + l,Sk) = 0. Therefore by in-

duction on v, we obtain (i).

Remark 5. (1) In the above proof, we use the assumption that

Cno+i$&t>o w i t k a
 VOCSJC if no}>l, only to prove that (ii) implies (i).

(2) If Bk(l, S) = 0 and if ζ1 e k, then there exists voeS such that

CnoSfcίo I n fact, if ζnoeki for all veS, then ζnQeUk(l,S) and ζno§k*;

this implies that Bk(l, S) ^ 0 this is a contradiction.

§ 2. A relation between Bk(m, S) and the class number of a cyclotomic Z£-

extension

LEMMA 5. Let £, k, ζίy n0, S and Bk(m9 S) be as in Notation and let

m be a positive integer. Suppose that there exists a voe S such that

ζno+i § Ko Then Bk(m, S) = 0 implies that Bk(if S) = 0 for 1 ̂  all i <: m.

Proof. Let x e Uk(i, S)9 and put z = »'""*, then z e £7fc(m, S). Since

Bk(m9 S) = 0, there exists & y ekx such that 2 = ym, hence α = ζr

noy
μ with

some r e Z. Since # e Uk(i, S), ζ 0̂ e fcf0. This implies ζς = ζ^' with some

s eZ, since ζno e kVo and ζTOo+1 e fcro hence a; e keί. Therefore Bk(i, S) = 0.

LEMMA 6. Lβί £, k, S and ζt be as in Notation, and let moeN be

such that ζm o $ kv for all v e S. Then Bk(m0, S) = 0 implies that Bk(m9 S)

= 0 for all m ^ m0.

Proof. We shall prove the lemma by induction on m. If m = m0,

then the assertion is valid by assumption. Suppose m > m0, and let

x e Uk(my S). Since Bk(m — 1, S) = 0 by the induction hypothesis, there

exists & y ekx such that # = i/**"1. Since # e Â * for all v e S, there ex-

ists rΌeZ and avek* such that 2/= ζ^ αί We have nv < m0 for all

v e S , since ζm o e fcβ. Hence y**0'1 = d Γ all v e S, so T/^0"1 e C7fc(m0, S).

Since Bk(mQ,S) = 0, there exists & zekx such that T/^0"1 = ^m o, hence

x =z zin e k£m. This implies Bfcίm, S) = 0. By induction on m, we have

the assertion.

LEMMA 7 (Iwasawa, Yokoyama). Let £ and k be as in Notation

and let K/k be a finite Galois extension of β-power degree. Let vQ be a

non-archimedean prime divisor of k and let Vo be an extension of v0 to

K. Let M/k (resp. M''jk) be a finite Galois extension of £-power degree

containing K such that Vo is unramίfied in M (resp. VQ is completely
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decomposed in M'). Assume that M ^ K (resp. Mf ^ K). Then there

exists a cyclic extension L of k of degree ί in M (resp. Mf) where vQ is

unramified (resp. v0 is completely decomposed).

The above Lemma 7 follows directly from the proofs of Iwasawa

[8] and [Yokoyama [24], Theorem 4] (see also [Iwasawa [11], § 6-3, Lem-

ma, (ii)]).

THEOREM 2. Let t be a prime number. Let k, n0, S, S*, kι and Clk(S)

be as in Notation and assume that k contains a primitive A-th root of

unity if £ = 2. Let m be a positive integer. Then the following state-

ments hold:

(1) (Remark in Neukίrch [20], Satz (8.1)). // \Clkm(Sm)\ ** 0 (mod £),

then Bk(m, S) = 0.

(2) Assume moreover that ζ1 e k and that there exists a voe S such

that ζno+1$kυo. Then Bk(m,S) = 0 implies \Clkm(Sm)\ ** 0 (mocU).

Proof. (2) It is sufficient to prove that Bk(m, S) ^ 0 under the as-

sumption \Clkm(Sm)\ = 0 (mod^). Let M/km be the maximum unramified

abelian ^-extension of km where any prime divisor in Sm is completely

decomposed. Clearly M/k is a Galois extension. By class field theory,

\Clkm(Sm)\ = 0 (mod^) implies that M ^ km. Hence by Lemma 7, there

exists a cyclic extension K of k of degree ί in M where vQ is complete-

ly decomposed. Since ζTOo+1 $ kVo, v0 is not completely decomposed in kno+1/k.

Therefore km Π K = k, so [Kkm: km] = I. Let x e kx be such that

K = k(Wx). Since km/k is S-ramified, K/k is S-ramified. Put z = x£m~\

Let veS, and let V be an extension of v to km. Since V is completely

decomposed in M/km and Kkm c M, we have x e (kmYv. Hence by Kummer

theory, x = a%{ with aek%, jeZ,ieN,i<m. Hence z = xίm~x = a£meke™.

Now let v § S be any non-archimedean prime divisor of k. Since K/k

is S-ramified, ordυ(α0 = 0 (mod^), so ordv(z) = 0 (mod^m), where ordv is

the normalized additive valuation of k with respect to v. Therefore

z e Uk(m, S). On the other hand, z e k£m. In fact, if z e k£m, then 2 = a?̂ *"1

= wίm with a wekx, hence a? = ζm^w* with some r e Z ; this implies

ίC c fcm, but this contradicts that [Kkm: km] = £; so z§k£m. Therefore

Bk(m, S) * 0.

LEMMA 8. Let £,k,nQ,ζίykiySk,S,Sm and Clk(S) be as in Notation

and let m^nQ be a rational integer. Assume that ζx e k. Assume more-
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over that any prime divisor in Sm — Skm is not decomposed in km+1/km

and that there exists a voeSkm not decomposed in km+1/km. Then

\Chm+1(Sm+ί)\ ^ 0 (mod^) implies that \Clkm(Skm)\ ^ 0 (mod t).

Proof, It is sufficient to prove that \Clkm+1(Sm+ι)\ = 0 under the as-

sumption that \Clkm(SkJ\ = 0 (mod^). By class field theory, this condi-

tion implies that there exists an unramified cyclic extension K/km of

degree i where any prime divisor in Skm is completely decomposed.

From the existence of v09 it follows that Kkm+1/km+1 is an unramified

cyclic extension of degree ί where any prime divisor in Skm+1 is com-

pletely decomposed. Now suppose that there exists a Vx eSm+ι — Skm+1

not decomposed in Kkm+1/km+1. Let vλ be the restriction of Vλ to km.

Since any prime divisor in Sm — Skm is not decomposed in km+1/km, v1 is

unramified and not decomposed in Kkm+1/km, hence Kkm+1/km is cyclic

of degree i2. But this is a contradiction. Therefore any prime divisor

in Sm+1 is completely decomposed in Kkm+1/km+1, so by class field theory,

\Clkm+1(S^)\ = 0 (mo<H).

By Lemmas 5, 6, 8 and Theorem 2, we obtain the following

THEOREM 3. Let £fkfSk9Syζifn0fkifS\Clk(S) and Bk(m,S) be as in

Notation. Assume that ζλek and that there exists a vQeSk such that

Cno+i $ &t>0 Then the following statements (1) — (8) are equivalent :

(1) Bk(m, S) = 0 for all meN.

(2) Bk(m,Sk) = 0 for all meN.

(3) \Clkm(Sm)\ ^ 0 (mod t) for all meN.

(4) \Clkm(Skm)\ *£ 0 (mod t) for all meN.

(5) Bk(m0, S) = 0 for some m0 ^ 1 such that ζmo e kv for all v eS.

(6) Bk(m0} Sk) = 0 for some m0 ^ 1 such that ζmo e kυ for all v eSk.

(7) \Clkmo(Smo)\ *$ 0 (mod^) for some ra0 ^ 1 such that ζmo$kv for

all v eS.

(8) I Clkmo(Skm) I *? 0 (mod t) for some m0 ^ 1 such that ζmQ$kv for

all v e Sk.

§3. Main Theorem

MAIN THEOREM. Let the notation be as in Notation and suppose that

k contains a primitive (,-th root of unity and that there exists vQ e Sk

such that WVo = W. Then the following statements (i) ~ (vi) are equiv-

alent :
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1 i ) \Clki(Sk)\ 5= 0 (mod £) for all i ^ l ;

(ii) \Clki(S)\ ** 0 (mod£) for all i ^ 1

(iii) Bk(m9Sk) = 0 for all m^l;

(iv) Bk(m9 S) = 0 for all m }>1;

( v ) The number of independent cyclic extensions of k of degree £,

which can be extended to cyclic extensions of k of degree £n for any

neN9 is equal to r2 4- 1

(vi) Gk(S) ^ (ΓUes-{υo} wv) X Z$ X X Ze (r2 + 1 copies).

Proof. It is contained in Theorem 3 that the statements (i), (ii),

(iii) and (iv) are equivalent each other. It is easily verified that the

statement (vi) in the main theorem is equivalent to that

\Gk(v,S)\ = £v^+ι)( Π wvλw:1 for all v ^ 1 .

By (i) of Corollary 1 to Theorem 1, this is equivalent to that \Bk(y9S)\

= 1 for all v >̂ 1, i.e., the statement (iv) in the main theorem. Under

the assumption that ζW o$/^o with a vQeSk9 it is obvious that the state-

ment (v) is equivalent to that |i?fc(l)| = £r2+1. By (ii) of Corollary 1 to

Theorem 1, this is equivalent to \Bf(l9Sk)\ = £, since defe. Hence by

Lemma 4, this is equivalent to (iii).

Remark 6. (1) If \Clk(Sk)\ =£ 0 (mod £) and if & e k, then there ex-

ists &voeSk such that WVo = W. In fact, if Wυ ^ W for all v e Sk, then

kno+1 = fc(Vζ^) is an unramified cyclic extension of k of degree £ where

any place v e Sk is fully decomposed. By class field theory, this implies

that \Clk(Sk)\ = 0 (mod £), and this is a contradiction. Hence there exists

a voeSk such that WVo = Ψ.

(2) The above proof of the statements of "(iii) φ (v)" and "(iv)

t=ϊ (vi)" of the main theorem are also valid in the case where ζ1 $ k.

§4. Existence of finite algebraic number fields k satisfying the condition (i)

in the main theorem and the condition \Sk\ ^ n for each n ^ 1 and each

regular prime number £

By Iwasawa [10], we see easily that for each regular prime number

£ there exist infinitely many finite algebraic number fields k satisfying

the condition (i) in the main theorem and the condition \Sk\ = 1. But

when S = Sk and \Sk\ = 1, the part "(i) φ (vi)" of the main theorem
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follows also from [Safarevic [22], §4] and [Brumer [4], Corollary 3.3],

hence it is natural to consider whether there exists a finite algebraic

number field k satisfying the condition (i) in the main theorem and the

condition 15*1 > 1. Note that Bertrandias-Payan [2] gave some examples

satisfying the condition (v) in the main theorem and the condition \Sk\

= 2 for t = 3,5.

The purpose of this section is to prove the following two theorems.

THEOREM 4. Let & and ζ< be as in Notation. Let k/Q be a finite

Galois extension where £ is completely decomposed. Put kt = k(ζi) with

i ;> 1. Suppose that \Clkl\ ^ 0 (mod £). Then the following two statements

are equivalent:

(i) \Clki\ ^ 0 (mod £) for all i ^ 2.

(ii) k is totally real.

THEOREM 5. For each regular prime number i # 2 and each neN,

there exist infinitely many finite algebraic number fields k satisfying the

following conditions (1) ~ (4):

(1) &efc;
(2) k/Qiζi) is not a Galois extension, and [k: Q(d)] = £' with some

(3) \Clki\ =5= 0 (mod £) for all i ^ 1

(4) \Sk\^n,

where ζi9 ki9 Clki and Sk are as in Notation.

EXAMPLES. (1) Put £ = 3 and k = Q(V"7). Then t, is decomposed

in k and \Clkl\ =£ 0 (mod^). Therefore by Theorem 4, \Clk.\ ^ 0 (mod^)

for all i ^ 2.

(2) Put £ = 3 and k = Q{^^2). Then £ is decomposed in k and

\Clkl\ ^ 0 (mod £). But by Theorem 4, \Clk,\ = 0 (mod £\ hence \Clki\ = 0

(mod £) for all i ^ 2.

(3) Put £ = 3 and fc = Q(ζ1? V(2 + 3V:::3)(4 + 3V-3)). Then ex-

actly two primes (2 + 3V—3) and (4 + 3V—3) in Q(d) are ramified in

k/Q(ζi), and \Sk\ = 3. Since any prime in Sk is not decomposed in k2

and since \ClQ{ω\ ̂  0 (mod^) for all i ^ 1, we see by Lemma 10 that

\Clki\ ^ 0 (mod^) for all i ^ 1. Therefore by the main theorem, Gk(Sk)

= Z3 x Z3 x Z3 x (3) x (3). We can make many such examples in the

way of the proof of Theorem 5.
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5.1. Generalizations of Iwasawa-Yokoyama's theorem on class num-

bers.

In this section, we state two lemmas on the ^-rank of the ideal

class group and class numbers (see Lemmas 9 and 10), which are con-

sidered as generalizations of Iwasawa [10] and [Yokoyama [24], Theorem

4]. In §§5.2-5.3, we shall use these lemmas for the proofs of Theorems

4 and 5.

LEMMA 9 ([18], Theorem). Let £ be a prime number and let k

be a finite algebraic number field. Let Clk denote the ideal class group

of k. Let kn/k be a ramified cyclic extension of degree £n with neN

and let kt/k be the sub-extension of degree £l for 0 <̂  ΐ <*n. Suppose

that the following two conditions are satisfied:

(i) Any archimedean prime divisor of k is unramified in kn;

(ii) Any prime divisor of k ramified in kn is fully ramified in kn.

Then the equality ί-rank Clk = £-rank Clkl implies that £-rank Clk

= £-rank Clkt for 1 <Ξ i <£ n. In particular, the conditions \Clk\ ̂  0 (mod£)

and \Clkl\ ̂  0 (mod ΐ) imply that \Clk.\ *? 0 (mod £) for 1 <^ any i <^n.

Note that the condition (i) in Lemma 9 is always satisfied if £ ±? 2

and that there exists a finite cyclic extension kn/k of degree £n such

that \Clk\^0 (mod £) and |CZ t l | = O (mod £) (cf. (2) of Examples of Theorem4).

LEMMA 10. Let £, k, ζi9 n0 and Clk be as in Notation and let vx and

v2 be two distinct non-archimedean prime divisors of k such that ζno+1

§ kV2 and such that v2 does not lie above £. Let K be a finite Galois

extension of k of £-power degree, unramified outside vλ and v29 and let

G — G(K/k). Then the following two statements hold:

(1) // \Clk\ ̂  0 (mod £), then \ClK\**0 (mod £).

(2) Suppose moreover that K/k is cyclic and that v2 is fully ramified

in K/k. Then \Cl%\ = \Clk\, where Cl% is the subgroup of Clκ of all

elements invariant by G.

For the proof of Lemma 10, we use Iwasawa-Yokoyama's Lemma 7

and the following

LEMMA 11. Let £, k, ζt and n0 be as in Lemma 10 and let vQ be a

non-archimedean prime divisor of k not lying above £. Suppose that

ζno+i^Ko* Let K/k be a cyclic extension of degree £y unramified outside
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v0. Then K/k is unramified.

Proof. Let J and Uτ be as in Notation. Let N be the subgroup

of / associated with K, by class field theory. Since K/k is unramified

outside v0, UsJ*kx c N, where S — {v0}. Let a = (aυ) e J be such that

aυo = 1 and aΌ = ζTOo for t; ̂  <y0, and let & = (&„) e J such that 6β0 = ζno

and &„ = 1 for v ±? v0. Then ζTCo = ab in J. ae Us implies that b e Usk
x,

so b e N. Since v0 does not lie above £9 U™ a J£ (Z N, where U§ is the

subgroup of UVo of principal units of kVo. Since ζno 6 ks

VQ, the conditions

6 e N and [7$ c N imply that ZĴo c N. Therefore v0 is unramified in

K.

Remark 7. Lemma 11 can be also proved by using [Safarevic [22],

Theorem 1].

Proof of Lemma 10. (1) It is enough to prove that \Clk\ = 0 (mod 4)

under the assumption that \Clk\ = 0 (mod ^). Let M be the maximum

unramified abelian extension of K of ^-power degree. Obviously M/k

is a Galois extension. Then by class field theory, \Clκ\ = 0 (mod^) im-

plies that M ^ K, so by Lemma 7, there exists a cyclic extension L of

fc in M where v1 is unramified. Since LaM,L/k is unramified outside

v2, so by Lemma 11, L/k is unramified; hence by class field theory,

\Clk\ = 0 (mocU).

(2) Put ΛΓ^CK^) Π ί7fc = A and [K:k] = βn, where £7fc is the group

of units of k. Since v2 is fully ramified in K, it follows from Lemma 11

that vx is fully ramified in K. Hence by the well-known formula of

\Cl%\ (see Yokoi [23]), we have \Cl%\ = [Ek: A\~Hn\Clk\. Now we shall

show that Ek/A is generated by ζno mod A and that [Ek: A] = Λ Since

ζn0 § K2

 a n ( i since ^2 does not lie above £, we see easily that for any

ε e Ek there exists an r € Z such that εζ~o

r e k£

υ

n

2. So, since JSΓ/A; is unrami-

fied outside Vι and v2, eζ~J e NKv/kv(K$) for all v ^ ^x, where V is an ex-

tension of v to if. Therefore by Hasse's norm theorem, εζ~o

r eNκ/k(Kx).

This implies that Ek/A is generated by Cn o

m°dA. Suppose that ζs

noeA

with an s e Z. Then ζ 0̂ e NKr2/JCV2(K$2), where V2 is an extension of v2 to

if. Since KvJkV2 is fully ramified and cyclic of degree 4n and since v2

does not lie above £, ζs

no e NKvΛ/tJK$J implies ζ^ e (fc?,Γ, so s = 0 (mod ^ w ),

since ζno $ fcj2 hence [Ek: A] = £n. Therefore by the above formula,
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5.2. Proof of Theorem 4.

We prove Theorem 4, using Lemma 9, a formula of the number of

ambig ideals (see Yokoi [23]), Hasse's norm theorem and the well-known

translation theorem in local class field theory (see e.g., Weil [26], Chap.

XII, §3, Corollary 3 to Theorem 4).

Proof of Theorem 4 . P u t g = [k: Q], L e t vl9 >,vg d e n o t e a l l t h e

primes of k lying above £. Then vό is fully ramified in kx for 1 <: j <£ g.

Let Vj denote a unique extension of vά to kx for 1 <^j <; g. Let E and

Ei denote the group of units of k and kt with i ^ 1, respectively. Since

A is completely decomposed in k and since ί is fully ramified in Q(d),

k Π Q(&) = Q. Put A = £Ί Π Nk2lkl(kϊ). First we shall show that

A = Ex Π i V ^ ^ ) . Since NQi{M/Qi(Q£Q*) = ^ z X {x e Q,x | a? = 1 (mod ^2)},

we see by Hasse's norm theorem and the translation theorem in local

class field theory that

(*) A - {x e Eγ I N(kl)vj/Qe(x) = 1 (mod ^2) for 1 ^ y ^ flf} .

Let xeE1 Π N^/k(E£). Then Nkl/k(x)eE*. Since (fc^. = Q/d) and fcϋy

= Q^ NVCI)VJ/Q&) = 1 (^od ^). Hence Nkl/k(x) e E£ implies that N{kx)Vj/kvfx)

= 1 (mod ^2), i.e., that x e A. Conversely let α; € A, and put y = Nkl/k(x).
Then (*) implies that y e ke

Vi for 1 <̂  i ^ g. Hence k^Vy)/^ is unrami-
fied. Since \Clkl\ ^ 0 (mod £), fcχ(V^) = fclf hence yek(, so y e £7f. Mak-

ing Nkl/k operate on y e E{, ye~ι e Eέ', so yeE', i.e., x eE, Π Nk^/k(E£).

Therefore

(**) A = Ex Π ΛΓ^ί^O .

The norm map Nkl/k induces a linear map / from a vector space EJEl

to a vector space E/E* over F^ in the natural way. Since Ee'γ c Nkι/k(EJ

and since Eί~ιEί = E, f is surjective. Since A Z) £7f, (**) implies that

Ker / = AIE{. Hence [Ex: A] = [E: £7̂ ] = ^i+^ -1, where rλ and r2 denote

the numbers of real places and complex places of fc, respectively. By

the formula of the number of ambig ideal classes (see Yokoi [23]),

where G = G(fc2/fcx). By the theory of ^-groups, |CZgJ ^ 0 (mod £) if and

only if \Clk2\ ^ 0 (mod^), hence this implies that \Clk%\**0 (mod^) if

and only if r2 = 0. By Lemma 9, |C7fc2| ^ 0 (mod^) is equivalent to
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that \Clkt\ ̂  0 (mod£> for all ί ^ 2.

5.3. Proof of Theorem 5.

We use the following two lemmas and Theorem 6.

LEMMA 12. Let £9k,ζt and Clk be as in Notation. Put \Clk\ = h

and assume that h ^ 0 (mod £). Let T be a finite set of non-archi-

medean prime divisors of k not lying above £, and let K be a cyclic

extension of k of degree £, unramified outside T. Let p be a prime ideal

of k lying above £ and let y ekx be such that (y) = ph. Suppose that

y ek£

υ for all v e T. Then p is completely decomposed in K.

Proof. Let N be the subgroup of / associated with K, by class

field theory. Since K/k is unramified outside T, N Z) UτJ
£kx. Let a

= (aυ) e J be such that av = y if v = p and av = 1 otherwise, let b = (bv)

e J be such that bυ = 1 if v e T U {p} and bv = y otherwise, and let

c = (cv) eJ be such that cυ — y if v eT and cv = 1 otherwise. Since

b eUτ by definition and since c e Je by assumption, the equation y — abc

in / implies that ae UτJ
£kx. Since (y) = ph, we can write y = uπ\ in

kp with a ueUp and a prime element πp of &r Since Up c UτJ
£kx,

aeUτJ
ekx implies that rfeUTJ

ekx. Since fe^O (mod ^), there exists

an fe;e2 such that hfh = 1 (mod^). By taking the fe^th power of π(ί

e Z7Γ/^X, we have πpeUτJ
£kx. Hence fc,x c UτJ

£kx cJV. By class field

theory, this implies that p is completely decomposed in K.

LEMMA 13. Let £, k, r19 r2, ζi9 n0 and Clk be as in Notation. Assume

that d G k and that h ^ 0 ( m o d ^ ) , where h = | C Z Λ | . L e i p ^ p 2 , •••,}), 6e

αiϊ ίfee prime ideals of k lying above £, and let yt e kx be such that

(y^ = ρ\ for i = 1,2, , s. Let ε19 ε2, , εr_χ be a system of the funda-

mental units of k9 where r = rλ + r2. Then there exist infinitely many

prime divisors v of k satisfying the following conditions (1) — (4):

(1) v does not lie above I.

(2) • εt e K for i = 1,2, . , r — 1, and yό e kc

v for j = 1,2, , s.

(3) Cnosfcί.

(4) The degree of v is 1.

Proo/. Put M = fc(V^ , VεTIΓ, V ^ , , V ^ ) . Clearly M and

k(ζno+ί) are linearly disjoint over k. Put Mx = M(ζno+1) and let σ be a

generator of GiM^M). By Cebotarev's density theorem, there exist
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infinitely many prime divisors V of Mx such that the Frobenius auto-

morphism of V with respect to k is σ. If v is the restriction of V to

ky then v satisfies the above conditions (2) and (3). We can take such

v satisfying (1) and (4).

THEOREM 6. Let the notation and assumptions be as in Lemma 13.

Let v1 and v2 be two distinct prime divisors of k satisfying the condi-

tions (1) ~ (3) in Lemma 13. Then there exists one and only one cyclic

extension K of k of degree £, unramified outside vx and v2. The exten-

sion K/k satisfies the following four conditions (a) ~ (d):

(a) vx and v2 are fully ramified in K.

(b) Any prime divisor in Sk is completely decomposed in K.

(c) vx and v2 are not decomposed in k^, where kt — k(ζt) and &«,

= ur-i K
(d) \Clκ\ =£ 0 (mod £). If \Clki\ =£ 0 (mod £) for an ieN, then \ClKi\

=£ 0 (mod £), where Kt = K(ζt).

Proof. Put T = {v19 v2} and Tt == {vt} for i = 1,2. By [Safarevic [19],

Theorem 1], rank Gk(T) = 2 - r2 + dimF, 5fc(l, Γ). Since \Clk\ ̂  0 (mol 4),

we see easily that j?fc(l, T) s {ε eE k \ε e JfcJ for all v e T}jE{. Hence by the

definition of Γ, dim^ Bk(l, T) = r2 - 1. Therefore rank G*(T) = 1. This

implies that there exists one and only one cyclic extension K of k of

degree £, unramified outside vλ and v2. Similarly, rank Gk(Ti) = 0 for

i = 1,2. This implies the condition (a). Note that the condition (a)

follows also from Lemma 11. The condition (b) follows from Lemma 12

and the condition (2) in Lemma 13. The condition (c) follows from the

condition (3) in Lemma 13 and that k^/k is a ZΓextension. The condi-

tion (d) follows from the condition (c) and Lemma 10.

Proof of Theorem 5. We shall prove the theorem by induction on

n. Ifk = QiζJ, then by Iwasawa [8], we see that k satisfies the con-

ditions (1) and (3). Now let k satisfy the conditions (1) — (4). By Lem-

ma 13 and Theorem 6, there exists a cyclic extension K of k of degree

£ such that \ClKt\ ̂  0 (mod^) for all ί ^ 1 and such that \SΣ\*> in, where

Ki = K(ζi). Let vx and v2 be two prime divisors of K which are not

conjugate each other over k, satisfying the conditions (1) — (4) of Lem-

ma 13 (replacing k by K). Then by Theorem 6, there exists a unique

cyclic extension L of K of degree £, unramified outside vx and v2y satisfy-

ing the conditions (a) — (d) in Theorem 6 (replacing K and k by L and
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K, respectively). Then \SL\ = i\Sκ\ ^ £2n. Since the degree of v€ is 1
for i = 1,2, {v19v2} % {̂ ί, 2̂} for σeG(K/k), with σ ^ 1. From this, it

follows that L *? L° for any extension σ of σ to the Galois closure of

L/k. This implies that L/k is not a Galois extension, so L/Q(d) is not

a Galois extension. Hence by induction on n, we have the assertion.

§ 5. Remark

In this section, we note that the part "(ii) φ (vi)" of the main theo-

rem can be proved by using Galois theory, Kummer theory and the same

cohomology theoretic method as in Iwasawa [9]. The key lemma is

Proposition 3 of [17], which connects such a cohomology theoretic

method with our problem. We shall omit the details and sketch the

proof.

LEMMA 14 ([17], Proposition 3). Let £ be a prime number and let

ζi be a primitive £ι-th root of unity for each ieN. Let k be a field of

characteristic different from £. Assume that ζλek and that ζ2ek if

£ — 2. Fix neN and put K = k(ζn). Let σ be a generator of G(K/k)

and let seZ be such that ζ* = ζs

n. Put Σ = σN~ι + σN~2s + . + σsN~2

+ sN~\ where N — [K: k]. Let L/K be a cyclic extension of K of degree

£n and let yeKx be such that L = K(?n^y). Then the following three

statements are equivalent:

(1) L/k is an abelian extension whose Galois group is the direct

product of G(L/K) and a cyclic subgroup of G{L/k) of order N.

(2) There exists a weKx such that L = KCVw1).

(3) y°-s = wίn with a weKx, and L = KCVw1).

The equivalence of (2) and (3) follows from the proof of [[17],

Proposition 3].

Remark 8. We can prove that Grunwald-Hasse-Wang's theorem

([7], [8], [25] see also [1], Chap. 10) holds also in the case where the

base field is an arbitrary field with discrete valuations, by generalizing

and refining the above Lemma 14 (see [19]).

As an application of Lemma 14, we have the following

LEMMA 15. Let 6,k9ζi9kuS,S\Clk{S) and Ek(S) be as in Notation.

Let m be a positive rational integer. Assume that \Clk(S)\ ^ 0 (mod^)

and that \Clkm(Sm)\^0 (mod^). Assume moreover that ζλek and that



200 HIROO MIKI

ζ2 6 k if £ = 2. Let K/k be an S-ramίfied cyclic extension of k of degree

£9 and let εeEk(S) be such that K = &(Vε). Then the following two

statements are equivalent:

(1) There exists an S-ramified cyclic extension L/k of degree £m

containing K;

(2) εeEk(SyNkm/k(Ekm(S™)).

Remark 9. (1) If \Clk(S)\ =£ 0 (mod £), then for any S-ramified

cyclic extension K of k of degree £9 there exists ε e Ek(S) such that K

= fc(Vε).
(2) The above Lemma 15 can be also proved by using the proof

of [Bertrandias-Payan [2], Theorem 1].

Proof of Lemma 15. Obviously we may suppose that K ^ kno+1.

Suppose that the statement (2) holds. Put Km = λ^CVεf), where Σ is

as in Lemma 14 for the extension kmjk and where ειeEkJSm) is such

that ε/Nkm/k(Sl) e Ek(S)e. Since s = 1 (mod £)9 Σ = σ*"1 + σN~2 + ... +σ + l

(mod £). Hence Nkm/k{ε^jεl e ke

m, so e/ef e ke

m. This implies that Km D K.

By Lemma 14, Km\k is abelian and G(Km/k) s G(Km/kJ x (Λ0, so by

Galois theory, there exists a cyclic extension L/k of degree ίm such

that KaL(zKm. Since ε1eEkm(Sm) and since &m/fc is ^-ramified, iίm/&

is S-ramified, so L/k is also S-ramified. Conversely suppose that the

statement (1) holds. Put Lm = Lkm. Since Lmjkm is Sm-ramified and

since ICZfcm(Sm)| ^ 0 (mocU), there exists £leEkm(Sm) such that Lm

= fcmCmΛ/εT) By (3) of Lemma 14, there exists ε2 e k* such that εσrs = 4m

and Lm = kmCVεJ). _Since β l e S j n ε2e£7ftm(S-). Since eξ/Nku/k(βJ

eke

m and since km(Weξ) — km(Wε)y we have Nkm/k(εr

2)/ε e ke

m with a n r e Z

such that r ^ 0 (mod ^), hence by using Kummer theory we see easily

that ζiQNkm/M)/εeke with an ί e Z . Put ε7 = ζι

mε2

r, then ε'eEkm(Sm) and

Nkm/k(ε')/εek\ hence Nkm/k(ε')/εeEk(Sy. This implies that the statement

(2) holds.

The following lemma can be proved by using the same cohomology

theoretic method as in Iwasawa [9], hence we omit the proof.

LEMMA 16. Let the notation and assumptions be as in Lemma 15 and

let tm be the number of prime divisors in S completely decomposed in

km. Then rank H\G{km/k\ EkJS™)) = \S\ - tm - 1, i.e., rank Ek(S)/

Nkm/k(Ekm(Sm))Ek(Sy = |S| - ίTO - 1 for all m ^ nQ + 1, where H° means
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Tate-cohomology group of dimension 0.

Outline of another proof of the part "(ii) t=$> (vi)" of the main theo-

rem. Obviously there exists an moeN such that tm = 0 for all m ^ m0.

Put Nt = N^iE^iS^E^Sy/E^Sy for all i ^ 0. Regard N, as a vector

space over F£ in the natural way. Then άimFeNno = r2 + |S|, and by

Lemma 16, dimF i 2V* = r2 + 1 + ί< for all i ^ w0 + 1. Let A = {αJ^Λ be

a basis of iVno over Fe such that A Π Nt is a basis of Nt over F, for

any i ^ w0. For each λ e Λ, let e, e Ek(S) be such that ελ mod Ek(Sy = aλ,

and put fcj = /c(Vί). Let J^/ft be a maximal S-ramified cyclic exten-

sion of k of ^-power degree containing kλ. Then by Lemma 15, [Kλ: k]

= ^m A, where m^ ^ 0 is such that aλeNmλ and aλ$Nmλ+ι if Nm A 2 JVTOo

and where m^ = oo if aλ eJVmo. Put M = Y\λeΛKλ9 then by Galois theory,

G(M/k) ^ C(oo, r2 + 1) x C(n0, sno - 1) x Πϊ

TO=W0+i C(ΐ, s€), since t< - tί+1 = s«

for ΐ ^ ^ 0 + 1 and sno = |S | — tx. By using Galois theory, Kummer

theory and Lemma 15, we can prove that k(S) = M. Hence the asser-

tion follows.
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