ON EIGENVALUES IN THE CONTINUUM OF 2-BODY OR MANY-BODY SCHRÖDINGER OPERATORS

KIYOSHI MOCHIZUKI AND JUN UCHIYAMA

Introduction

Let us consider the following two problems.
(A) Does either
(1)

$$
\liminf _{R \rightarrow \infty} R^{\alpha} \int_{R_{0} \leq|x| \leq R}|u(x)|^{2} d x>0
$$

or
(2)

$$
\liminf _{R \rightarrow \infty}(\log R)^{-1} \int_{R_{0} \leq|x| \leq R}|u(x)|^{2} d x>0
$$

hold for the not identically vanishing solution $u(x) \in H_{\text {loc }}^{2}(\Omega)$ of the equation

$$
\begin{equation*}
-\Delta u(x)+V(x) u(x)=\lambda u(x) \tag{3}
\end{equation*}
$$

for $x \in \Omega \subset R^{n}(n \geq 3)$, where λ is a constant satisfying $\lambda>E_{0}$ and $V(x)$ is a 2 -body or many-body potential?
(B) Can the selfadjoint realization of $-\Delta+V(x)$ in $L^{2}(\Omega)$ have eigenvalues in $\left(E_{0}, \infty\right)$?

In (A) we would like to take α satisfying (1) and E_{0} as small as possible. If (1) with $\alpha<0$ or (2) is satisfied, (B) is solved negatively.

In our previous papers (Mochizuki [7] and Uchiyama [10]) it was shown that (1) with $\alpha<0$ or (2) holds under some conditions on $V(x)$. The results are an extension of Weidmann [11] and are summarized in Proposition 1. The problem (B) is solved negatively by some papers (e.g., Weidmann [11], [12], Agmon [1], [2], Albeverio [3], Müller-Pfeiffer [8], Kalf [6], Simon [9], and Jansen-Kalf [5]).

In this paper we give a slight modification of our previous results. Theorem 1 can be easily reduced from Proposition 1. Theorem 2 which

[^0]asserts the non-existence in (E_{0}, ∞) of eigenvalues of $-\Delta+V(x)$ is a corollary of Theorem 1. Jansen-Kalf [5] gives similar results to Theorem 1 in the 2-body case. On the other hand, our theorem can apply to many-body problem.

In §2, we give some examples. Especially, example I shows that our results in many-body case are pure extension of Weidmann [12], Agmon [1] and Albeverio [3].

1. Theorems

We shall consider solutions of the equation

$$
\begin{equation*}
-\Delta u+V(x) u-\lambda u=0 \tag{1.1}
\end{equation*}
$$

in an exterior domain $\Omega \subset \boldsymbol{R}^{n}(n \geq 3)$ of some compact set, where Δ is the n-dimensional Laplacian, λ is a real number and $V(x)$ is assumed to satisfy the following conditions:
(I) $V(x)$ is a real-valued function which belongs to the Stummel class $Q_{\mu}^{\text {ext. }}$. Namely, for some constant $\mu>0$ and $R_{0}>0$ such that $\left\{x ;|x|>R_{0}\right\} \subset \Omega$, we have

$$
\begin{cases}\sup _{x ;|x|>R_{0}} \int_{|x-y|<1}|V(y)|^{2}|x-y|^{-n+4-\mu} d y<\infty & \text { (if } n \geq 4) \\ \sup _{x ;|x|>R_{0}} \int_{|x-y|<1}|V(y)|^{2} d y<\infty & \text { (if } n=3 \text {) }\end{cases}
$$

(II) Let $V(x)=V(r \omega)=V(r, \omega)$, where $r=|x|$ and $\omega=x /|x|$. Then there exists a null set $e \subset S^{n-1}=\{x ;|x|=1\}$ such that $V(r, \omega)$ is differentiable in $r>R_{0}$ for any $\omega \in S^{n-1} \backslash e . \quad r \frac{\partial V}{\partial r} \in Q_{\mu}^{\text {ext. }}$. Further, there exists at least one $\gamma \in(0,2]$ such that

$$
\sum(r, \gamma)=\sup _{\omega \in S^{n-1 \mid e}}\left\{r \frac{\partial V(r, \omega)}{\partial r}+r V(r, \omega)\right\}<\infty
$$

for $r>R_{0}$ and

$$
E(\gamma)=\frac{1}{\gamma} \lim _{r \rightarrow \infty} \sup _{r \rightarrow \infty} \sum(r, \gamma)<\infty
$$

(III) The unique continuation property holds.

In the following, by a solution u of equation (1.1) is meant an $H_{10 c}^{2}{ }^{-}$ function which satisfies (1.1) in the distribution sense in Ω. Here $H^{j}(\Omega)$
denotes the class of L^{2}-functions in Ω such that all distribution derivatives up to j belong to $L^{2}(\Omega)$ and $H_{\text {ioc }}^{j}$ denotes the class of locally H^{j}-functions in Ω.

Lemma 1. Let u be a solution of (1.1). Suppose that there exists a real C^{1}-function $\zeta(t)$ of $t>0$ such that $\zeta(|x|) u$ and $\zeta^{\prime}(|x|) u$ are in $L^{2}(\Omega)$, where $\zeta^{\prime}=d \zeta / d t$. Then we have for any $R_{2}>R_{0}$

$$
\begin{equation*}
\int_{|x|>R_{2}+1} \zeta^{2}\left\{|\nabla u|^{2}+|V(x)||u|^{2}\right\} d x \leq C \int_{|x|>R_{2}}\left(\zeta^{2}+\zeta^{\prime 2}\right)|u|^{2} d x, \tag{1.2}
\end{equation*}
$$

where C is a positive constant independent of $\zeta(t)$ and R_{2}.
Proof. Let $\phi_{s}(t)\left(s>R_{2}+2\right)$ be a C^{1}-function of $t>0$ satisfying the following conditions: $0 \leq \phi_{s}(t) \leq 1$ and $\left|\phi_{s}^{\prime}(t)\right| \leq C_{1}$, where C_{1} is independent of $s ; \phi_{s}(t)=1$ for $R_{2}+1<t<s-1$, and $\phi_{s}(t)=0$ for $t<R_{2}$ and $t>s$. Multiply (1.1) by $2 \phi_{s}(|x|)^{2} \zeta(|x|)^{2} \bar{u}$ and integrate over Ω. Integration by parts gives

$$
\begin{aligned}
2 \int_{\Omega} \phi_{s}^{2} \zeta^{2}|\nabla u|^{2} d x= & -\int_{\Omega} 4 \phi_{s} \zeta \frac{\partial u}{\partial r}\left(\phi_{s}^{\prime} \zeta+\phi_{s} \zeta^{\prime}\right) \bar{u} d x \\
& -2 \int_{\Omega} \phi_{s}^{2} \zeta^{2}(V(x)-\lambda)|u|^{2} d x
\end{aligned}
$$

Hence we have

$$
\begin{align*}
& \int_{R_{2}<|x|<s} \phi_{s}^{2} \zeta^{2}\left(|\nabla u|^{2}+|V(x)||u|^{2}\right) d x \tag{1.3}\\
& \quad \leq \int_{R_{2}<|x|<s}\left\{4\left(\phi_{s}^{\prime} \zeta+\phi_{s} \zeta^{\prime}\right)^{2}+\phi_{s}^{2} \zeta^{2}(2|\lambda|+3|V(x)|)\right\}|u|^{2} d x
\end{align*}
$$

On the other hand, for the potential $V(x)$ satisfying condition (I) IkebeKato [4] proves the fact that for any $\delta>0$ there exists a constant $C_{\delta}>0$ such that

$$
\int_{|x|>R_{2}}|V(x)||f(x)|^{2} d x \leq \int_{|x|>R_{2}}\left\{\delta|\nabla f(x)|^{2}+C_{\delta}|f(x)|^{2}\right\} d x
$$

for any $f(x) \in H^{1}(\Omega)$ with support in $\left\{x ;|x| \geq R_{2}\right\}$. Put $f=\phi_{s} \zeta u$. Then we have

$$
\begin{aligned}
& \int_{R_{2}<|x|<s} \phi_{s}^{2} \zeta^{2}|V(x)||u|^{2} d x \\
& \quad \leq \int_{R_{2}<|x|<s}\left\{\delta\left|\nabla\left(\phi_{s} \zeta u\right)\right|^{2}+C_{\delta} \phi_{s}^{2} \zeta^{2}|u|^{2}\right\} d x
\end{aligned}
$$

$$
\leq \int_{R_{2}<|x|<s}\left\{2 \delta|\nabla u|^{2}+\left[2 \delta\left(\phi_{s}^{\prime} \zeta+\phi_{s} \zeta^{\prime}\right)^{2}+C_{s} \phi_{s}^{2} 5^{2}{ }^{2}\right]|u|^{2}\right\} d x .
$$

This and (1.3) show that

$$
\begin{aligned}
(1- & 6 \delta) \\
& \int_{R_{2}+1<|x|<s-1} \zeta^{2}\left(|\nabla u|^{2}+|V(x)||u|^{2}\right) d x \\
& \leq \int_{R_{2}<|x|<s}\left\{(4+6 \delta)\left(\phi_{s}^{\prime} \zeta+\phi_{s} \zeta^{\prime}\right)^{2}+\phi_{s}^{2} \zeta^{2}\left(2|\lambda|+3 C_{\delta}\right)\right\}|u|^{2} d x \\
& \leq \tilde{C} \int_{R_{2}<|x|<s}\left(\zeta^{2}+\zeta^{\prime 2}\right)|u|^{2} d x
\end{aligned}
$$

Hence, choosing $6 \delta<1$ and letting $s \rightarrow \infty$, we have (1.2).
q.e.d.

Lemma 2. Suppose that $V(x)$ satisfies (I) and (II). Let

$$
\begin{equation*}
\Gamma=\{\gamma \in(0,2] ; E(\gamma)<\infty\} \quad \text { and } \quad E_{0}=\inf _{\gamma \in \Gamma} E(\gamma) \tag{1.4}
\end{equation*}
$$

Then we have $E_{0}>-\infty$.
Proof. We assume the contrary. Then for any positive integer p there exists $\gamma_{p} \in \Gamma$ and $r_{p}>R_{0}$ satisfying

$$
\frac{\partial}{\partial r}\left(r^{r p} V(r, \omega)\right)=r^{r_{p}-1}\left(r \frac{\partial V}{\partial r}+\gamma_{p} V\right) \leq-\gamma_{p} p r^{\gamma_{p}-1}
$$

for any $r \geq r_{p}$ and $\omega \in S^{n-1} \backslash e$. Integrating both sides with respect to r from ρ to $t \rho$, where $\rho>r_{p}$ and $t \geq 1$, we have for any $\omega \in S^{n-1} \backslash e$

$$
(t \rho)^{r_{p}} V(t \rho, \omega)-\rho^{\gamma_{p}} V(\rho, \omega) \leq-p\left\{(t \rho)^{r_{p}}-\rho^{\gamma^{p} p}\right\} .
$$

Put $y=\rho \omega$. Then it follows that

$$
\begin{equation*}
p\left(t^{\gamma_{p}}-1\right) \leq-t^{\gamma^{p}} V(t y)+V(y) \tag{1.5}
\end{equation*}
$$

By (I), there exists a constant $K>0$ such that

$$
\int_{|x-y|<1}|V(y)|^{2} d y \leq K \quad \text { for any } x \text { satisfying }|x|>R_{0} .
$$

Thus, integrating (1.5) over $\{y ;|x-y|<1\}$ with respect to y, we have for any x such that $|x| \geq r_{p}+1$

$$
\begin{align*}
M_{n} p^{2}\left(t^{\gamma p}-1\right)^{2} & \leq 2\left\{t^{2 r p} \int_{|x-y|<1}|V(t y)|^{2} d y+K\right\} \tag{1.6}\\
& \leq 2\left\{t^{2 \gamma p} t^{-n}(2 \sqrt{n} t)^{n}+1\right\} K,
\end{align*}
$$

where M_{n} is the volume of the unit ball of R^{n}. Put $t=2^{1 / r p}$ in (1.6). Then we have for any positive integer p

$$
M_{n} p^{2} \leq 2\left\{4(2 \sqrt{n})^{n}+1\right\} K
$$

This is a contradiction and the lemma is proved.
q.e.d.

Now our results for the problem (A) can be stated in the following
Theorem 1. Suppose that $V(x)$ satisfies conditions (I), (II) and (III). Let Γ and E_{0} be as in the above lemma, and let u be a not identically vanishing solution of (1.1) with $\lambda>E_{0}$. Then we have for any $\gamma \in \Gamma$ satisfying $E_{0} \leq E(\gamma)<\lambda$

$$
\begin{equation*}
\liminf _{R \rightarrow \infty} R^{-1+(\gamma / 2)} \int_{R_{0}<|x|<R}|u(x)|^{2} d x>0 \quad \text { if } 0<\gamma<2 \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{R \rightarrow \infty}(\log R)^{-1} \int_{R_{0}<|x|<R}|u(x)|^{2} d x>0 \quad \text { if } \gamma=2 \tag{1.8}
\end{equation*}
$$

As a corollary of this theorem, we have the following theorem which solves the problem (B) negatively.

Theorem 2. Let E_{0} be as in Lemma 2. Then any selfadjoint realization of $-4+V(x)$ in $L^{2}(\Omega)$ has no eigenvalues in $\left(E_{0}, \infty\right)$.

In order to prove Theorem 1, we use the following proposition which is obtained in Mochizuki [7; Theorem 1.3] (cf., also Uchiyama [10; Lemma 3.15] where is proved the case $\frac{2}{3}<\gamma \leq 2$ by a different method).

Proposition 1. Let u be a solution in Ω of the equation

$$
\begin{equation*}
-\Delta u-q(x) u=0 \tag{1.9}
\end{equation*}
$$

where $q(x)$ satisfies conditions (I), (III) and
(II)' there exist constants $0<\gamma \leq 2, \sigma>0$ and $R_{1}>0$ such that $\left\{x ;|x|>R_{1}\right\} \subset \Omega, r(\partial q / \partial r) \in Q_{\mu}^{\text {ext }}$ and

$$
r \frac{\partial q}{\partial r}+\gamma q \geq \sigma \quad \text { for } r \geq R_{1} \text { and } \omega \in S^{n-1} \backslash e
$$

where $r=|x|, \omega=x /|x|$ and $e \subset S^{n-1}$ is the null set. If u satisfies the condition

$$
\begin{equation*}
\liminf _{R \rightarrow \infty} R^{r / 2} \int_{|x|=R}\left\{\left|\frac{\partial u}{\partial r}\right|^{2}+(1+|q(x)|)|u|^{2}\right\} d S=0 \tag{1.10}
\end{equation*}
$$

then u must identically vanish in Ω.
For the sake of self-containedness of this paper, we shall give a brief proof of this proposition in Appendix.

Proof of Theorem 1. We fix a $\gamma \in \Gamma$ satisfying $E_{0} \leq E(\gamma)<\lambda . \quad E(\gamma)$ $>-\infty$ by Lemma 2. Put $q(x)=\lambda-V(x)$. Then by (II) we see that for any $\delta>0$ there exists an $R(\delta)>R_{0}$ such that

$$
r \frac{\partial q}{\partial r}+\gamma q \geq \gamma(\lambda-E(\gamma)-\delta) \quad \text { for } r>R(\delta) \text { and } \omega \in S^{n-1} \backslash e .
$$

We choose $\delta=(\lambda-E(\gamma)) / 2$ and put $R_{1}=R(\delta)$ and $\sigma=\gamma \delta>0$. Then $q(x)=\lambda-V(x)$ satisfies (I), (III) and (II)' with these γ, σ and R_{1}. Let u be a non-trivial solution of (1.1). Then by Proposition 1, we see that there exist some $C_{1}>0$ and $R_{2}>R_{1}$ such that

$$
\begin{equation*}
\int_{|x|=s}\left\{\left|\frac{\partial u}{\partial r}\right|^{2}+(1+|q(x)|)|u|^{2}\right\} d S \geq C_{1} s^{-r / 2} \quad \text { for } s \geq R_{2} \tag{1.11}
\end{equation*}
$$

Let $\zeta_{R}(t)$ be a C^{1}-function of $t>0$ satisfying the following conditions: $0 \leq \zeta_{R}(t) \leq 1$ for $t>0, \zeta_{R}(t)=1$ for $0<t<R-1$, where $R>R_{2}+2$, $\zeta_{R}(t)=0$ for $t>R$ and $\left|\zeta_{R}^{\prime}(t)\right| \leq C_{2}$ for $t>0$, where C_{2} is a positive constant independent of R. Multiply (1.11) by $\zeta_{R}(s)^{2}$ and integrate over ($R_{2}+1, \infty$). Then we have

$$
\begin{aligned}
& \int_{|x|>R_{2}+1} \zeta_{R}^{2}\left\{\left\{\left.\frac{\partial u}{\partial r}\right|^{2}+(1+|q(x)|)|u|^{2}\right\} d x\right. \\
& \geq \begin{cases}\frac{C_{1}}{1-(\gamma / 2)}\left\{R^{1-(\gamma / 2)}-\left(R_{2}+1\right)^{1-(\gamma / 2)}\right\} & \text { if } 0<\gamma<2 \\
C_{1}\left\{\log R-\log \left(R_{2}+1\right)\right\} & \text { if } \gamma=2 .\end{cases}
\end{aligned}
$$

Combining this and Lemma 1 with $\zeta(t)=\zeta_{R}(t)$, we obtain (1.7) and (1.8).
q.e.d.

Remark 1. If $\Omega=\boldsymbol{R}^{n}$ and $R_{0}=0$ in conditions (I) and (II), then condition (III) is not required to obtain the above theorems. In fact, in this case, Proposition 1 is proved in Uchiyama [10; Lemma 4.3] without (III).

Remark 2. If the interval (0,2] appearing in condition (II) and Lemma 2 is replaced by $(0,2-\delta]$ for any $\delta>0$, then similar results can be obtained for a more general elliptic operators by use of Theorem
1.1 of Mochizuki [7]. For example, the above Theorem 2 holds true for the operator $-\Delta+V(x)+\tilde{V}(x)$, where $V(x)$ satisfies (I), (II) with $\gamma \in(0,2-\delta]$ and (III), and $\tilde{V}(x)$ is a short range potential:

$$
|x| \tilde{V}(x) \rightarrow 0 \quad \text { as }|x| \rightarrow \infty
$$

satisfying also (I) and (III).

2. Examples and remarks

I. Let the potential $V(x), x=\left(x_{1}, \cdots, x_{3 N}\right) \in \boldsymbol{R}^{3 N}$, have the form

$$
\begin{equation*}
V(x)=\sum_{j=1}^{N} V_{j}\left(\boldsymbol{r}_{j}\right)+\sum_{1 \leq j<k \leq N} V_{j k}\left(\boldsymbol{r}_{j k}\right), \tag{2.1}
\end{equation*}
$$

where $\boldsymbol{r}_{j}=\left(x_{3 j-2}, x_{3 j-1}, x_{3 j}\right)$ and $\boldsymbol{r}_{j k}=\boldsymbol{r}_{j}-\boldsymbol{r}_{k}$. We use the notation

$$
r_{j}=\left|\boldsymbol{r}_{j}\right|, r_{j k}=\left|\boldsymbol{r}_{j k}\right| \quad \text { and } \quad r=\left(\sum_{j=1}^{N} r_{j}^{2}\right)^{1 / 2}=|x| .
$$

Then we have

$$
\begin{equation*}
r \frac{\partial V_{j}}{\partial r}=r_{j} \frac{\partial V_{j}}{\partial r_{j}} \quad \text { and } \quad r \frac{\partial V_{j k}}{\partial r}=r_{j k} \frac{\partial V_{j k}}{\partial r_{j k}} . \tag{2.2}
\end{equation*}
$$

Proposition 2.1. Suppose that $V(x)$ satisfies conditions (I), (III) and

$$
\begin{cases}\frac{1}{\gamma}\left(r_{j} \frac{\partial V_{j}}{\partial r_{j}}+\gamma V_{j}\right) \leq E_{j}^{r} & \left(r_{j}>0\right) \tag{2.3}\\ \frac{1}{\gamma}\left(r_{j k} \frac{\partial V_{j k}}{\partial r_{j k}}+\gamma V_{j k}\right) \leq E_{j k}^{r} & \left(r_{j k}>0\right)\end{cases}
$$

for some constants $E_{j}^{\gamma}, E_{j k}^{\gamma}$ and $0<\gamma \leq 2$. Then there exists an E_{0} such that

$$
\begin{equation*}
E_{0} \leq \sum_{j=1}^{N} E_{j}^{r}+\sum_{1 \leq j<k \leq N} E_{j k}^{r} \tag{2.4}
\end{equation*}
$$

and $-\Delta+V(x)$ has no eigenvalues in $\left(E_{0}, \infty\right)$.
Proof. It follows from (2.2) and (2.3) that

$$
\frac{1}{r}\left(r \frac{\partial V}{\partial r}+\gamma V\right) \leq \sum_{j=1}^{N} E_{j}^{r}+\sum_{1 \leq j<k \leq N} E_{j k}^{r}
$$

for $r>0$ and $\omega=x / r \in S^{n-1} \backslash e$. Hence, $V(x)$ satisfies condition (II) with
$E(\gamma) \leq \sum_{j=1}^{N} E_{j}^{\tau}+\sum_{1 \leq j<k \leq N} E_{j k}^{r}$ and Theorem 2 leads the assertion. q.e.d.

This results can be applied to generalized Coulomb-Yukawa potentials:

$$
\begin{equation*}
V_{j}=-\frac{c_{j}}{r_{j}^{\beta j}} e^{-\alpha_{j} r_{j}}, \quad V_{j k}=\frac{c_{j k}}{r_{j k}^{\beta_{j k}}} e^{-\alpha_{j k} r_{j k}} \tag{2.5}
\end{equation*}
$$

where $c_{j}, c_{j k}, \alpha_{j}, \alpha_{j k}, \beta_{j}$ and $\beta_{j k}$ are all non-negative constants. We assume

$$
\begin{gather*}
0<\beta_{j}<3 / 2, \quad 0<\beta_{j k}<3 / 2, \tag{2.6}\\
\max _{1 \leq j \leq N}\left\{\beta_{j}\right\} \leq \min _{1 \leq j<k \leq N}\left\{\beta_{j k}\right\} . \tag{2.7}
\end{gather*}
$$

By (2.6) we see that the potential $V(x)=\sum_{j=1}^{N} V_{j}+\sum_{1 \leq j<k \leq N} V_{j k}$ satisfies condition (I). Condition (III) easily follows from (2.5). If we choose

$$
\begin{equation*}
\gamma \leq \min _{1 \leq j<k \leq N}\left\{\beta_{j k}\right\} \tag{2.8}
\end{equation*}
$$

then we have

$$
\begin{align*}
& \frac{1}{\gamma}\left(r_{j k} \frac{\partial V_{j k}}{\partial r_{j k}}+\gamma V_{j k}\right) \tag{2.9}\\
& \quad \leq \frac{1}{\gamma} c_{j k} \sup _{0<r_{j k}<\infty} e^{-\alpha_{j k} r_{j k}\left\{\left(\gamma-\beta_{j k}\right) r_{j k}^{-\beta_{j j k}}-\alpha_{j k} r_{j k}^{1-\beta} \beta_{j k}\right\}=0} .
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
& \frac{1}{\gamma}\left(r_{j} \frac{\partial V_{j}}{\partial r_{j}}+\gamma V_{j}\right) \tag{2.10}\\
& \quad \leq \frac{1}{\gamma} c_{j} \sup _{0<r_{j}<\infty} e^{-\alpha_{j} r_{j}}\left\{\left(\beta_{j}-\gamma\right) r_{j}^{-\beta_{j}}+\alpha_{j} r_{r}^{1-\beta_{j}}\right\}=E_{j}^{r}
\end{align*}
$$

Thus, for the potential $V(x)$ given by (2.1), (2.5), (2.6) and (2.7), there exists an E_{0} such that

$$
\begin{equation*}
E_{0} \leq \sum_{j=1}^{N} E_{j}^{r_{j}} \tag{2.11}
\end{equation*}
$$

and $-\Delta+V(x)$ has no eigenvalues in $\left(E_{0}, \infty\right)$.
Note that in (2.10) each $E_{j}^{r}<\infty$ if α_{j} and β_{j} satisfy one of the following three conditions.

$$
\begin{equation*}
\alpha_{j}=0 \quad \text { and } \quad \beta_{j} \leq \gamma \quad \text { (Coulomb type) }, \tag{2.12}
\end{equation*}
$$

$$
\begin{array}{ll}
\alpha_{j}>0 \quad \text { and } \quad \beta_{j} \leq \min \{\gamma, 1\} & \text { (Yukawa type) }, \\
\alpha_{j}>0 \quad \text { and } \beta_{j}<\gamma & \text { (Yukawa type) } . \tag{2.14}
\end{array}
$$

If α_{j} and β_{j} satisfy (2.12), then we have $E_{j}^{r}=0(j=1, \cdots, N)$. Thus, for the Coulomb type potential $V(x),-\Delta+V(x)$ has no positive eigenvalues. The concrete Yukawa potential is given by

$$
\begin{equation*}
V(x)=-\sum_{j=1}^{N} \frac{c_{j}}{r_{j}} e^{-\alpha_{j} r_{j}}+\sum_{1 \leq j<k \leq N} \frac{c_{j k}}{r_{j k}} e^{-\alpha_{j k} r_{j k}} \tag{2.15}
\end{equation*}
$$

In this case we have $E_{j}^{1}=c_{j} \alpha_{j}$ since $\beta_{j}=\gamma=1$ in (2.10), and hence E_{0} $\leq \sum_{j=1}^{N} c_{j} \alpha_{j}$.

The generalized Coulomb-Yukawa potentials (2.5) have been studied by Weidmann [12], Agmon [1] and Albeverio [3]. Their results can be applied to show that the Schrödinger operator with the potential (2.15) has no eigenvalues in ($\sum_{j=1}^{N} c_{j} \alpha_{j}, \infty$). However, we can show the

Proposition 2.2. Let $V(x)$ be the Yukawa potential given by (2.15). Then we have

$$
\begin{equation*}
E_{0} \leq \limsup _{r \rightarrow \infty} \sum_{j=1}^{N} c_{j} \alpha_{j} e^{-\alpha_{j} \tau_{j}}=\sum_{j=1}^{N} c_{j} \alpha_{j}-\min _{1 \leq j \leq N}\left\{c_{j} \alpha_{j}\right\} \tag{2.16}
\end{equation*}
$$

Hence, $-\Delta+V(x)$ has no eigenvalues in $\left(\sum_{j=1}^{N} c_{j} \alpha_{j}-\min _{1 \leq j \leq N}\left\{c_{j} \alpha_{j}\right\}, \infty\right)$.
Proof. We have

$$
\begin{aligned}
E_{0} & =E(1)=\limsup _{r \rightarrow \infty}\left(r \frac{\partial V}{\partial r}+V\right) \\
& =\underset{r \rightarrow \infty}{\lim \sup }\left(\sum_{j=1}^{N} c_{j} \alpha_{j} e^{-\alpha_{j} r_{j}}-\sum_{1 \leq j<k \leq N} c_{j k} \alpha_{j k} e^{-\alpha_{j k} r_{j k}}\right) \\
& \leq \lim \sup _{r \rightarrow \infty}^{N} \sum_{j=1}^{N} c_{j} \alpha_{j} e^{-\alpha_{j} r_{j}}
\end{aligned}
$$

There exists a sequence $r(p)=\sqrt{r_{1}(p)^{2}+\cdots+r_{N}(p)^{2}} \rightarrow \infty($ as $p \rightarrow \infty)$ such that

$$
\limsup _{r \rightarrow \infty} \sum_{j=1}^{N} c_{j} \alpha_{j} e^{-\alpha_{j} r_{j}}=\lim _{p \rightarrow \infty} \sum_{j=1}^{N} c_{j} \alpha_{j} e^{-\alpha_{j} r_{j}(p)} .
$$

Since $r(p) \rightarrow \infty$ as $p \rightarrow \infty$, there exists at least one $k, 1 \leq k \leq N$, such that

$$
\begin{aligned}
\lim _{p \rightarrow \infty} \sum_{j=1}^{N} c_{j} \alpha_{j} e^{-\alpha_{j} \tau_{j}(p)} & \leq \sum_{j=1}^{N} c_{j} \alpha_{j}-c_{k} \alpha_{k} \\
& \leq \sum_{k=1}^{N} c_{j} \alpha_{j}-\min _{1 \leq j \leq N}\left\{c_{j} \alpha_{j}\right\}
\end{aligned}
$$

On the other hand, let $c_{k} \alpha_{k}=\min _{1 \leq j \leq N}\left\{c_{j} \alpha_{j}\right\}$ and choose $r_{j}(p)=0(j \neq k)$ and $r_{k}(p) \rightarrow \infty$ as $p \rightarrow \infty$. Then

$$
\begin{aligned}
\sum_{j=1}^{N} c_{j} \alpha_{j}-c_{k} \alpha_{k} & =\lim _{p \rightarrow \infty} \sum_{j=1}^{N} c_{j} \alpha_{j} e^{-\alpha_{j} r_{j}(p)} \\
& \leq \lim _{r \rightarrow \infty} \sup \sum_{j=1}^{N} c_{j} \alpha_{j} e^{-\alpha_{j} r_{j}}
\end{aligned}
$$

Summing up these results, we have (2.16).
q.e.d.

Remark. If $N=2$, then we have

$$
\begin{equation*}
E_{0}=c_{1} \alpha_{1}+c_{2} \alpha_{2}-\min \left\{c_{1} \alpha_{1}, c_{2} \alpha_{2}\right\} \tag{2.17}
\end{equation*}
$$

In fact, assuming $c_{1} \alpha_{1} \geq c_{2} \alpha_{2}$ and choosing $r_{1}(p)=0$ and $r_{2}(p)=p$, we have

$$
\begin{aligned}
E_{0} & =\lim _{r \rightarrow \infty} \sup \left(c_{1} \alpha_{1} e^{-\alpha_{1} r_{1}}+c_{2} \alpha_{2} e^{-\alpha_{2} r_{2}}-c_{12} \alpha_{12} e^{-\alpha_{12} r_{12}}\right) \\
& \geq \lim _{p \rightarrow \infty}\left(c_{1} \alpha_{1}+c_{2} \alpha_{2} e^{-\alpha_{2} p}-c_{12} \alpha_{12} e^{-\alpha_{12} p}\right)=c_{1} \alpha_{1}
\end{aligned}
$$

II. Let us consider in \boldsymbol{R}^{6} the operator

$$
\begin{equation*}
L=-\Delta_{1}-\Delta_{2}-\frac{2}{r_{1}}-\frac{2}{r_{2}} \tag{2.18}
\end{equation*}
$$

where $\Delta_{j}=\sum_{k=0}^{2} \partial^{2} / \partial x_{3 j-k}^{2}$ and $r_{j}=\left(\sum_{k=0}^{2}\left|x_{3 j-k}\right|^{2}\right)^{1 / 2}(j=1,2)$. The negative eigenvalues of each $-\Delta_{j}-\frac{2}{r_{j}}$ form the set $\left\{-\frac{1}{n^{2}}\right\}_{n=1,2, \ldots}$. Thus, we see that $\left\{-\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right\}_{n_{1}, n_{2}=1,2, \ldots}$ are eigenvalues of L and the essential spectrum of L is $[-1, \infty)$. This shows that $(-\delta, \infty)$ is never the continuous spectrum of L for any $\delta>0$, though ($0, \infty$) is continuous as is seen in \mathbf{I}.
III. The potential

$$
\begin{equation*}
V(x)=\frac{-32 \sin r\left[g(r)^{3} \cos r-3 g(r)^{2} \sin ^{3} r+g(r) \cos r+\sin ^{3} r\right]}{\left[1+g(r)^{2}\right]^{2}} \tag{2.19}
\end{equation*}
$$

in R^{3}, where $g(r)=2 r-\sin 2 r$, is given by von Neumann and Wigner as an example which has the eigenvalue +1 with eigenfunction

$$
u(x)=\frac{\sin r}{r\left(1+g(r)^{2}\right)}
$$

Simon [9] proved that $-\Delta+V(x)$ with the above potential $V(x)$ has no eigenvalues in $(16, \infty)$ using the equality

$$
\limsup _{r \rightarrow \infty}\left(r \frac{\partial V}{\partial r}+V\right)=16
$$

which follows from the following property of $V(x)$:

$$
V(x)=-\frac{8 \sin 2 r}{r}+\tilde{V}(x)
$$

where $\tilde{V}(x)$ and $\partial \tilde{V}(x) / \partial r$ behave like $O\left(r^{-2}\right)$ as $r \rightarrow \infty$. This property shows that

$$
\gamma E(\gamma)=\lim _{r \rightarrow \infty} \sup \left(r \frac{\partial V}{\partial r}+\gamma V\right)=16 \quad \text { for any } \gamma
$$

Thus, choosing $\gamma=2$, we can apply Theorem 2 to see that $-\Delta+V(x)$ has no eigenvalues in $(8, \infty)$.
IV. The potential

$$
\begin{equation*}
V(x)=\frac{-32 k^{2} \alpha^{2} \sin k r[(k r+1 / 2 \alpha) \cos k r-\sin k r]}{[1+\alpha h(r)]^{2}} \tag{2.20}
\end{equation*}
$$

in R^{3}, where k, α are non-zero real constants and $h(r)=2 k r-\sin 2 k r$, is given by Moses and Tuan (cf. Albeverio [3]) as an example which has the eigenvalue $+k^{2}$ with eigenfunction

$$
u(x)=\frac{\sin k r}{r(1+\alpha h(r))}
$$

The above $V(x)$ has the following property:

$$
V(x)=-\frac{4 k \sin 2 k r}{r}+\tilde{V}(x)
$$

where $\tilde{V}(x)$ and $\partial \tilde{V}(x) / \partial r$ behave like $O\left(r^{-2}\right)$ as $r \rightarrow \infty$. Thus, we have

$$
\gamma E(\gamma)=\limsup _{r \rightarrow \infty}\left(r \frac{\partial V}{\partial r}+\gamma V\right)=8 k^{2} \quad \text { for any } \gamma .
$$

Choosing $\gamma=2$, we see that $-\Delta+V(x)$ has no eigenvalues in $\left(4 k^{2}, \infty\right)$. Note that in Kalf [6] is studied the potential $V_{1}(x)=V(x)-\frac{(n-1)(n-3)}{4 r^{2}}$ in $R^{n}(n \geq 3)$, where $V(x)$ is given above. Using his virial theorem, Kalf proved that $-\Delta+V_{1}(x)$ has no eigenvalues in $(\Lambda / 2, \infty)$, where

$$
\Lambda=\sup _{x \in R^{n}}\left(r \frac{\partial V}{\partial r}+2 V\right) \geq 8 k^{2}
$$

In this case we have also $E_{0}=4 k^{2}$.
V. Kalf [6] also proved that the potential

$$
V_{1}(x)=\frac{\beta}{r^{2}}+\sin (\log r) \quad \text { in } R^{n}(n \geq 3)
$$

where $\beta>-[(n-2) / 2]^{2}$, does not have eigenvalues in $(\sqrt{5} / 2, \infty)$ (this can also proved by use of a theorem due to Agmon [1]). We consider here the following potential

$$
\begin{equation*}
V(x)=\frac{\beta}{r^{2}}+\psi(x) \sin (\log r) \quad \text { in } R^{n}(n \geq 3) \tag{2.21}
\end{equation*}
$$

where $\psi(x)$ satisfies (I), (III) and

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left(r\left|\frac{\partial \psi}{\partial r}\right|+|\psi-1|\right)=0 \tag{2.22}
\end{equation*}
$$

Then we have

$$
\gamma E(\gamma)=\lim _{r \rightarrow \infty} \sup \left(r \frac{\partial V}{\partial r}+\gamma V\right)=\sqrt{1+\gamma^{2}}
$$

Thus, it follows that $-\Delta+V(x)$ does not have eigenvalues in $(\sqrt{5} / 2, \infty)$. Note that in this case Kalf's virial theorem shows the non-existence of eigenvalues in $(1 / 2, \infty)$, where

$$
\Lambda=\sup _{x \in \boldsymbol{R}^{n}}\left(r \frac{\partial V}{\partial r}+2 V\right) \geq \sqrt{5}
$$

If $\psi(x)=1$, we have $\Lambda=\sqrt{5}$.

Remark. Applying Jansen-Kalf [5] to III, IV and V, we can have the same results as mentioned above.

Appendix (Proof of Proposition 1)

We use the notation: $B(R, t)=\{x ; R<|x|<t\}$ for $0<R<t, B(R)$ $=\{x ;|x|>R\}$ for $R>0$ and $S(R)=\{x ;|x|=R\}$ for $R>0$.

Let u be a solution of (1.9) satisfying also condition (1.10). Obviously, we may take u to be a real-valued function. Let $\rho(t)$ be a realvalued, C^{3}-function of $t>0$ and put

$$
\begin{equation*}
v(x)=e^{\rho(r)} u(x) \quad(r=|x|) \tag{3.1}
\end{equation*}
$$

Then v satisfies the equation

$$
\begin{equation*}
-\Delta v+2 \rho^{\prime} \frac{\partial v}{\partial r}-\tilde{q} v=0 \quad \text { in } x \in B\left(R_{1}\right) \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{q}=q+\left(\rho^{\prime 2}-\rho^{\prime \prime}-\frac{n-1}{r} \rho^{\prime}\right) . \tag{3.3}
\end{equation*}
$$

We multiply (3.2) by $r^{\beta} v$ and integrate over $B(R, t)$, where $R_{1} \leq R<t$. Integrating by parts, we have

$$
\begin{align*}
& \int_{B(R, t)} r^{\beta}\left(|\nabla v|^{2}-\tilde{q}|v|^{2}\right) d x \\
& \quad=\left[\int_{S(t)}-\int_{S(R)}\right] r^{\beta} \frac{\partial v}{\partial r} v d S-\int_{B(R, t)} r^{\beta}\left(\frac{\beta}{r}+2 \rho^{\prime}\right) \frac{\partial v}{\partial r} v d x . \tag{3.4}
\end{align*}
$$

Similarly, integration by parts of (3.2) multiplied by $2 r^{\alpha} \frac{\partial v}{\partial r}$ gives

$$
\begin{align*}
& {\left[\int_{S(t)}-\int_{S(R)}\right] r^{\alpha}\left(2\left|\frac{\partial v}{\partial r}\right|^{2}-|\nabla v|^{2}+\tilde{q}|v|^{2}+\frac{n-1-\gamma+\alpha}{r} \frac{\partial v}{\partial r} v\right) d S} \\
& =\int_{B(R, t)} r^{\alpha-1}\left\{(2-\gamma)\left(|\nabla v|^{2}-\left|\frac{\partial v}{\partial r}\right|^{2}\right)+\left(4 \rho^{\prime} r-\gamma+2 \alpha\right)\left|\frac{\partial v}{\partial r}\right|^{2}\right. \tag{3.5}\\
& \left.\quad+\left(r \frac{\partial \tilde{q}}{\partial r}+\gamma \tilde{q}\right)|v|^{2}+\frac{n-1-\gamma+\alpha}{r}\left(2 \rho^{\prime} r+\alpha-1\right) \frac{\partial v}{\partial r} v\right\} d x
\end{align*}
$$

First we put $\rho(r)=0$ and $\alpha=\gamma / 2$ in (3.5). Then $v=u$ and $\tilde{q}=q$. Noting the condition (II)', the equality

$$
\begin{aligned}
\int_{B(R, t)} r^{\alpha-2} & \frac{\partial v}{\partial r} v d x \\
& =\frac{1}{2}\left[\int_{S(t)}-\int_{S(R)}\right] r^{\alpha-2}|v|^{2} d S-\frac{n-3+\alpha}{2} \int_{B(R, t)} r^{\alpha-3}|v|^{2} d x
\end{aligned}
$$

and the inequality $(n-1-\gamma+\alpha)(\alpha-1)(n-3+\alpha) \leq 0$, we have

$$
\begin{aligned}
{\left[\int_{S(t)}-\int_{S(R)}\right] r^{\alpha} } & \left\{2\left|\frac{\partial u}{\partial r}\right|^{2}-|\nabla u|^{2}+q|u|^{2}\right. \\
& \left.+\frac{n-1-\alpha}{r}\left(\frac{\partial u}{\partial r} u-\frac{\alpha-1}{2 r}|u|^{2}\right)\right\} d S \geq \sigma \int_{B(R, t)} r^{\alpha-1}|u|^{2} d x
\end{aligned}
$$

By (1.10), we can let $t \rightarrow \infty$ to obtain
(3.6) $\quad \sigma \int_{B(R)} r^{\alpha-1}|u|^{2} d x \leq \int_{S(R)} r^{\alpha}\left\{|\nabla u|^{2}-q|u|^{2}+\frac{(n-1-\alpha)^{2}}{4 r^{2}}|u|^{2}\right\} d S<\infty$. This and Lemma 1 with $\zeta(r)^{2}=r^{\alpha-1}$ imply that

$$
\int_{B\left(R_{1}\right)} r^{\alpha-1}\left(|\nabla u|^{2}+|u|^{2}\right) d x<\infty
$$

Integrating (3.6) with respect to R from s to t, where $R_{1} \leq s<t$, using (3.4) with $\beta=\alpha$ and $\rho(r)=0$, and letting $t \rightarrow \infty$, we obtain

$$
\begin{aligned}
\sigma \int_{B(s)} & (r-s) r^{\alpha-1}|u|^{2} d x \\
& \leq \frac{1}{2} \int_{S(s)} r^{\alpha}\left(\left|\frac{\partial u}{\partial r}\right|^{2}+|u|^{2}\right) d S+C_{1} \int_{B(s)} r^{\alpha-1}\left(\left|\frac{\partial u}{\partial r}\right|^{2}+|u|^{2}\right) d x<\infty
\end{aligned}
$$

where $C_{1}=\frac{\alpha}{2}+\frac{(n-1-\alpha)^{2}}{4 R_{1}}$. In consideration of Lemma 1 , we can repeat the integration with respect to s. Then we finally have

$$
\begin{equation*}
\int_{B\left(R_{1}\right)} r^{m}\left(|\nabla u|^{2}+|u|^{2}\right) d x<\infty \tag{3.7}
\end{equation*}
$$

for arbitrary $m>0$.
Next we prove that for any $k>0$ and $0<\nu<1$

$$
\begin{equation*}
\int_{B\left(R_{1}\right)} e^{k r \nu}\left(|\nabla u|^{2}+|u|^{2}\right) d x<\infty . \tag{3.8}
\end{equation*}
$$

For this purpose we put $\rho(r)=m \log r$, where $m \geq n$, and $\alpha=-n+1+\gamma$ in (3.5). Then noting (3.7) and $4 \rho^{\prime} r-\gamma+2 \alpha>0$, we have for $R \geq R_{1}$

$$
\begin{align*}
& \left.\left.\int_{S(R)} r^{\alpha \alpha}| | \nabla v\right|^{2}-\tilde{q}|v|^{2}\right) d S \\
& \quad \geq \int_{B(R)} r^{\alpha-1}\left(r \frac{\partial \tilde{q}}{\partial r}+\gamma \tilde{q}\right)|v|^{2} d x . \tag{3.9}
\end{align*}
$$

Here, by (3.3) and (II)',

$$
r \frac{\partial \tilde{q}}{\partial r}+\gamma \tilde{q} \geq \sigma-(2-\gamma) \frac{m(m-n+2)}{r^{2}} \quad \text { for } r \geq R_{1} \text { and } \omega \in S^{n-1} \backslash e
$$

Multiply (3.9) by $R^{-2 m-\alpha}$ and integrate over (s, ∞), where $s \geq R_{1}$. Then we have

$$
\begin{aligned}
& \int_{B(s)} r^{-2 m}\left(|\nabla v|^{2}-\tilde{q}|v|^{2} d x\right. \\
& \quad \geq \int_{s}^{\infty}\left\{\sigma-(2-\gamma)\left(\frac{m}{R}\right)^{2}\right\} d R \int_{B(R)} r^{-2 m-1}|v|^{2} d x
\end{aligned}
$$

If we put $\beta=-2 m$ in (3.4) and let $t \rightarrow \infty$, then

$$
\begin{aligned}
& \int_{B(s)} r^{-2 m}\left(|\nabla v|^{2}-\tilde{q}|v|^{2}\right) d x=-\int_{S(s)} r^{-2 m} \frac{\partial v}{\partial r} v d S \\
& \quad=-\frac{1}{2} \frac{d}{d s} \int_{S(s)} r^{-2 m}|v|^{2} d S-\frac{2 m-n+1}{2} \int_{S(s)} r^{-2 m-1}|v|^{2} d S .
\end{aligned}
$$

Thus, noting $r^{-2 m}|v|^{2}=|u|^{2}$, we have

$$
\begin{align*}
& -\frac{1}{2}\left[\frac{d}{d s} \int_{S(s)}|u|^{2} d S+\frac{m}{s} \int_{S(s)}|u|^{2} d S\right] \\
& \quad \geq \int_{s}^{\infty}\left\{\sigma-(2-\gamma)\left(\frac{m}{R}\right)^{2}\right\} d R \int_{B(R)} r^{-1}|u|^{2} d x \tag{3.10}
\end{align*}
$$

We fix arbitrary $k>0$ and $0<\nu<1$, let $m=\tilde{k} \nu S^{\nu}(\tilde{k}=k+1)$ and choose $R_{2}=R_{2}(\widetilde{k}, \nu) \geq R_{1}$ so large that

$$
\sigma-(2-\gamma)\left(\frac{\tilde{k} \nu}{R_{2}^{1-\nu}}\right)^{2} \geq 0
$$

Then it follows from (3.10) that

$$
\frac{d}{d s} \int_{S(s)}|u|^{2} d S+\tilde{k} \nu s^{\nu-1} \int_{S(s)}|u|^{2} d S \leq 0 \quad \text { for } s \geq R_{2}
$$

Therefore, for any $k>0$ and $0<\nu<1$,

$$
\int_{S(s)}|u|^{2} d S \leq C_{2} e^{-\tilde{k}_{s \nu}} \quad(\tilde{k}=k+1)
$$

where C_{2} is independent of s. This and Lemma 1 with $\zeta(r)^{2}=e^{k r \nu}$ prove (3.8).

Now we can prove $u=0$. We return once more to (3.5) with $\rho(r)$ $=k r^{\nu}$ and $\alpha=-n+1+\gamma$. Since

$$
\tilde{q}=q+\left\{\left(\frac{k \nu}{r^{1-\nu}}\right)^{2}-\frac{k \nu(n-2+\nu)}{r^{2-\nu}}\right\},
$$

we have for $R \geq R_{1}$

$$
\begin{align*}
& -R^{\alpha} \int_{S(R)}\left(2\left|\frac{\partial v}{\partial r}\right|^{2}-|\nabla v|^{2}+\tilde{q}|v|^{2}\right) d S \\
& \geq \int_{B(R)} r^{\alpha-1}\left(4 k \nu r^{\nu}-\gamma+2 \alpha\right)\left|\frac{\partial v}{\partial r}\right|^{2} d x \tag{3.11}\\
& \quad+\int_{B(R)} r^{\alpha-1}\left\{\sigma+(\gamma-2+2 \nu)\left(\frac{k \nu}{r^{1-\nu}}\right)^{2}+(-\gamma+2-\nu) \frac{k \nu(n-2+\nu)}{r^{2-\nu}}\right\} \\
& \quad \times|v|^{2} d x .
\end{align*}
$$

If we choose ν such that $\frac{2-\gamma}{2}<\nu<1$ and $R_{3}=R_{3}(\nu) \geq R_{1}$ sufficiently large, then for any $k \geq 1$ and $r \geq R_{3}$

$$
\left\{\begin{array}{l}
4 k \nu r^{\nu}-\gamma+2 \alpha \geq 0, \\
(\gamma-2+2 \nu)\left(\frac{k \nu}{r^{1-\nu}}\right)^{2}+(-\gamma+2-\nu) \frac{k \nu(n-2+\nu)}{r^{2-\nu}} \geq 0
\end{array}\right.
$$

Therefore, by (3.11),

$$
\begin{equation*}
\int_{S(R)}\left(2\left|\frac{\partial v}{\partial r}\right|^{2}-|\nabla v|^{2}+\tilde{q}|v|^{2}\right) d S \leq 0 \quad \text { for } R \geq R_{3} \tag{3.12}
\end{equation*}
$$

Since $v=e^{k r \nu} u$, we can write the left side of (3.12) in the form

$$
e^{2 k R^{\nu}}\left\{k^{2} M_{1}(R)+k M_{2}(R)+M_{3}(R)\right\},
$$

where

$$
M_{1}(R)=\frac{2 \nu^{2}}{R^{2-2 \nu}} \int_{S(R)}|u|^{2} d S
$$

and $M_{2}(R)$ and $M_{3}(R)$ are independent of k. Suppose that $M_{1}(R)>0$ for some $R \geq R_{3}$. Then k can be chosen so large that (3.12) is no longer valid. Hence $u=0$ in $B\left(R_{3}\right)$. By the unique continuation property (III),
we have $u=0$ in Ω and Proposition 1 is proved.

References

[1] Agmon, S., Lower bounds for solutions of Schrödinger-type equations in unbounded domains, Proc. International Conference of Functional Analysis and Related Topics, Tokyo (1969), 216-224.
[2] -, Lower bounds for solutions of Schrödinger equations, J. d'Anal. Math. 23 (1970), 1-25.
[3] Albeverio, S., On bound states in the continuum of N-body systems and the virial theorem, Ann. Physics 71 (1972), 167-276.
[4] Ikebe, T. and T. Kato, Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. Rational Mech. Anal. 9 (1962), 77-92.
[5] Jansen, K. H. and H. Kalf, On positive eigenvalues of one-body Schrödinger operators: Remarks on papers by Agmon and Simon, Comm. Pure Appl. Math. 28 (1975), 747-752.
[6] Kalf, H., The quantum mechanical virial theorem and the absence of positive energy bound states of Schrödinger operators, Israel J. Math. 20 (1975), 57-69.
[7] Mochizuki, K., Growth properties of solutions of second order elliptic differential equations, J. Math. Kyoto Univ. 16 (1976), 351-373.
[8] Müller-Pfeiffer, E., Schrödingeroperatoren ohne Eigenwerte, Math. Nachr. 60 (1974), 43-52.
[9] Simon, B., On positive eigenvalues of one-body Schrödinger operators, Comm. Pure Appl. Math. 22 (1967), 531-538.
[10] Uchiyama, J., Lower bounds of growth order of solutions of Schrödinger equations with homogeneous potentials, Publ. RIMS, Kyoto Univ. 10 (1975), 425-444.
[11] Weidmann, J., On the continuous spectrum of Schrödinger operators, Comm. Pure Appl. Math. 19 (1966), 107-110.
[12] -, The virial theorem and its application to the spectral theory of Schrödinger operators, Bull. Amer. Math. Soc. 73 (1967), 452-458.

Department of Mathematics

Nagoya Institute of Technology
and
Department of Mathematics
Kyoto University of Industrial Arts and Textile Fibres

[^0]: Received December 24, 1976.

