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ON EIGENVALUES IN THE CONTINUUM OF 2-BODY

OR MANY-BODY SCHRODINGER OPERATORS

KIYOSHI MOCHIZUKI AND JUN UCHIYAMA

Introduction

Let us consider the following two problems.
(A) Does either

( 1 ) lim inf R« \ \u(x)f dx > 0
R-*oo J RQ<,\X\£R

or

(2) lim inf (log R)~ι ί \u(x)\2 dx > 0

hold for the not identically vanishing solution u(x) e H2

loc (Ω) of the equa-
tion

(3 ) -Δu{%) + V(x)u(x) = λu(x)

for x e Ω c Rn in > 3), where λ is a constant satisfying λ > EQ and V(x)
is a 2-body or many-body potential?

(B) Can the self ad joint realization of — Δ + V(x) in L\Ω) have eigen-
values in (Eo, oo)?

In (A) we would like to take a satisfying (1) and Eo as small as
possible. If (1) with a < 0 or (2) is satisfied, (B) is solved negatively.

In our previous papers (Mochizuki [7] and Uchiyama [10]) it was
shown that (1) with a < 0 or (2) holds under some conditions on V(x).
The results are an extension of Weidmann [11] and are summarized in
Proposition 1. The problem (B) is solved negatively by some papers
(e.g., Weidmann [11], [12], Agmon [1], [2], Albeverio [3], Mϋller-Pfeiffer
[8], Kalf [6], Simon [9], and Jansen-Kalf [5]).

In this paper we give a slight modification of our previous results.
Theorem 1 can be easily reduced from Proposition 1. Theorem 2 which
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asserts the non-existence in (Eo, oo) of eigenvalues of — Δ + V(x) is a
corollary of Theorem 1. Jansen-Kalf [5] gives similar results to Theo-
rem 1 in the 2-body case. On the other hand, our theorem can apply
to many-body problem.

In §2, we give some examples. Especially, example I shows that
our results in many-body case are pure extension of Weidmann [12],
Agmon [1] and Albeverio [3].

1. Theorems

We shall consider solutions of the equation

(1.1) -Δu + Vix)u - λu = 0

in an exterior domain Ω c Rn (n > 3) of some compact set, where Δ is
the ^-dimensional Laplacian, λ is a real number and V(x) is assumed
to satisfy the following conditions:

( I ) V(x) is a real-valued function which belongs to the Stummel
class Q*xt. Namely, for some constant μ > 0 and Ro > 0 such that
{x \x\ > Ro} c Ω, we have

170/)|2 \x - y\~n+i-μ dy < oo (if n > 4)

\V(y)\2dy <oo (if n = S).f \
J \x-V\<l

(II) Let V(x) = V(rω) = V(r, ω), where r = \x\andω = x/\x\. Then
there exists a null set e c S71-1 = {a?; |ΛJ| = 1} such that 7(r,ω) is differ-

entiable in r > J?o for any ω e S71'1^. r^— e QG*\ Further, there exists
dr

at least one γ e (0,2] such that

= # SUP

for r > Ro and

= i lim sup Σ(r,γ) < oo .
Y τ—

(III) The unique continuation property holds.
In the following, by a solution u of equation (1.1) is meant an H2

loc-
function which satisfies (1.1) in the distribution sense in Ω. Here W(Ω)
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denotes the class of U-ίunctions in Ω such that all distribution derivatives
up to j belong to L\Ω) and H{0G denotes the class of locally Hj-ίunctions
in Ω.

LEMMA 1. Let u be a solution of (1.1). Suppose that there exists
a real C1-function ζ(t) of t>0 such that ζ(\x\)u and ζ'(\x\)u are in L\Ω),
where ζ' = dζ/dt. Then we have for any R2 > Ro

(1.2) f C{\Vuf + I V(x)\ \u\2}dx < C f (ζ2 + ζ'2) \u\2 dx ,

where C is a positive constant independent of ζ(t) and R2.

Proof. Let φs(t) (s> R2 + 2) be a (^-function of t > 0 satisfying the
following conditions: 0 < φs(t) < 1 and \φ'£t)\ < Cly where d is independent
of s φs(t) = 1 for R2 + 1 < t < s - 1, and φs(t) = 0 for t < R2 and t > s.
Multiply (1.1) by 2φs(\x\)X(\x\)2ΰ and integrate over Ω. Integration by
parts gives

2 f φX2 \Vu\2 dx = - [ 4φsζ^~ (φ',ζ + φsθΰdx
J Ω J Q dr

- 2 f φ%\V(x) - X)\u\2 dx .
J Ω

Hence we have

f ΦXWu\2 + \V(x)\\u\2)dx
(Λ *Vi Rt<\x\<s

< ί {4(<5.'C + φsζΎ + ΦX\2\λ\ + d\V(x)\)}\uf dx .
J Rz<\x\<s

On the other hand, for the potential V(x) satisfying condition (I) Ikebe-
Kato [4] proves the fact that for any δ > 0 there exists a constant Cδ > 0
such that

f \V(x)\\f(x)\2dx < f {δ\Ff(x)\2 + Cδ\f(x)\2}dx
J\x\>R2 J \x\>Ri

for any f(x)eHKΩ) with support in {x; \x\ > R2}. Put / = φsζu. Then
we have

ί φ2

sζ
2\V(x)\\u\2dx

J R2<\x\<s

< [ {δ \F(φsζu)I2 + Csφ%2 M}dx
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< f {2δ ψuf + [2δ(φ'sζ + φaζΎ + C^m
J Ez<\x\<s

This and (1.3) show that

(1 _ 6̂ ) Γ ζ\\Vu? + \V(x)\\uf)dx
J R2 + K\x\<s-1

{(4 + 6δ)(φ'sζ + φsζΎ + φXK2 \λ\ + 3C,)} \uf dx

Hence, choosing 6δ < 1 and letting s —• co, we have (1.2). q.e.d.

LEMMA 2. Suppose that V(x) satisfies (I) and (II). Let

(1.4) Γ = {γ e (0,2] E(r) < oo} and Eo = inf E(γ) .
rer

Then we have EQ> — oo.

Proof. We assume the contrary. Then for any positive integer p
there exists γpeΓ and rp > RQ satisfying

J_( rrpy( r > ω)) = rrp-i(rdΣ_ _|_ y γ\ < _
dr \ dr /

for any r>rp and ω e S ^ e . Integrating both sides with respect to
r from p to ί/>, where p> rp and ί > 1, we have for any ωeS71'1^

(tPy*V(tp,ω) - pr*V(p,ω) <

Put y = pω. Then it follows that

(1.5) p(V* - 1) < -P*V(ty) + V(y) .

By (I), there exists a constant K > 0 such that

|F(τ/)|2 dy < K for any # satisfying |#| > # 0 .
J \χ-v\<i

Thus, integrat ing (1.5) over {y;\x — y\<l} with respect to y, we have

for any x such t h a t | # | > τp + 1

M n p(ί I) < 2{ί f
(1.6) I J\χ-y\<i

- I)2 < 2{ί2^ f I V(ty) |2 dy
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where Mn is the volume of the unit ball of Rn. Put t = 21/r*> in (1.6).

Then we have for any positive integer p

Mnp
2

This is a contradiction and the lemma is proved. q.e.d.

Now our results for the problem (A) can be stated in the following

THEOREM 1. Suppose that V(x) satisfies conditions (I), (II) and (III).

Let Γ and Eo be as in the above lemma, and let u be a not identically

vanishing solution of (1.1) with λ>E0. Then we have for any γeΓ

satisfying Eo < E(γ) < λ

(1.7)

and

(1.8)

lim inf R"

lim inf (L

Γ
J Ro

| ^ ) | 2 dx > 0 if 0 < γ < 2
<\x\<B

)"1 ί \u(x)\2 dx > 0 if γ = 2 .
.R-oo J RQ<\X\<R

As a corollary of this theorem, we have the following theorem which

solves the problem (B) negatively.

THEOREM 2. Let EQ be as in Lemma 2. Then any self adjoint real-

ization of —Δ + V(x) in L\Ω) has no eigenvalues in (Eo, <χ>).

In order to prove Theorem 1, we use the following proposition which

is obtained in Mochizuki [7; Theorem 1.3] (cf., also Uchiyama [10; Lem-

ma 3.15] where is proved the case f < γ < 2 by a different method).

PROPOSITION 1. Let u be a solution in Ω of the equation

(1.9) - Δu - q(x)u = 0 ,

where q(x) satisfies conditions (I), (III) and

(Iiy there exist constants 0 < f < 2 , σ > 0 and Rλ > 0 such that

{x \x\ > R,} c Ωf r(dq/dr) e Qθ

μ

xt and

rS!l- + γq>σ for r > R, and ω e S"'1^ ,
dr

where r = \x\, ω = x/\x\ and e c S71'1 is the null set. If u satisfies the

condition

(1.10) lim inf R^ f {\*L% + (1 + \q(x)\) \u\2)dS = 0 ,
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then u must identically vanish in Ω.

For the sake of self-containedness of this paper, we shall give a
brief proof of this proposition in Appendix.

Proof of Theorem 1. We fix a γ e Γ satisfying EQ < E(γ) < λ. E(γ)
> —oo by Lemma 2. Put q(x) = λ — V(x). Then by (II) we see that
for any δ > 0 there exists an R(δ) > Ro such that

^ + rq> r(λ - E(γ) - δ) for r > R(δ) and ω e S ^ Vr
dr

We choose δ = (λ - E(γ))/2 and put Rx = R(δ) and σ = γδ > 0. Then
g(oj) = χ ~ 7(aj) satisfies (I), (III) and (II)' with these γ, σ and i2x. Let
u be a non-trivial solution of (1.1). Then by Proposition 1, we see that
there exist some Cx > 0 and R2 > #i such that

(1.11)
dr

\q(x)\) \u\2\dS > for s > Rz

Let ζ^ί) be a C!-function of £ > 0 satisfying the following conditions:
0 < ζR{t) < 1 for t > O,ζR(t) = 1 for 0 <t < R - 1, where R > R2 + 2,
ζR(t) = 0 for t > R and |&(t)| < C2 for ί > 0, where C2 is a positive
constant independent of R. Multiply (1.11) by ζR(s)2 and integrate over
(R2 + 1, oo). Then we have

if 0

- log (R2 + 1)} if γ = 2 .

Combining this and Lemma 1 with ζ(t) = ζB(t), we obtain (1.7) and (1.8).
q.e.d.

Remark 1. If Ω = Rn and Ro = 0 in conditions (I) and (II), then
condition (III) is not required to obtain the above theorems. In fact,
in this case, Proposition 1 is proved in Uchiyama [10 Lemma 4.3] with-
out (III).

Remark 2. If the interval (0,2] appearing in condition (II) and
Lemma 2 is replaced by (0,2 — δ] for any δ > 0, then similar results
can be obtained for a more general elliptic operators by use of Theorem
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1.1 of Mochizuki [7]. For example, the above Theorem 2 holds true for

the operator —Δ + V(x) + V(x), where V(x) satisfies (I), (II) with

γe(0,2 — δ] and (III), and V(x) is a short range potential:

| | ( ) > 0 as \x\-+ oo

satisfying also (I) and (III).

2. Examples and remarks

I. Let the potential V{x)9 x = (x19 , xZN) e RZN, have the form

(2.1) V(x) = Σ Vjirj) + Σ Vjk(rjk) ,

where rs = (#3^_2, xZj-ι, xzj) and rjk = ^ — rfc. We use the notation

/iV \l/2

^ — \rj\y r j k — \rjk\ ^ Ώ C l i ~ I Z J
 r j I — \ X \

Then we have

(2.2) r ^ ^ = rj^-L and
dr J 3τj dr J drjk

PROPOSITION 2.1. Suppose that V(x) satisfies conditions (I), (III) and

+ r ^ ) < Erj (TJ > °)
(2.3)

i / :J I/ \

0)
rv ^fc

/or some constants Er

jf Er

jk and 0 < γ < 2. Γ/̂ en ί/^ere eαjisίs α^ £70 ŝ c/^

that

(2.4) E»<ΣErj+ Σ

and —J + V(x) has no eigenvalues in (Eϋ, oo).

Proof. It follows from (2.2) and (2.3) that

r \ or

for r > 0 and ω = xjr eSn~ι\e. Hence, V(x) satisfies condition (II) with
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< Σf-i Erj + ΣiizKicίN Er

jk and Theorem 2 leads the assertion.
q.e.d.

This results can be applied to generalized Coulomb-Yukawa poten-

tials :

(2.5) Vj = —*Le-srs , V = £ίLe-«w*

where ĉ , c^, α ,̂ α iΛ, /^ and β^ are all non-negative constants. We assume

(2.6) 0 < βj < 3/2 , 0 < βJk < 3/2 ,

(2.7) mnκ{βj}< min {βjk} .

By (2.6) we see that the potential 7(α?) = Σf=1 7^ + Σi^y<*^ ^ f t satis-

fies condition (I). Condition (III) easily follows from (2.5). If we choose

(2.8) γ < min {βjk\ ,

then we have

(2.9)

On the other hand, we have

(2.10)
< — Cj sup e~ajrj{(βj — γ)rjβJ + ajrl-^'} = £7̂ - .

Thus, for the potential V(x) given by (2.1), (2.5), (2.6) and (2.7), there

exists an Eo such that

(2.11) E0<ΣErj

and — Δ + V(x) has no eigenvalues in (Eo, oo).

Note that in (2.10) each Er

s < oo if aό and βs satisfy one of the

following three conditions.

(2.12) ctj = 0 and βj <γ (Coulomb type) ,
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(2.13) aj > 0 and βj < min {γ, 1} (Yukawa type) ,

(2.14) <χj > 0 and βj < γ (Yukawa type) .

If aj and βj satisfy (2.12), then we have E) = 0 0* = 1, ,2V). Thus,
for the Coulomb type potential V(x), — Δ + V(#) has no positive eigen-
values. The concrete Yukawa potential is given by

(2.15) V(x) = - £ ; A_e-w + 2 ^*-e-w* .
.7=1 r ^ izj<k£N rjk

In this case we have E) = Cjotj since ^ = γ = 1 in (2.10), and hence £70

< Σ7-i ^ Λ

The generalized Coulomb-Yukawa potentials (2.5) have been studied
by Weidmann [12], Agmon [1] and Albeverio [3]. Their results can be
applied to show that the Schrodinger operator with the potential (2.15)
has no eigenvalues in (Σf-i CΛ> °°) However, we can show the

PROPOSITION 2.2. Let V(x) be the Yukawa potential given by (2.15).
Then we have

N N

(2.16) EQ < l im sup Σ CjCCje****' = Σ CjOCj — m i n

Hence, —Δ + V(x) has no eigenvalues in (ΣιJ=icjaj ~~ mini^j^iv {c^}> °°)

Proof. We have

EQ = S(l) = lim sup (r^- +
r-oo \ fir

= lim sup (f; we-"' -
N

< lim sup 2] cjaje~ajrj .
y i

There exists a sequence r(p) = Vr^p)2 + + rN(p)2 -> oo (as p —• oo)
such that

lim sup Σ CjθLje-*>r* = lim J ] c i α i e- β ^ ( ί > ) .
r-»o

Since r(p) —> oo as p —• oo, there exists at least one k,l < k < N, such
that
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N N

lim Σ Cj<Xje-a'r'ip) < Σ
J?-oo j = l j = l

N

< Σ
On the other hand, let ckak = m i n ^ ^ {CJOCJ} and choose rj(p) = 0 (i

and rk(p) —> oo as p -» oo. Then

i

= lim Σ
iV

< lim sup Σ Cj<Xje~ajri

Summing up these results, we have (2.16). q.e.d.

Remark. If N = 2, then we have

(2.17) # o = C\<X\ + o2a2 — m i n {exa19 c2a2} .

In fact, assuming cxax > c2a2 and choosing r^p) = 0 and r2(p) = p, we

have

EQ = lim sup (c^e'"^
r-»oo

> lim (c^i + c2a2e~a*
p-*oo

Π. Let us consider in 2?6 the operator

(2.18) L = - 4 - J , - — - — ,

where J , = Σί-o3*/3a^-* and r^ = (Σ*-ol*w-*l ') v l 0" = 1,2). The nega-
2 i l l

tive eigenvalues of each — Δά — — form the set <—-—> . Thus, we

see that I — — — — > are eigenvalues of L and the essential
I n\ WjJni.na-1,2,...

spectrum of L is [—1, oo). This shows that (—δ, oo) is never the con-

tinuous spectrum of L for any δ > 0, though (0, oo) is continuous as is

seen in I.

III. The potential

__ — 32 sin r[#(r)3 cos r — 3#(r)2 sin3 r + g(r) cos r + sin3 r]
— — •

[1 + g(r)2]2
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in R3, where g(r) = 2r — sin 2r, is given by von Neumann and Wigner
as an example which has the eigenvalue +1 with eigenf unction

+ girY)

Simon [9] proved that — Δ + V(x) with the above potential V(x) has no
eigenvalues in (16, oo) using the equality

lim sup ίr— + v) = 16

which follows from the following property of V(x):

V(x) = - 8 s i n 2 r + V(x) ,
r

where V(x) and dV(x)/dr behave like O(r~2) as r-»oo. This property
shows that

γE(γ) = lim sup (r + γV) = 16 for any γ .
r-oo \ dr /

Thus, choosing γ = 2, we can apply Theorem 2 to see that — Δ + V(a?)
has no eigenvalues in (8, oo).

IV. The potential

ro o(\\ τrr ^ _ —32k2a2 sin kr[(kr + l/2a) cos kr — sin AT]
^.^.u; v \X) — — • —

[1 + / ( ) ] 2

in R3, where fc, a are non-zero real constants and h(r) = 2kr — sin 2kr,
is given by Moses and Tuan (cf. Albeverio [3]) as an example which
has the eigenvalue +k2 with eigenf unction

+ ah(r))

The above V(x) has the following property:

V(x) = - 4 f c s ί n 2 f c r +
r

where V(x) and 3V(x)/dr behave like O(r~2) as r->oo. Thus, we have
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γE(γ) = lim sup (V— + γV) = 8fc2 for any γ .

Choosing γ = 2, we see that —J + F(#) has no eigenvalues in (4k2, oo).

Note that in Kalf [6] is studied the potential Vx(x) = 7(a?) - (^ - Dfo ~ 3>
4 r2

in i?TO (w > 3), where V(x) is given above. Using his virial theorem,

Kalf proved that — Δ + Vx(x) has no eigenvalues in (A/2, oo), where

A = sup (r— + 2V) > 8k2 .
χeRn \ dV I

In this case we have also Eo = 4fc2.

V. Kalf [6] also proved that the potential

V,(x) = -^- + sin (log r) in Rn (n > 3) ,
r2

where /3 > —[(n — 2)/2]2, does not have eigenvalues in (Vδ/2, oo) (this

can also proved by use of a theorem due to Agmon [1]). We consider

here the following potential

(2.21) V(x) = JL- + ψ(x) sin (log r) in Rn (n > 3) ,
r2

where ψ(x) satisfies (I), (III) and

( + |ψ - 1|) = 0 .
r-oo \ dr

Then we have

(2.22) lim (r *t
r-oo \ dr

rE(γ) = lim sup fr — + γ

Thus, it follows that — Δ + V(x) does not have eigenvalues in (V1Γ/2, oo).

Note that in this case Kalf's virial theorem shows the non-existence of

eigenvalues in (-4/2, oo), where

A = sup (r^- + 2V) > V 5 .
xeR" \ dr I

If ψ(χ) = l, we have Λ = / 5 .
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Remark. Applying Jansen-Kalf [5] to III, IV and V, we can have

the same results as mentioned above.

Appendix (Proof of Proposition 1)

We use the notation: B(R, t) = {x R < \x\ < t} for 0 < R < t, B(R)

= {x \x\ > R} for R > 0 and S(R) = {x \x\ = R} for R > 0.

Let u be a solution of (1.9) satisfying also condition (1.10). Obvi-

ously, we may take u to be a real-valued function. Let p(t) be a real-

valued, C3-function of t > 0 and put

(3.1) v(x) =

Then v satisfies the equation

(r =

(3.2) -Δv - qv = 0

where

(3.3) = Q

We multiply (3.2) by rβv and integrate over B(R, t), where Rx<R<t.

Integrating by parts, we have

(3.4)

Γ r

β(\Fv\2 - q\v\2)dx
JB(R,t)

= Γf - f
Usu) Jss(R)l dr dr

tdv
Similarly, integration by parts of (3.2) multiplied by 2ra— gives

dr

If - f dv

dr
-\Vvf + q\v\2

(3.5) = f r"-1 ((2 - γ)(\Vvf -
jB(R,t) I \

*L + γq)\v\2 + n -
dr /

dr

n — 1 — γ + adv
r dr

+ (4p'r - γ + 2a)

dS

dv
dr

dr

First we put p(r) = 0 and a = ^/2 in (3.5). Then v — u and q — q.

Noting the condition (II)7, the equality
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= —Γf - ί
2 Us(t) J

~2 M dS -
a ί r"-3 \v\

JB(R,t)

dx

and the inequality (n — 1 — γ + a)(a — l)(n — 3 + a) < 0, we have

fί - ί v\2 du
~dr

n — 1 — i

q \uf

f r- 1 |
jB(R,t)

u |
r \ 9r 2r

By (1.10), we can let ί —> oo to obtain

(3.6) σ [ r«~ι\ufdx < [ A\Vuf - q\uf + (n ~ * ~ "** \u\2)dS < oo.
JB(R) JSiR) I 4tT J

This and Lemma 1 with ζ(r)2 = r""1 imply that

ί ra-\\Vuf + \u\2)dx < oo ,
JB(R!)

Integrating (3.6) with respect to R from s to t, where R^sKt, using
(3.4) with β = α and ^(r) = 0, and letting ί —> oo, we obtain

σ (r —
J5(s)

< 1 Γ
2 Jew

where C1 = — +
Li

dr
\u\2)dS + d ί r*-ι( ^-* + \u\2)dx < oo ,

I JjB(s) \ dr I

-. In consideration of Lemma 1, we can

repeat the integration with respect to s. Then we finally have

(3.7) ί rm(\Fu\2 + \uf)dx < oo
JB(Ri)

for arbitrary m > 0.
Next we prove that for any k > 0 and 0 < v < 1

(3.8) ί ekτ\\Vuf + \uf)dx
J B(Rι)

< OO .

F o r th i s purpose we put p(r) = m logr, where m>n, and # = — % + l + ^
in (3.5). Then noting (3.7) and 4 / r - γ + 2a > 0, we have for R > R1
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Γ ra(\Fv\2 - q\vf)dS
J S(R)

(3.9)

Here, by (3.3) and (II)',

A + γq>σ-(2- r ) m ( m ~ n + 2 ) for r > ^ and ω e S""1^ .
gr r2

Multiply (3.9) by R-2m~a and integrate over (s, oo), where s > R^ Then
we have

ί r-2m(\Fv\2 - q\v\2

JB(S)
dx

> Γ [a - (2 - y)(™YW f
Js I \β/ J JB(R)

If we put j8 = —2m in (3.4) and let t —> oo, then

f r-2m(|(7 i ; |2 _ ? 1^2)^. = _ Γ τ-2mdV_vdS

jB(.s) Jsω dr

= ~ — — f r~2m \v\2 dS - 2 m -n + i Γ
2 ds Js(ί) 2 Jθ

Thus, noting r"2771!^!2 = \u\2, we have

-iίτ-f
2 Las Js

> Γ L - (2 - r ) ( l ) 2 } ^ f

f
2 Las Js(β)

(3.10)

We fix arbitrary k > 0 and 0 < y < 1, let m = ίcvsv (k = k +1) and choose

R2 = JB2(&, y) > J?! so large that

σ — \Δ —

Then it follows from (3.10) that

d f \u\2 dS + kvs*-1 ί \u\2 dS < 0 for s >
J-SCs) J-S(β)

Therefore, for any k > 0 and 0 < y < 1,
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ί \u\2 dS < C2e-*sv (ίc = k + 1) ,
J S(s)

where C2 is independent of s. This and Lemma 1 with ζ(r)2 = ekrV prove

(3.8).

Now we can prove u — 0. We return once more to (3.5) with p(r)

= krv and a = —n + 1 + γ. Since

we have for R > Rλ

(3.11)

(R) \

> ra~\kkvrv — γ + 2a)
JB(R)

+ ί r*-1

dv
dr

dx

χ\v\2 dx .

2 —2 — r
If we choose v such that f- < v < 1 and iϋ3 = R3(v) > Rλ sufficiently

large, then for any k > 1 and r >RZ

(4kvrv - γ + 2a > 0 ,

| - 2 + 2,)(^-)2 + (- r + 2 -
- - 2

Therefore, by (3.11),

(3.12) f (2
dr

- |Fi;|2 + q \v\2)dS < 0 for R > Rz .

Since v = βfcrυ^, we can write the left side of (3.12) in the form

e2kRV{k2Mλ{R) + kM2(R) + M3(R)} ,

where

S(R)

and M2(R) and M3(R) are independent of k. Suppose that M^R) > 0 for

some R > i?3. Then k can be chosen so large that (3.12) is no longer

valid. Hence u = 0 in B(R3). By the unique continuation property (III),
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we have u = 0 in Ω and Proposition 1 is proved.
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