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INNOVATION PROCESSES ASSOCIATED WITH STATIONARY

GAUSSIAN PROCESSES WITH APPLICATION TO

THE PROBLEM OF PREDICTION

YASUNORI OKABE

§ 1. Introduction

As a continuation of the previous paper [7], we shall consider in

this paper the problem of prediction given bounded intervals and obtain

integral representations of predictors and prediction errors. For that

purpose we shall introduce innovation processes well matched with

bounded intervals. We follow the notation and terminology in [6].

Let X = (X(t) t e R) be a real separable and measurable stationary

Gaussian process on a probability space (Ω,F,P) with expectation zero

which is continuous in the mean and purely nondeterministic. Further-

more we suppose that X has the iV-ple Markovian property in the broad

sense ([7]). We then know that the spectral measure of X has a Hardy

density Δ whose outer part h is expressed in the form

(1.1) P(λ) = Σ Cn(-tt)n , Qtf) = Σ bn(-ίλ)n , cn,bneR , c^ ^ 0

and

7 P c C + , Fn c C+ U R , F p n F e ^

where Vs denotes the set of zero points of a polynomial S.

In [7], we have constructed an iV-dimensional stationary Gaussian

process X = (&(t) teR) satisfying

(1.2) Fί^it) = Fϊ'-($) = σ(#(t)) (teR) .

Similarly we can obtain an IV-dimensional stationary Gaussian process

ψ = (<W(t) teR) satisfying
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(1.3) F£ /+(t) = Fi/+(t) = σ(W(t)) ( ί e ί ) .

Using these processes SC and <3ί9 we shall define in §2 for any aeR

innovation processes i>* — (v^(t) t > 0) which are standard (Fait) \t>0)-

Brownian motions, where F+(t) = dFx(α) (ί = 0), Fx((a,a + t)) (t > 0)

and F-(ί) = &Fx(α) (ί = 0), Fx((a - t, a)) (t > 0).

In §3 we shall obtain integral representations of the predictors

E(SC(β + T)\Fx((a,a + Γ))) and E(X(a + T + t)\Fx((a, a + Γ))) (resp.

E(&(a - T)\Fx((a - Γ,α))) and E(X(a - T - t)\Fx((a - T,a)))) in terms

of innovation processes v% (resp. p~) (aeR, t > 0, Γ > 0). As an ap-

plication of these results, we shall find that Gaussian processes Y± =

(Y±(t) t > 0) = (X(±t) - E(X(±t)\dFx(0)) t > 0) have canonical repres-

entations ([3]).

We shall obtain in §4 integral representations of the predictors

E(&(a - t)\Fx((a,a + Γ))) and E(X(a - t)|Fx((α,α + Γ))) (resp. E(Φ(a +

t)\Fx((a - T,a))) and E(X(a + t)\Fx((a - T,a)))) in terms of innovation

processes %>l (resp. ^') (α e R, t > 0, Γ > 0). Representation kernels in

representation theorems in § 3 and § 4 can be written using the solution

of matrix Riccati equation.

In § 5 we shall prove orthogonal decomposition theorems of integral

representations of the predictors E(&(—a — t)\Fx((—a, a))) and E(X(—a

- t ) | F x ( ( - α , α))) (resp. E(W(a + t)\Fx((-a, a))) and E(X(a + t)\Fx((-a, α))))

in terms of innovation processes i>0~ and vta (resp. xtf and v~) (a > 0,

t > 0 ) .

In §6 we shall give concrete computations in the space ZΔ of re-

presentation kernels in representation theorems in §3 and §4 and then

obtain explicit representations of prediction errors of E(X(a + t) \ Fx((a

-Γ,α))), E(X(a- t)\Fx((a,a + T))) (αeΛ, t > 0, Γ > 0) and ί7(X(±(α

+ t))|Fx((-α,α))) ( α > 0 , t > 0).

Using the results of the previous section, we shall obtain in §7

integral representations of the predictors E(&(a + t)\Fx((a — Γ, a)))

(resp. E($/(a — t) \ Fx((a, a + T)))) in terms of innovation processes v~

(resp. pj) (α 6 /?, t > 0, T > 0) and then the predictors E(S£(a+t) \ Fx((-a, a)))

(resp. E($/(—a—t) \ Fx((—a, a)))) in terms of innovation processes x>0

+ and vl

(resp. vό and pΐα) (α > 0, t > 0).

§2. Innovation processes vl and i>~ (aeR)

We denote by £7 the Fourier transform of h in (1.1). Then we have
the following canonical representation:
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(2.1) X{t) = V27Γ-1 Γ E(t - s)dB(s) ,

where (B(t) te R) is a standard Brownian motion satisfying

(2.2) Ff (ί) = σ(B(Sl) - B(s2) «„ s2 < t) (teR).

We define an N x Λ7-matrix A and an N x 1-vector ί by

(2.3) A =

0

- 1 0
0

a,
- 1 0 and b =

— J- Ot'jy _

where an = cnc^ (0 < n < N — 1). Since the characteristic equation of
A is equal to (—l)Nĉ xP(i~lX) and so all eigenvalues of A have negative
real parts by (1.1), we can define N real U-ίunctions En (0 < n < N — 1)
and a real ZΛfunction F by

(2.4)

and

(2.5)

En(t) = V2«-1χ(β,.,(ί)(e" *)„ (t 6 If)

(ί 6 R) .

Using these //-functions En, we define an iV-dimensional stationary
G a u s s i a n p r o c e s s % = (&(f) teR) = ((X0(f), ••-,X„_$))* teR) b y

(2.6) Xn(t) = V&τ-1 Γ ^»(ί - s)dB(s) (0 < w < N - 1, ί e Λ) .
J —oo

Then we see from the results in [7] that

THEOREM 2.1 ( i ) XN_1(t) = (-2π)-ίcNX(t) (teR).
( ii ) {Xn(t) 0<n < N — 1} is linearly independent in Mx for any teR.
(iii) Mχ(t) = M;(t) and Fx(t) = F;(t) it e R).
(iv ) Mx

f-(t) is equal to the linear hull of {Xn(t) 0 < n<N — 1} (t e R).

( v ) F^-it) = Fp~(t) = σmt)) it e R).
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vi - B(s))b + f A£{u)du (s < t).

(vii) f̂(ί) = e«-8'^(s) + V^' 1 Γ ea-u)A bdB{u) (s < t).

(viii) E(X(t)\Fx(s)) = x f C - W ^ ί

( ix ) E(<F(t) I Fί(8)) = e(ί-sMaτ(s) (s < t).

[2.1] Now we fix any aeR and define the σ-fields Fα

+(ί) (ί > 0) by

(dFx(a) (t = 0) ,
( 2 7 ) W )

Then we shall show

THEOREM 2.2. Γ/̂ βre exists a standard Brownίan motion vt =

(^ί(t) * > 0) ŝ cfe that

( i ) p;(O) = o,

(ii) FJ(t) = dFx(a) V σ(pί(β) 0 < s < t) (t > 0),

(iii) ĵ J is independent of the σ-field dFx(a),

(iv) Xno(t + α) - X J α ) = «j2π~ιbnya(t) + bnoe- Γ + ί £7(^(s)|Fx((α,s)))ds
J a

(ί > 0) ,

^ 0 = max {w e {0, 1, , N — 1} bn Φ 0} and bnoe = ί/iβ w0 + 1-ί̂

o/ the matrix A.

Proo/. By (iv) we define a stochastic process vt = (i>i(O * > 0) with

continuous paths. It then follows from (2.2), Theorem 2.1 (iii) and (iv)

that vt is a square integrable (F£ (ί) £ > 0)-martingale with expectation

zero. We put M = N — 1 — %0. It is easy to see from Lemma 2.4,

Theorem 2.1 (i) and Lemma 4.1 (i) in [7] that £r(n)(0 + ) = 0 (0 < n < M - 1).

This implies by (2.1) that X(t) is M-times differentiate in the mean

and a stationary Gaussian process Xm) = (XiM)(t) teR) has the same

property as X. Applying Theorem 2.1 in this paper to the process X{U\

we have an N-dimensional stationary Gaussian process Θ£M = (#*(*) t e Λ)

such that #•*,*-!(*) = (-2π)-1civX^)(ί) and

aΓjf^-i(ί + α) - aΓjf^.xία)

= (-D^6 W 0 \ί&z~\B(t + α) - B(α)) + Γ + t ( A a r ^ w ) ) ^ . ^ (t > 0) .

Using this process SCM, we define an Λ^-valued stochastic process
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t > 0) and a real valued stochastic process (Y(t) t > 0) by

t) = ar^t + α) - EGF^ί + α) |9Fz(o)) ,

y(t) = (-1)* V2ffβ f iT(s)cZs + B(ί + α) - B(β) ,

and then a real valued stochastic process (ηi(t); t > 0) by

9i(t) = Y(ί) - (-1)M V^e Γtf(i2r(β)|FI((α,α + β)))dβ .
J

Then it follows from the results of [4] and [5] that (ηϊ(f) t > 0) is a
standard CF+(£); t > 0)-Brownian motion for which σ(#J"(s); 0 < s < t) is
equal to σ(Y(s) ;0 < s <t) and σ(η+(u) — ηi(v) ;u,v > t) is independent

of Fα

+(t). By the definition of the process (Y(t);t>0), Γ(ί) =
(-D'δ-^arjf^.xίt + α) - E(arMtN^(t + α)\dFx(α))). Therefore, noting that
dFx(ά) = σ(Z(w)(α) 0 < n < M) and 3eM^^{t) = (-2π)-1cNX(M)(t)9 we find that
σ(Γ(β) 0 < s < t) V 3Fx(α) = Fx((α, α + ί)) and so Fα

+(0 = 3Fx(ά) V (7(̂ α

+(s)
0 < s < t). On the other hand, by the definition of the processes O+(£);
t > 0) and (?ί(ί); ί > 0), we see that (i£(ί) - yί(ί); t > 0) is a bounded
variation process. Since (i£(ί) ί>0) and (ηiit) ;t>0) are continuous (F+(t)
ί>0)-martingales, we find that i£(ί) = #£(t) for any £ e [0, oo) and so
this completes the proof of Theorem 2.2. (Q.E.D.)

[2.2] Next we define the σ-fields F~(t) it > 0) by

(2.8) Fα(t) Γ

Noting that h = E, we see that there exists a standard Brownian motion
(β_(ί) 16 if) for which the followings hold:

(2.9) X(t) = V2S-1 Γ E(s - t)dB_(s) ,

(2.10) Fi(ί) = ^(β.ίβ!) - β_(s2) βlf s2 > ί) (ί e R) .

Using this Brownian motion (B_(t) ί e R) and N real L2-functions En

(0 < » < N — 1) in (2.4), we define an 2V-dimensional stationary Gaussian
process <W = (W{t) ί e Λ) = ((Γ0(ί), , Γw_i(ί))* t e Λ) by

(2.11) Γn(ί) = V2ί-χ Γ £7n(s - t)5_(β) (0 < n < N - 1, ί e

Similarly as in Theorem 2.1, we have
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THEOREM 2.3. ( i ) Γ̂ -iCO = X»-ι(.t) = (-2π)-1cNX(t) (teR).

( ii ) {Yn(t) 0 < n < N — 1} is linearly independent in Mx for any

teR.

(iίί) Mi(ί) = Mi(t) and FJ(t) - F;(ί) (teR).

(iv ) Mχ/+(t) is equal to the linear hull of {Yn(t) 0 < n < N — 1}

(t e R).

( v ) F*/+(ί) = F«'+(t) = σ(^(ί)) (ί e R).

( vi ) &(8) - &(t) = s/2π-\BSt) - BM)b + Γ A&(u)du (s < ί).

(vii) ^( s ) = e(t-s>A<&(t) + Λ/2π-' Γ e(n-s)A bdB_(u) (s < ί).

(viii) E(Z(β)|Fί(t)) = Σ ί - D ^ 'ίί - β)Γ,(ί) (β < ί).
71=0

(ix ) E(»(s)\Fi(t)) = e«~s)Ant) (s < f).

By virtue of Theorem 2.3, in the same way as Theorem 2.2, we

obtain

THEOREM 2.4. There exists a standard Brownian motion p~ — (v~(t);

t > 0) such that

( i ) pβ-(0) = 0,

(ii) F~(t) = dFx(a) V σ(p-(s) 0 < s < t) (t > 0),

(iii) vl is independent of the σ-field dFx(a),

(iv) Yno(a -1) - Γno(α) - *j2π-'bnov-a(t) + bnoe- Γ S(^(s) |Fx((s,a)))ds
J a-t

(t > 0).

DEFINITION 2.1. We call the standard Brownian motions vt (resp.

*£) (Fa(t); t > 0)- (resp. (Fα~(ί); ί > 0)-) innovation processes associated

with the stationary Gaussian process X.

[2.3] Finally in this subsection we shall give a relation between

the family of innovation processes vt (aeR). We have the unitary

transformation group (U(t) teR) acting on the space Mx defined by

(2.12) U(t)X(s) = X(t + s) (ί, s e R) .

Then we shall show

THEOREM 2.5. ϋ(t)vi = *><?+* / ^ αwy αei?

Proof. It is easy to see that U(t)Mx((a, &)) = Λ/X((α + ί, 6 + £)),

U(t)dMx(a) = 9Mx(α + t) and [/(^MJ/'ία) = MJ/^a + ί). We define an ΛΓ-

dimensional stationary Gaussian process &(t) = (U(t)X0(0), , Z7(£)-XΛΓ_I(0))*
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(jteR). Then it follows from Theorem 2.1 (ii) and (iv) that &i$) is
continuous in the mean, each component of &(t) belongs to the space
Mi;-(t) and {U(t)Xn(0) 0 < n < N - 1} is linearly independent in Mx

for any teR. Therefore we see from Theorem 5.1 in [7] that there
uniquely exists a constant N X 2V-matrix f for which Z(f) = T2£{$)
(teR). Since 3Γ(0) = #(0), we find that f is the unit matrix and so
Zif) = ar(f). By Theorem 2.2 (iv) this implies that E7(ί)i£(«) = i£+ί(s).
Similarly, we have Z7(*)̂ ~(s) = i£+ί(s). (Q.E.D.)

§ 3 . Integral representations of the predictors (I)

[3.1] In this subsection we shall obtain integral representations of
the predictors E(&(a + Γ) |Fα

+(Γ)) (α e R, T > 0). For any a e R we define
N x iV-matrices Pα(ί) (t > 0) by

Pa(t) = £7{(̂ Γ(α + ί) - £7(̂ r(α + ί)|Fα

+(ί)) (^(α + ί)

and then N X 1-vectors /α(ί, s) (0 < s < t < oo) by

(3.2) /α(ί,β) = e"-s)A.(Pa(s)e* + V2Ϊ"1*) .

At first we shall show

LEMMA 3.1. /β(ί, s) = (9/98)S(i£(β) ar(α + ί)) (0 < s < t < oo).

Proo/. We put St(s) = ^(α + β) - ^(^(α + s)|Fα

+(s)). It then fol-
lows from Theorems 2.1 (vi) and 2.2 (iv) that

(3.3) ι£(t) = e- Γ #(s)ds + B(α + t) - B(α) (ί > 0) .
Jo

Therefore we see from (2.2) and Theorem 2.1 (vii) that

ί)) = [*
Jo

= Γ e{t"
Jo

+ V^r'1 Γ+S eiα+t-'
Jα

= Γ e«-^(Pβ(0«*
Jo
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On the other hand, by Corollaries 2.1 and 2.2 in [6] and the results
in [7], we find that Pa(c) is continuous in c and so this implies Lemma
3.1. (Q.E.D.)

LEMMA 3.2. For any aeR and any Γe(0, oo),

- T)\Fx((a,a + Γ))) = E^{a + T)\dFx(a)) -

Proof. We put Y = &(a + T) - E($>(a + T) \ dFx{a)) - Γ fa(T, 8)th+(β).
Jo

It then follows from Theorem 2.2 (i), (iii) and Lemma 3.1 that
(d/ds)E(Y-vΐ(s)) = 0 and so E(Y vϊ(s)) = # ( F i£(0)) = 0 for any s e [0, T\.
Since Y is orthogonal to the space dMx(a), we see that Y is orthogonal
to the closed linear hull of {v+(s) 0 < s < T} U dMx(ά) and so Y is in-
dependent of the σ-field generated by K(s) 0 < s < T} U dMx(a). There-
fore, by virtue of Theorem 2.2 (ii), we find that E(Y\Fx((a,a + T))) = 0
and this implies Lemma 3.2. (Q.E.D.)

Next we shall derive a differential equation which Pa(t) satisfies.

LEMMA 3.3. For any aeR,Pa(t) is the unique solution of the fol-
lowing matrix Riccati equation:

d P ' ( t ) - (A - </2ά-ιb e) Pa(t) + Pa(jt)(A - V^-1*-*)* - Pa(t)e*-ePa(t)
dt

(t > 0) ,

Pβ(0) = ̂ (0) - Σa(0) ,

where Σa(0) = E{E(&(a)\dFx(a))-E(&(a)\dFx(a))*}.

Proof. Wev\itΣa(t) = E{E(g-(a + t)\Fϊ(t)) Ema + t)\F:(t))*}. Then
it follows from Theorems 2.1 (xi), 2.2 (iii) and Lemma 3.2 that

Σa(t) = e"Σa(fi)etΛ* + [ fa(t, s)f*(t, s)ds .
Jo

Noting that Pa(t) = K,(ff) - Σa(t), we see from Lemma 5.2 in [7] that

J?A - Pa(f)e* e Pa(f)
A^ β ( ί) -

at
- V&r-ιPa(t)e* b* - Vϊi-'b e Pait) - (2π)~1b-b*

= A-(KM - 2"α(ί)) + (^(0) - Σa(t))A*

-Pa(t) e* e Pa(t) - VS-'P.ίί)**-** - Vϊϋ-'b e
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= A PM + Pa{t)A* - Pa{t)e* e-Pa{t)

- ^2i-ψa(t)e*-b* - V2i-'b e Pa(.t)

= (A - V2π-1b e)Pa(t) + Pa(t)(A - V&r1*-*)* - Pa{t)e*-e-Pa{t) .
(Q.E.D.)

We define an N x (N — wo)-matrix / by

(3.4) / = \K-s£\y)mn)<S<.m<.N-l ' (AίrW/mπλioSm, n<,N-\
iιo<.n<.N~\

Then we shall show

LEMMA 3.4. ^α(0) = J {KM*J«***H-I = J (.KM»J«<*.«<*-i-7*.
O^τι<iV-l

In particular, Σa(0) is independent of a.

Proof. Since the dimension of the space dMx(a) is N — n0 ([1]), it
follows from Theorem 2.1 (i) (ii) (vi) that dMx(a) equals the linear hull
of {Xn(a) n0 < n < N — 1}. Therefore there uniquely exists an N X (N
- no)-matrix J(a) such that E{S£(a) \ 3Fx(a)) = J(a)(Xno(d) - - -X^a))*. This
implies that

J(β)

= #{3Γ(α).(Xno(α). . ^

and so we have Lemma 3.4. (Q.E.D.)

By the uniqueness of local solutions, we see from Lemmas 3.3 and
3.4 that

L E M M A 3.5. For any a,beR Pa(t) = Pb(t) (t > 0).

Consequently, combining above lemmas, we obtain

THEOREM 3.1. For any aeR and any Γe(0, oo),

T)\Fx((a,a + Γ)))

D|3Fτ(α)) + Γ e<Γ-
Jo

where J is the N x (N — nQ)-matrix given by (3.4) and P(t) is the unique
solution of the following matrix Rίccati equation:
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= (A - j2k-ιb e)P(t) + P(t)(A -
dt

( 3 t 5 ) -P(t)e*.e-P(t) (ί

P(0) = £„«» - / - ( ^ ( O ) m J n o ^ ,

[3.2] In this subsection we shall obtain integral representations of

the predictors E(W(a - T)\F*(T)) (aeR, T > 0). Similarly as in Lemmas

3.1 and 3.2, we see from Theorems 2.3 and 2.4 that

LEMMA 3.6. For any aeR and any Te (0, oo),

- T)\dFx(a)) + Γ
Jo

where Qa(t) = £7{(^(α - ί) - E(W(a - ί)|F"(ί)))} (β (̂α - ί) -

t)\Fa~(tW}

In the same way as Lemma 3.3, by Theorems 2.3, 2.4 and Lemma

3.6, we have

LEMMA 3.7. For any aeR, Qa(t) satisfies the following matrix

Rίccati equation

dQ

Ί

a(t) =(A- j2π-'b.e)Qa(t) + Qa(t)(A - V%ϋ-ιb e)*-Qa(t).e*.e Qa(f),
dt

QM = KM - na(0),

where J7β(0) = S{Smα)|3Fx(α))-£?mα)|3Fx(α))*}.

Now we shall show

L E M M A 3.8. For any aeR Qa(0) = P ( 0 ) .

Proof. Similarly as in Lemma 3.4, we see that

Πa(Q) = J-(KMmJno*m, »^-l^* ,

where J = (^(O)TOn)ô TO^Λr-i W 0 ) m λ " 0 k , ^ - i On the other hand, it

follows from (2.6) and (2.11) that KM = #*(0). This implies that

Qβ(0) = P(0). (Q.E.D.)

Therefore, we find from Lemmas 3.6, 3.7 and 3.8 that

THEOREM 3.2. For any aeR and any Te(0, oo),



INNOVATION PROCESSES 91

- T)\Fx((a -

- T)\dFx(β)) +
J

Γ
Jo

o

where J is the N x (N — no)-matrix given by (3.4) and P(t) is the unique

solution of the matrix Riccati equation (3.5).

[3.3] As an application of Theorems 3.1 and 3.2, we shall show

THEOREM 3.3. For any aeR, t e (0, oo) and T e (0, oo),

(i) E(X(a + T + t)\ Fx((a, a + T)))

T + t)\dFx(fl))

+ (0.. .Oί-c^-^π). Γ/(Γ + t,s)dv:(s)
Jo

(ii) E(X(a — Γ — *) I F x ((α - Γ, α)))

= E(X(a- T -t)\dFx(a))

+ (0. . (K-C^-^TΓ). Γ/(Γ + ί,s)cZv-(s) ,
Jo

where f(t,s) is the N x 1-vector function for a = 0 in (3.2).

Proof. By Theorems 2.1 (xi) and 3.1, we have

T + t)\Fx((fl,a + T)))

T)\Fx((a,a+ T)))

T)\dFx(a)) + Γf(Tfs)d^(s))
Jo

Γ + βigfrία)) + Γ/(Γ + ί,s)ώα

+(s) .
Jo

Therefore we obtain (i) noting Theorem 2.1 (i). By Theorem 2.3 (i) (xi)

and Theorem 3.2, (ii) is similarly proved. (Q.E.D.)

Immediately from Theorem 3.3, we have

THEOREM 3.4. For any aeR and t e (0, oo),

(i) X(a + f) = E(X(a + t) \ dFx(a))

+ (o.. .oc-c*)-^)- [tf(t9s)dv:(s),
Jo

(ii) X(a - t) = E(X(a - t) \ dFx(a))

+ (0 .(K-C*)-^). Γ
Jo
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We define two Gaussian processes Y± = (Y±(t) ί t > 0) by

(3.6) Y±(f) = X(±t) - tf(X(±t)|3Fχ(0)) .

From Theorem 3.4, we have the following representations

(3.7) Y±(ί) = (O -0(-cNyVπ) f
Jo

It is easy to see from Theorems 2.2 (ii) and 2.4 (ii) that σ(Γ±(s) 0 < s
< t) V 3Fχ(0) = (/(^(s) 0 < s < t) V SFjrίO). Moreover Y± and xtf are
independent of 3Fx(0). Therefore we obtain

(3.8) σ(Γ±(s) 0 < s < t) = σ(v?(έ) 0 < s < t) (t > 0) .

This implies that representations (3.7) are canonical ([3]).

§4. Integral representations of the predictors (II)

In the previous section we have obtained integral representations of
E(X(b + t) I Fx(ίfl9 &))) - E(X(b + t) \ dFx(a)) (a < 6, t > 0). The aim of this
section is to obtain integral representations of E(X(b + t) \ Fx((a, 6))) —
E(X(b + ί)|SFx(6)) (α < 6, t > 0).

For any a e R we define 2V x 1-vectors ga(t, s) (0 < s, t < oo) by

(4.1) ga(t,8) = J&{̂ (α + ί).(*(α - s) - ί?(β<(α - s)|Fβ-(β)))*} e* .

Then we shall prove

LEMMA 4.1. ga(t,s) = (a/as)£7fc(s)^(α + t)).

Proo/. We put #(s) = β̂ (α - s) - E(W(a - β)|F"(β)). It then fol-
lows from Theorems 2.3 (vi) and 2.4 (iv) that

(4.2) v~(t) = e Γ &(s)ds + BΛa) - B_(a - t) (t > 0) .
Jo

Therefore, by (2.10) and Theorem 2.3 (v) (vii), we have

ί))

-(s)(^(d) - V2i-' \a+t e(u-a)AbdB_(u))\

This implies Lemma 4.1. (Q.E.D.)



INNOVATION PROCESSES 93

Similarly as in Lemma 3.2, we can see from Theorem 2.4 and

Lemma 4.1 that

LEMMA 4.2. For any aeR, ίe(0, oo) and Te(0, oo),

E(&(a + t)\Fx((a - 2 » ) ) = EQ&(fl + ί)|3Fx(α)) + Γ ga(t, s)ώ"(s) .
Jo

Next we shall obtain an explicit form of ga(t, s). We define for any

t e [0, oo) an N x iV-matrix R(t) by

(4.3) R(t) =

L E M M A 4.3. F o r any aeR

ga(t, s) = #(ί)Φ*(s)e* (0 < s, t < oo) ,

where Φ(s) is the unique solution of the following linear differential

equation

dΦ{s)

(4.4) { ds
= 1*.

= (A - P(s)e*e - V2π-1b-e)Φ(s) (s > 0),

particular, ga(t, s) are independent of α.

Proof. We put Bβ(t, s) = E{W(a + t). (*(c - s) - £7(^(α - s) | Fβ-(β)))*}.

By Theorem 3.2,

- s) - Eiβtiβ - s)

Γ/*(s,oώα-ω)
Jo

= / - / / .

It is easy to see from Theorem 2.4 and Lemma 4.2 that / / = ga(t, c)f*(s, t)dc.
Jo

On the other hand, by Theorem 2.3 (iii) (ix), / = EψJ{a + t) (^(α) —

E(W{ά)\dFx(a))*}-esA\ Since KM = X^O) and SF^a) = σ(Yn(a);n0 < n

<N-1), it can be seen that E(&(a)\dFx(ά)) = /.(Γn o(α).. -Γ^^ία))*,

where J is the N x (N — ̂ 0)-matrix in (3.4). Therefore we find that

/ = E{&(t)(&(u) - EO&Qb) |3Fx(0))*}eM* - i?(ί)e^*. Consequently, we have

jβα(t, s) - R(t)e'A* - Γ Λβ(t, de* /*(s, 0ώ .
Jo

Since (3/3s)/*(s,0 = /*(s,0A* by (3.2), we obtain the following linear
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differential equation

-Λβ(t, έ) = Ra(Jt9 8)(A - P(s)e*e - J2π-ιb e)* (s > 0) ,
s

Thus, using the unique solution Φ(t) of equation (4.4), we find that
jβα(ί, s) — R(t)Φ*(s) and this completes the proof of Lemma 4.3. (Q.E.D.)

In the proof of Lemma 4.3, we have shown

(4.5) R(t) = K«(0)etA* - E(nt) (ΓJ0)• Γ^-i(0))) • J* ,

where / is the N x (N — tιo)-matrix in (3.4). Furthermore we define
for any teR an N x (IV — O-matrix J(ί) by

(4.6) J(f) = tfΓ#(ί)mΛ^m^-i * tffr(0)Λn)iU »^-i •

Immediately from Lemmas 4.2 and 4.3, we have

THEOREM 4.1. For any aeR, te(0,oo) and Γe(0, <χ>),

= J(ί) (Ynβ(α) Γ^.xία))* +
J

Since Ks(—t) = K,(t) (t > 0), it is easy to see from (4.3) and (4.5) that
#{«•(-1)(#(0) - £ΌT(0) 19^(0)))*} = β(ί) (t > 0). Therefore, similarly as
in Theorem 4.1, we can show from Theorems 2.1, 2.2, 3.1 and (3.3)
that

THEOREM 4.2. For any aeR, t e (0, oo) and T e (0, oo),

#(<r(α-t)|F j r((α,α + Γ)))

= J{t)(XnM) • -XN-iίfi))* + Γ R(W*(s)e*dvZ(s) .
Jo

For any t e [0, oo) we define a 1 X iV-vector r(t) by

(4.7) Kί) = S{X(t) (^(0) - £7(^(0) I dFx(0W} .

Since Z(ί) = (—2π)c^1XN_1(t) = (—2π)c^1YN_ι(t)9 it can be seen from
Theorems 4.1 and 4.2 that

THEOREM 4.3. For any aeR, te(O, oo) and Te (0, oo),

(i)
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= E{X(a + t)|3Fx(α)) + £ r(t)Φ*(s)e*dv;(s) ,

(ii) E(X(a-t)\Fx((a,a + T)))

= £7(Z(α - ί)|3Fx(α)) + Γ r(t)Φ*(β)e*ώί(8) .
Jo

More generally, we define for any Y e Mx two 1 x N-vectors r±(Y)

by

(4.8) r+(Y) =

and

(4.9) r_(Y) =

Note that r(t) = r+(X(-t)) = r_(Z(ί)) (ί e [0, oo)). Using the unitary

operator U(—ά) in (2.12), we can prove, by Theorem 4.3,

THEOREM 4.4. Let any aeR and Te (0, oo) be fixed.

( i) For any Y e Mx(a)

E(Y\Fx((a - Γ,α))) = E(Y\dFx(a)) +

(ii) For crn̂ / Y e Mx(a)

ΓE(Y\Fx((a9a + T))) = tf(Γ|3Fx(α)) + Γ r+(C/(-
Jo

§5. Integral representations of the predictors (III)

In this section we shall obtain integral representations of E(X{a

+ t)\Fx((~a, a))) - EiX{a + ί) |3Fx(0)) (a > 0, t > 0). We define for any

t e [0, oo) two N x ΛΓ-matrices S±(t) by

(5.1) s+(t) -

and

(5.2) SΛt) =

As an application of Theorem 4.1, we shall prove

THEOREM 5.1. For any a e (0, oo) and t e (0, oo),

t)|3Fx(0))
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R(t)Φ*(8)έ*dvά(8) .

Proof. It is easy to see from Theorem 4.1 that

t)\Fx((-a,a))) = E(9(a + ί) | Fχ((0, α)))

By Theorems 2.1 (iii) (iv) and 2.3 (iii) (iv), we can show that

Eiβίifl, + t)\Fϊ(β)) = S+(f)ar(β) .

Therefore, it follows from Theorem 3.1 that

+ ί) |3Fx(0))

where /(α, s) are iV X 1-vectors in (3.2). Thus we have proved Theorem

5.1. (Q.E.D.)

Similarly, we find from Theorems 3.2 and 4.2 that

THEOREM 5.2. For any a e (0, oo) and t e (0, oo),

-a - t)|SFx(O)) + Γ
Jo

R(t)Φ*(s)e*dvta(s) .

Remark 5.1. By Theorems 2.2 (ii) (iii) and 2.4 (ii) (iii) we note

that the decompositions in Theorems 5.1 and 5.2 are orthogonal.

For any t e [0, oo) we define two 1 x iV-vectors S±(t) by

(5.3) S+(t) = E(X(t). #*«») • K.(O)-1

and

(5.4) SΛt) =

Since X(£) = (—2π)Cχ1XN_1(t) = (—2π )c^1YiNr_i(ί), we can show from Theo-

rems 5.1 and 5.2 that

THEOREM 5.3. For any a e (0, oo) and t e (0, oo),



INNOVATION PROCESSES 97

(i) E{X(a + t)\Fx(i-a,a)))

= E(X(a + ί)|9Fx(0)) + Γ S+

(ίi) E(X(-a-t)\Fx(.(-a,a)))
{-a - t)\dFx(O))

+ Γ S.(ί)e(β-|W(P(β)β* +

+ Γ r(t)Φ*(s)e*d»ta(s) .
Ja

More generally, we define for any Y e Mx two 1 x Λ -̂vectors S±(Y)

by

(5.5) S+(Y) = ̂ (Γ

and

(5.6) S_(Y) = E(Y

Using the unitary operators U(±a) in (2.12), we can generalize Theo-
rem 5.3 as follows.

THEOREM 5.4. Let any a e (0, oo) be fixed.
(i) For any YeMx(a)

E(Y\Fx((-a,a)))

= E(Y\dFx(0)) + Γ S+(,U(-a)Y)eia-$)A(P(s)e*

+ Γ r.(U(-a)Y)Φ*(s)e*dι>-(s) .

(ii) For any Y e Mx(—a)

E(Y\Fx(.(-a,a)))

= E(Y\dFx(0)) + Γ SΛU(a)Y) eia-s>A(P(s)e*
Jo

+ Γr+(.U(a)Y) Φ*(s)e*dvU(s) .
Ja

Remark 5.2. We note that the decompositions in Theorems 5.3 and
5.4 are orthogonal.
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§ 6 . Prediction errors

In [6] we have obtained the following commutative diagram

(6.D tfxt t v
I I

UM' - ί ) = X(t) , K(k( -t)) = Λ/2ac~ιE{t- •) and Z7(Z(ί)) = e" .

Similarly we have the following commutative diagram

Mx -i^> ZΛ

(6 2) ί7,t \v
\ v

tf J ^ L2(i?) ,

We note that

(6.3) / = v/2τr""1(y/^)Λ =

Using IΛfunctions En in (2.4) we define N functions ψn in ZΔ (0 < n <

N-ΐ)by
(6.4) Ψn = <j2Γπ

It is easy to see from (6.3) that

(6.5) V(V2ϊ-ιEn(t- •)) = eu φn and ΫW^-'E^ -t)) = eie ^ .

Therefore it can be shown from (2.1), (2.6), (2.9) and (2.11) that

(6.6) U(Xn(ty) = eίu φn and U(Yn(f)) = e« φn .

Furthermore we are able to prove by Theorems 2.2 (iv) and 2.4 (iv)

that

(6.7) U(vi(t))(λ) = V2Ίr £ {b^φno(λ)UeM - PZMaM(e U%(s)){X)}ds

and

(6.8) C7(

where U&(s)=(UX0(s), • , UX^is))* and C7 (̂s) = (t/Γ0(s), • ,ϋYlr.ι(8))*.

We define functions D*(jb,λ) by
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r* CXΛ ίDM> $ = V2π{b^φno(λ

W-(t9 λ) = Λ/2π{b-^φnQ(—λ)(—iλ) eUa-t)λ — PZΔ«a-t,a))(fi- U&(a — t))(X)}.

By (6.7), (6.8) and (6.9), it follows from Theorems 3.1 and 3.2 that

i{t, X) + V2ί Γ <?• /(ί, β)Dj(β,
Jo

(6.10) _
D-(t9λ) + V2π\ e f(t,s)D;(s,X)ds

Jo

In [6] we have introduced the function P(λ, φ)(λ e C, φ e 0({O})) defined

by

(6.11) P(λ,φ) = (2π)-1]

We then define N functions Pn (0 < n < N - 1) by

(6.12) Pn(λ) = (n\)-ψ(λ,xn) .

Firstly we shall prove

LEMMA 6.1. ψn = Pn for any n e {n0, n0 + 1, , JV — 1}.

Proof. We define N real ZΛfunctions Fn (0 < n < N — 1) by

• 1 '

By Lemma 8.2 in [6] and (2.3), (6.8) in [7], we have

(6.14) Fn = (nO-^PC- ^ ^ P ί - ) - 1 ^ = ( W - χ ) Λ .

Since Pn (n0 < n < N — 1), P and Q are polynomials of at most order

N — n0 — 1, JV and w0, respectively, we see from (2.7) in [7] and Lemma

4.1 in [7] that

(6.15) En = (^.Q ί-1)Λ = {Pn hr (no<n<N-l).

This implies Lemma 6.1 by (6.3) and (6.5). (Q.E.D.)

Noting that PN_X = —(2π)~1cN9 we note by (6.11), (6.12) and Lemma

6.1 that
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(6.16) & -

Moreover, by Theorem 3.1 and (6.6),

(6.17) P * W * UaT(t + a))(λ) = eiaie e"J (φn9(X

Therefore, defining functions ψ(ί, Λ) by

(6.18) ψ(ί, JO = j2π{bzy»φnQ(X)iλ - feW-dp

we find from (6.10) that

(6.19) D+(t, X) + Λ/2Ϊ Γ e- f(t, s)Z)α

+(s, λ)ds =
Jo

By the uniqueness of solution of Volterra equation (6.19), we have

(6.20) Dϊ(t,X) = eia>Dϊ(t,λ) .

Similarly, by Theorem 3.2, (6.6) and (6.10),

(6.21) D-(t9 X) + «j2π Γ e- /( ί , s)D"(s, X)ds = e l β aψ(^ -^)
Jo

and

(6.22) Dϊ(t,λ) = eiaiDϊ(t,λ) .

In particular, we see from (6.19) and (6.21) that

(6.23) D+(t,X)=:Dϊ(tf-λ) .

Next we shall obtain explicit representations of functions f(t,s)

and g(t, s) in (3.2) and (4.1), respectively.

LEMMA 6.2. ( i) f(t,s) = (Dϊ(s, -),eu -φ)Δ9

(π) g(f9 s) = β(ί)Φ*(s)^* - φo-(s, ), e" ̂ ) J f

where φ = (po pnr-i)*.

Proo/. By (6.7), (6.8) and (6.9),

(6.24) U(v*(8)XX) - ± Γ±S Z)ί(±(* - α), i)ώ .
Ja

Therefore it follows from Lemma 3.1 and (6.6) that
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Similarly we find from Lemmas 4.1, 4.3 and (6.6) that

g(t,s) = R(t)Φ*(s)e* = J-Ete(8)&(t)) = (D,-(s, •), eu' φ)j .
OS

(Q.E.D.)

LEMMA 6.3. S±{t)f{a, s) = (I>0

+(s, •), e i ( β +" )j

Proo/. By (5.3), (5.4), Theorems 2.1 (ix) and 2.3 (ix),

(6.25) S±(t) = (O 0 (-cff)-ι2jτ)e" .

Therefore it follows from (3.2) and Lemma 6.2 that

S±(t)f(β, s) = (O 0 {-cNYι2π)f(.a + t, s)
= (0 -0 (-c^-^πXD^s, •), e«°+t) .y>), .

Noting that ^ _ t = P^-! = — {2π)~1cN, we have Lemma 6.3. (Q.E.D.)

LEMMA 6.4. r(t)Φ*(s)e* = {Do {8, •), eu )j.

Proof. By (4.3), (4.7) and Lemma 6.2,

K*)Φ*(β)β* = (O 0 (-cN)-ι2π)R(t)Φ*(s)e*

= (0 0 (-c^-ΏsXDo-ίβ, •), e« #),

= (D,-(β, ),eί£ ), (Q.E.D.)

Now we shall obtain explicit integral representations of prediction
errors.

THEOREM 6.1. For any aeR, ί e (0, oo) and T e (0, oo),

||Z(α + t) - E(X(a + t)\Fx((a - T,α)))||2

= ||Z(α - ί) - E{X{a - ί)|Fx((α,α + T)))||2

= f (D,+(β, •), e«')5ώ - Γ {Dβ-{s, ),e« )5Λ .
Jo Jo

Proof. Using Lemmas 6.4 and 6.2, we see from Theorems 4.3 and
3.4 that

\\X(a + t)~ E(X(a + t) IFx{{a - T, a))) ||2

= \)X{a + ί)||2 - \\E{X{a + t))Fx«a - T,o

= \\X(a + ί)||2 - \\E(X(a + t)\dFx(a))f -
J

ί) - £7(Z(α + ί)|9Fx(α))||2 -
Jo
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Γ 2 Γ
Jo Jo

The rest is similarly proved. (Q.E.D.)

THEOREM 6.2. For any a e (0, oo) and t e (0, oo),

\\X(±(a + t)) - E(X(±(a + t)\Fx((-a,a))))\\2

Proof. Using Lemmas 6.3, 6.4 and 6.2, we find from Theorems
5.3 and 3.4 that

\\X(±(a + ί)) - E(X(±(a

= ||X(±(α + ί))ll2 - \\E(X(±(a + t))\Fx((-a,a)))\\*

= \\X(±(β + ί))||2 - \\E(X(±(a + ί))|9f

- Γ(βf(8, ),e ί ( α + ί ' )2,ds - Γ(Z)β-(8,
Jo Jα

= | |Z(±(α + ί)) - ίJ(Z(±

D0

+(s, .),e i < α + ί ) )2

4ds - Γ(Z)0-(s,
J

= Γ+t φ}(β, •), β«β+» »ds - Γ (A"(β, •), e« )i<to (Q.E.D.)
J α , J a

§7. Integral representations of the predictors (IV)

In this section we shall give explicit integral representations of
prediction formulas in § 3, § 4 and § 5 using the section of the previous
section. By Theorem 3.3 and Lemma 6.2,

THEOREM 7.1. For any aeR, t e (0, oo) and T e (0, oo),

(i) E(X(a + Γ + ί) I Fx((α, a + T)))

= E(X(a + T + t)\dFx(β))

(ii) E(X(a - t - T) I Fx((α - Γ, α)))

= S(Z(α - T - t)\dFx(a)) + Γ (Z)0

+(s, ),
Jo

Similarly, we see from Theorem 3.4 and Lemma 6.2 that

THEOREM 7.2. For any aeR and t e (0, oo),

X(a ± t) = E(X(a ± t)\3Fx(a)) + f (Z)0

+(s, 0, β"")>ί(β) .
Jo
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By Theorem 4.3 and Lemma 6.4,

THEOREM 7.3. For any aeR, te(Q, oo) and T e (0, oo),

(i) E(X{a + t)\Fx{(a-T,a)))

= E(X(a + t)\dFx(a)) + Γ (Dϊ(s, ),<?«•)>« (s)
Jo

(ii) E(X(a - ί) I Fx((α, α + T)))

= tf(X(α - t)|3Fx(α)) + Γ (Z>o"(s, •), e" )>α

+(s).
Jo

From Theorem 5.3, Lemmas 6.3 and 6.4, it follows that

THEOREM 7.4. For any a e (0, oo) and t e (0, oo),

E(X(±(a + t))\Fx((-a,a)))

= E(.X(±(a + ί))|9Fx(0)) + £ (D0

+(s, O.

+ Γ(A-(β» ),e" )>ί«(β).
Ja

By (6.6), (6.20), (6.22) and (6.24), we have

(7.1) 4-^a + *K(S» 4 9
ds ds

Therefore, similarly as in Lemma 3.2, we obtain the following Theorem
7.5 as a supplement of Theorems 4.1 and 4.2.

THEOREM 7.5. For any aeR, t e (0, oo) and Te (0, oo),

(i)

t)\dFx(a)) + Γ
Jo

(ii)

Furthermore, as a supplement of Theorems 5.1 and 5.2, we shall prove

THEOREM 7.6. For any a e (0, oo) and t e (0, oo),

(i)

ί)|3Fχ(0)) + Γ (D0

+(s, •), e ί ( α + i )

Jo

£ (Z)0-(β, •), e"v)/M«),

(ii)
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-fl - t)\dFx(O))

(Z)0-(s, ),e" ί!>»i«(β).

Proo/. By Theorems 7.5 (i), 2.1 (ix), 3.1 and Lemma 6.2,

ί)|9Fx(α))

+ ί) \Fx((fi, a)) + P (£>,-(«, •), e i £ ?>)Aj(s)

Similarly, we have (ii) from Theorems 7.5 (ii), 2.3 (ix), 3.2 and Lemma
6.2. (Q.E.D.)

Remark 7.1. Theorem 7.3 (resp. Theorem 7.4) follows immediately
from Theorem 7.5 (resp. Theorem 7.6).

Remark 7.2. The decompositions in Theorems 7.4 and 7.6 are
orthogonal.
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