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NEWTON POLYGONS AND GEVREY INDICES FOR
LINEAR PARTIAL DIFFERENTIAL OPERATORS

MASATAKE MIYAKE anp YOSHIAKI HASHIMOTO

0. Introduction

This paper is a continuation of Miyake [7] by the first named author. }
shall study the unique solvability of an integro-differential equation in the ca
gory of formal or convergent power series with Gevrey estimate for the coel
cients, and our results give some analogue in partial differential equations
Ramis {10, 11] in ordinary differential equations.

In the study of analytic ordinary differential equations, the notion of irreg
larity was first introduced by Malgrange [3] as a difference of indices of
differential operator in the categories of formal power series and converge
power series. After that, Ramis extended his theory to the category of formal
convergent power series with Gevrey estimate for the coefficients. In these studi
Ramis revealed a significant meaning of a Newton polygon associated with
differential operator.

We define a Newton polygon of a partial differential operator following
idea of Yonemura [13] which is an extension of Ramis’ one. Let
(0.1) P=3 3 X @o@t’DiD: (jl+]al <+ )

oeN? jeN? aeN?
be a partial differential operator of finite order with holomorphic coefficients ir
neighbourhood of the origin, where t = (¢1,"-*,t;) EC* (P =21), x= (x1," " ",
€ C'(qg=0), D, = (0/0t,--,0/01), etc.

For (0,7, a) € N®* X N” X N% we define a left half line Q(o, j, @) in
plane R? by

(0.2) Qa,j, )=, ol =|jh eR;u<|jl+|al.

Now a Newton polygon N (P) of the operator P is defined by
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16 MASATAKE MIYAKE AND YOSHIAKI HASHIMOTO

(0.3) N(P) := Ch{Q(o, j, ) ; (0, j, @) with as.(x) # 0},

where Ch{:} denotes the convex hull of sets in {-}. By the definition, Newton
polygon N(P) looks like as follows.
(i) The case of polynomial coefficients in £.

v
f ; Ly (k=1/(s—1))
N (P)
v/

NN

(it) The case of non polynomial coefficients in .

v

// N,‘g//ﬁ/
% u
// Li k=1/(s=1)

Ramis made clear the meaning of sides and vertices of N(P) in the case of
ordinary differential operator (i.e., (¢, ¢) = (1,0)) from a view point of index

theorems of the mappings,
(0.4) P: G*— G°,
(0.5) P:G®— GY (s €R),

as follows. For the definitions of G and G, see § 1.2.

Fors € R, weput k=1/(s —1) € R U {}. We draw a line Ly with slope
k such that L contacts with N(P) at a vertex or on a side of N(P). Then the in-
dex x(P; G%) (resp. x(P; G®)) of the mapping (0.4) (resp. (0.5)) is given by
x(P; G5 = —min{v ; (u, v) € N(P) N Ly} (resp. x (P; G®) = — max {v;
(u, v) € N(P) N L;}) (see Ramis [10, 11] for the detailed descriptions).
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The aim of this paper is to give some analogue of these results. For a partial
differential operator, dimensions of kernel and cokernel, however, are infinite in
general. Therefore, we shall study the unique solvability of the Cauchy-Goursat
problem,

0.6) {Pu(t, x) = f(t,x),

u(t,z) —w(t,z) = 0{'x?) (€N, e N,

in the category G* or G*® (s € R U {% o0}). For this purpose, it is convenient to

convert the problem to the bijectivity of the mapping for an integro-differential
operator L := PD;' D;#,

(0.7) L:G°—G* or L:G¥—GY,

by replacing the unknown function u (¢, x) to U (¢, ) by u = D7 D;* U + w.
In Chapter 1 (§1—84), we shall study an integro-differential operator of the

form,
finite

(0.8) L=1—- 2 a5;a(@)t°DIDE (cEN,jEZ, a €LY,
g,

where I denotes the identity map. We call this operator of standard type, because
such an operator is derived from the Cauchy-Goursat problem of usual type (see,
for exampe, §1.6 and Wagschal [12]). Under an assumption that the origin is a
vertex or is in a side of the Newton polygon N(L), which will be defined in §1.4,
we shall study the bijectivity of the mapping (0.7) (Theorems A and B).

In Chapter 2 (§85—87), we shall study an integro-differential operator of the
form,
0.9 L=Py@)— 3 @t DiDE (GEN,jEB, ac ),

0.,

where P, (0;) is a multi-dimensional Euler type operator of order #. Such an
operator was called of Cauchy-Goursat-Fuchs type in Miyake [7], because such an
operator is derived from the characteristic Cauchy problem of Fuchs type or a
multi-dimensional singular operator of Fuchs type. Under an assumption that a
point (m, 0) is a vertex of the Newton polygon N (L), we shall study the bijectiv-
ity of the mapping (0.7) (Theorem C), and also we shall characterize such number
s € R that the mapping,

(0.10) L:G*™/G*— G*™/G?,

is bijective (Theorem D), which is known as Maillet’s type theorem in ordinary
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differential equations (see Malgrange [4], Gérard and Tahara [1] and references
cited there).

We note that in Yonemura [13] and Miyake [7] only the first positive slope
among the sides of N(L) was analyzed, and hence only the case s = 1 was stu-
died. We also note that the case 0 < s < 1 was essentially studied in Miyake [6].
Therefore, the most interesting part in this paper is in the treatment of the spaces
G® and G® for s < 0, and we shall see that this case is completely different from
the case s > 0 (see Theorem B and Miyake [8]).

For the simplicity of descriptions, we restrict ourselves to the operator with
polynomial coefficients in the variables #, but the results obtained in the case
s 2 1 hold under the assumption that the coefficients belong to G or G accord-
ing to the mapping (see Miyake [7] and Remark 3.2).

At the end of the introduction, we wish to mention that we can see another
analogy between the studies of ordinary and partial differential equations in the
problems of characterization of regular singular points for systems of ordinary
differential equations and that of Kowalevskian systems for partial differential
equations (compare Miyake [5] with Moser [9] and Kitagawa [2]).

Chapter 1. Operators of standard type

1. Statement of results

1.1. Integro-differential operators of standard type

Lett= (¢1,...,1p) EC*(Pp=1) andx = (11,...,79) € C? (¢ = 1). We shall
study the following integro-differential operator with holomorphic coefficients in a
neighbourhood of the origin:

finite
(1.1) L=1— 2 tju@)t’°DIDE (cEN, jEL, a €LY,
0.7,
where I denotes the identity map and N (resp. Z) denotes the set of non negative
integers (resp. integers).
For j = (1, *.J») € Z?, we define D} = Dfi+--D}? as follows:

tk
D,, := 0/0t; and D3} := j; (integration in the variable £, from O to ).

We define |j|:=ji+ o+ - 4+, €Z for j € Z? as usually. It is the same for
Df for a € Z°.
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1.2. Gevrey spaces G° and G
We denote by G* the set of formal power series of the form,

U, z) = 2 Ulx) %,,

leN?

where U,(x) are holomorphic in a common neighbourhood of x = 0 for all [ € N?.

DermviTIoN 1.1, Lets € R U {# oo} and U (¢, ) € G*™.
(i) U, x) € G* (s € R) if there are positive constants X and T such that

1s
(1.2) max | Ui(z) | < CUIU'T (€N
Hrll<Xx T
holds for some non negative constant C. Here, | x| := 2i-1 | ¢ |.

(i) U(t, x) € G® (s € R) if there is a positive constant X such that

(1.3) max | U@y | < oy LY

lzll <X T €N

holds for any T > 0 and some non negative constant C(7") depending on T.

(i) G™™:= N G%, G- := N G, G+ := U G¥.

seR seR seR

By the definition, G! is the set of holomorphic functions in a neighbourhood
of the origin and G® (s < 1) is the set of locally holomorphic functions in the
variables x and entire functions of exponential order 1/(1 — s) in the variable f.
The other function spaces are now easily understood.

1.3. Problem

We shall study the following mappings,
L)s L: G — G,
(L)(s) LZ G(S)—"G(S),

for s € R U {% oo},

The purpose of this chapter is to characterize the number s such that the
above mapping will be bijective. In conclusion, we shall see that such a number is
characterized from the slopes of sides of a Newton polygon N(L) of the operator L
defined below.
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1.4. Newton polygon N (L)

For (o, j, @) € N? X Z? X Z¢ we define a left half line Q(o, j, @) in a
plane R? by

Qo,j,)=1{lw,|o|l =) eRu<ljl+]al.

Then a Newton polygon N(L) of L is defined by
(1.4) N() := Ch{Q(o, J, a) ; (0, j, @) with asa(x) Z 0}.
Here Ch{‘} denotes the convex hull of sets in {*}. We note that @ (0, 0, 0) (which
corresponds to the identity map I) is included in this set.

1.5. Results

First of all, we assume the following fundamental assumption.
(A) The origin is a vertex or is in a side with non zero slope of N(L).

N(% e+ ko # 0
- u

T A

First, we study the case where the origin is a vertex of N(L).

Let k, € R U {4 o} (resp. k- € R U {— o0}) be the slope of the side of
N(L) with the origin as an end point which is lying in an upper (resp. a lower)
half plane.

We define two numbers s; €E R U {* o} (1 = %, s, < s_) by
(1.5) =1+

1

Here we make the following rule:
(1) If k- =0, then s_:=1lim; o1 + (1/k) = + oo.
(ii) If k4 = + oo, then s, = 1.



NEWTON POLYGONS, GEVREY INDICES 21

(iii) If k- = — oo, then s_ = 1.
(iv) If k. = 0, then sy '=limy 101 + (1/k) = — o0,
Now our first result is stated as follows.

THEOREM A, We assume the following additional condition,

(1.6) > | ane(0)] <1 (Spectral condition),

i7l=la1=0

where 0 = (0, +,0) € N°. Then we have:
() Ifsy <s <s_, then (L)s and (L) ave bijective.
(i1) (L)s, is bijective.
(ii1) (L) oy is bijective.
(iv) If s- = + 0, then (L)+e is bijective.

Remark 1.2. The assumption (1.6) can be weakened as follows.
(1.6) There are 7 € R4 and £ € R% (R, = (0, + %)) such that

S | ane(0) |T7E < 1.

lil=1ai=0

Indeed, if we transform the variables (¢, x) to (s, ) by t = (718, " *,TsSp) and x
= (&1, - *,&,), then the condition (1.6) is reduced to (1.6).

Next, we study the case where the origin is in a side of N(L). Let ko (# 0) be
the slope of this side and put

(1.7) 303=1+'l€R.
0
Then we can prove the following,

THEOREM B. (i) Let So > 0. Then under the condition,

(1.8) > | aue(0)] <1 (Spectral condition),

sol7i+ia=0

the mapping (L) s, is bijective.
(il) Let so = 0 and assume the following condition,

(1.9 k= 20 ev+alg  (0)]

lji+tal =0

+ 2@ gmlniriadl g (0)] <1 (Spectral condition),

71+ial<0
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where the swmmations are taken over (j, @) such that So|j| + |a| = 0. Then the
mapping (L) s is injective and the mapping, L : G — G, is surjective.

Remark 1.3. (i) The conditions (1.8) and (1.9) can be weakened as the same
manner as Remark 1.2.

(i) The condition (1.8) seems to be best in the general framework, but the
possibility of improvement of the condition (1.9) will be a problem leaving in the
future.

The following proposition is an immediate consequence of the definitions $:
and S, but it will play an important role in the proofs of the theorems.

ProrosiTioN 1.4. Let s; (1 = =, 0) be as above, and sy < s < S_ or S = S,
Then it holds that

(1.10) Sljl+(1—3)10|+|a|53(|j|-|0|)+|0|+lalp—§—5£0,

for any (0, 7, &) with dgaelx) F 0.

Ifse <s<s_, thend=01ifand onlyif (a+|jl,1cl —17)) = (0,0). If s =
s;(i=7%,0), thend =0 ifand only if (a+ 17|, 10| =17 is on a side of N(L)
with the slope ki. Therefore, if s = s4 (resp. s =15_), then 6 =0 only if | 0| =
171 Gesp. ol < 151).

1.6. A simple application and a remark

(A) Let P= P(t, x; D,, D;) be a partial differential operator given by (0.1)
and N(P) be its Newton polygon defined by (0.3). We study the surjectivity of
mappings,

(P)s P:G°— G,
(P)(s) P . G(s) — G(s)

fors€ R U {+ oo},
We draw a line L, with slope k:= 1/(s — 1) which contacts to N(P) as in
introduction. We define two vertices Vs = (g, vo) and Vg = (4, vy) of N(P) by

vo = minfv; (, v) € N(P) N L.},

(1.11) v = max{v; (u, v) €ENP) N L.

We put
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o‘c}s: {(0,7, @) € N* X N* X N¥; @0ye(0) # 0, (1] + |, = 1) = Vi,
Vip = (0,7, @) € N* X N X N*;a,,a(0) # 0, (7| + | al, = [jD = V).

Then Theorem A implies :
o
(i) If Vs # ¢ then the mapping (P); is surjective.

o
(i) If Vi5) # ¢ then the mapping (P) is surjective.

Indeed, go prove the statement (i) it is sufficient to show the existence of
(0, I, B) € Vs such that the Goursat problem,

Pu(t,z) =f(t, x) € G, u(t,x)= 0z

is uniquely solvable in G°. Theorem A shows that it is sufficient if we can take
(I, B) such that

(1.12) | @015(0) | > ; | @0ja(0) | T/71E0F
(0.5,0)€Vs\(0,1,8)

holds for some (7, &) € R4 X RY. Now the existence of such (4, B is_easily
proved as follows: if #1{j; (o0, 7, a) € Vi} = 2, then we take (o0, [, B) € V; such
that { is a vertex of Ch{j € N?; (o, 7, a) € Vsh, where #{-} denotes the cardin-
al number of {-}. If #{j; (0,7, @) € V} = 1, then we take (o, /, B) € Vi such
that B is a vertex of Chia € N*; (o, 7, ) € V).

It is the same for the statement (ii).

In a special case of an operator P with constant coefficients, the mappings
(P)s and (P) are surjective for all s € RU {%£ oo},

(B) We consider the following Goursat problem,

Pu(t, x) := {aD!Ds — D}~ DE+*a — D+ D=}y = f (¢, 1),

(1L.13) {u(t, x) — w(t,x) = 0(t'z?),

where t, 1 €C,1 <<, —B—j<a<B—jand ¢ € C\{0}. In this oper-
ator, — B/1 < so =1+ (a/j) < B/j. Theorem B implies:

(i) Let @ > —j. Then so > 0 and the problem (1.13) is uniquely solvable in
G% if | @| > 2. The condition | @| > 2 is the well known spectral condition in the
case @ = 0 (ie. so = 1).

(i) If @ < —j, then sy £ 0. Therefore, the problem (1.13) is solvable in G*
for any f, w € G0 if | a| > exp(soa) + exp(— ).

In Miyake [8], we shall study this operator and discuss more precisely the
spectral condition on @, where we shall find that the circumstances are completely
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different between the cases s, > 0 and s < 0.

2. Gevrey spaces G*(T', X; k) (s> 0) and G;(T, X; k) (s <0)

We denote by ﬁ([lxll < X) (X > 0) the set of holomorphic functions in a do-
main || 2] := 2%, |2, | < X and by @(| 2| £ X) the set of holomorphic functions
in || zll < X and continuous on ||z || < X.

DerFiNiTION 2.1, Let U (¢, x) be a formal power series written by
tx?f
(2.1) U(t’x):ZU’BlT,ET' (UsgeC, €N, BENY).
T 18!

Then we define Banach spaces as follows.
(1) Lets, T,X>0and k € N. Then U(t, x) € G(T, X; k) if

—_— T x 181
(2.2) 1 Ul = sup | Us | o T g+ 07 <

(ii)) Lets<0, T,X>0,k€ENandn=1 Then U(t, x) € G3s(T, X; k)
if

I+ + ki!
@) 1 Ulltnxa = sup| Uy | xS L0 Bl

Herey!:=I'(y+ 1) fory = 0.

From the above definition, it is easily proved that:

(i) Ifs>0,then for any Kk €N, 0 <X’ < X and 0 < T” < T it holds that
(2.4) G(T,X):=G(T,X;0) CG(T, X; k) CG(T", X").

(i) If s<0, then for any k €EN,0< X" < X and 0 < T’ < T it holds
that

(2.5) Gi(T, X)=Gi(T, X;0) =G(T, X; k) < G(T", X).

Indeed, it is sufficient to check the following inequalities,

( 7 ) {n|l|+(n-l—l)l,B]+k}'{(n—s)|l[+n|§1}! <<n+l>"
n—s {(m=—s)11+n]Bl+ BRI+ ®+1D[BD! — n :

For U(t, x) = 2 Upt'z®/l1B!, we set
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(2.6) U@) = = U,B”g—f (N,

BeN?

Then we have the following,

Lemva 2.2, () Let U(t,z) € G(T,X) (s> 0). Then Ui(z) € 0(|z]| < X)
(1€ N?) and for any Y with 0 < Y < X, there is a positive constant R depending
only on s and Y/X (< 1) such that

TS
2.7 U < C——"F—
27 max U@ | = C i

holds for some non negative C.

(ii) Let U(t, x) € Gi(T, X) (s<0). Then Ui(x) € O(llz] < X/e (n+ 1))
(1€ NP, and for any Y with 0 < Y < X/e(n + 1) there is a positive constant R de-
pending only on n and S such that the inequality (2.7) holds.

Proof. (i) Let s > 0. Then we have immediately,

U (s{il+18D! 6
0 < LLs GLLELBDL (2)

_lul (sl1h! = .
=i @ =gy (FliEatet.
Here | Ul = | Ullx and U (x) € V (z) means that U (z) is majorized by V ().
This, together with the Stirling formula, implies (2.7).
(i) Lets<O0and U(, x) € Gi(T, X). Then

Uiy < LUby s sy tnl L+ e+ D [BPL] LI | B! (1)5_

T T Am—s) 1 +nlpl! [BIl B! \X

By employing the Stirling formula, we have

|+ @w+D|BP! I
{m=s)TIT+nlBN! 1B

Qx| 1)=52 (n+ 1\rH+18D 1\ (nlll+ m+ 1B\
’<“C(2ﬂ—|‘3|)1/2< n ) (n—s> ( | 8] ) ’

for some positive constant C. Since

(1+1Y<e ana (2HE e BN < v pysien,
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we get

B « U (Eem ) s (0 gy

— et(n — s)"\I" | ]! 1
_cllUll( T ) ‘|,|3/21—e(n+1)|x|/x’

for some non negative constant C’. This shows Uj(x) € O(|lx| < X/e(n + 1))
and hence the inequality (2.7) follows immediately. ]

Now we shall prove the following,

LEmMA 2.3. Let s € R. Then it holds that:

(2.8) G'= U G(T,X),G®=U N GT,X) whens>O0.

T,X>0 X>0 T>0

(2.9) G-= U GU(T,X),G®=U N G(T,X) whens=<0.

T.X>0 X>0 T>0
Proof. Lemma 2.2, (2.4) and (2.5) imply
G'D U GHT,X), G®>D U N GT, X) (s>0),

T.X>0 X>0T>0

and the same relations for G3(T, X) (s < 0).
In order to prove the converse, let Uj(x) € O(llz| < X)( € N?) and

assume

(2.10) max | Ui(z) | < C L]

2l <X T U &N,

for a positive constant T and a non negative constant C. Let U;(x) = 2 U,px?®/B).
Then by employing Cauchy’s integral formula on a polycircle IT{-; {| x,«l = £X)
(£, >0,&+---+ & =1), we have

[1]!* B!
TtthlBl SB

| Usl < C (8% 1= &ft---£09.

Since &# takes its maximum on the above mentioned domain at a point &=

B/181,---,8,/1 BI), we have

L] |B*'B!
| Usl<C ThixBs o gs
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By the Stirling formula, we have |8|¥'8!/B% < C'Q2m| BN V2| B! for some
positive constant C’. Hence we have

. " - gl
(2.11) | Ul < Crgle7 ';‘ﬁ)l}%l
for some non negative constant C”.
(A) Consider the case s = 1. From (2.11) and the Stirling formula, we get

+ !
| Usl < Cl 112 B8 |-z /(‘SI;‘!U\)/(JW?LDM’

for some non negative constant C, and hence U(t,x) = 2 U(x)t /1 €
G (T, X)) forany 0 < T"< Tand 0 < X' < X,
(B) Consider the case 0 < s < 1. In this case we have

s _ I+ !
| Ul < Cli72] e (S(L}),sl)fgb
for some non negative constant C. Let E =exp( —1/¢). Then U(t, x) €
G(T', X)) for any O0< T'<ET and 0< X <X since E = min {s%
0<s<1}.
(C) Consider the case s < 0. By employing the Stirling formula, we have

o= 1+l gD
Rt {nﬁzli(ntrf;}lgll}z

- CLBJUZ 1) (n— S)~sm(,??,,:E)"”“HB[) <|”[_|;]|Bl>—s<l

1] n
<c Hf"lz {(n = )7 e {(n + 1) e}

Now in view of (2.11), we have

LBl 1 ml+ @+ DB
[ Usl = C L2 (= s)5e T ((n+ e x¥e {m—s)[I]+nl Bl

Hence for any 77 and X' and 0 < TV < (n — s)*¢’T and 0 < X' < (n + 1)e* X,
we have U, x) € G(T’, X'). ]

The reader may feel to be curious for the definition of Go(T, X ; k) (s < 0),
but its validity will be found by the following example.
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ExaMmpLE 2.4, Let L =1 — atD;!, where t, x € C and a € C. In this oper-
ator, k, = — 1 and hence s, = 0. Therefore, the mapping, L: G°— G, is bijec-
tive by Theorem A. This is proved as follows. We consider the equation,
LU, z) =F(t,x) in GXT,X). Let U(t, x)= 2 Upt'zf/lB! and
tDF' U (¢, x) = 2 Vigt'a? /1!B!. Then we have Vig = IU,_14-1. Hence the oper-
ator norm of tD;! in the space G)(T', X) is estimated by

A+28-3)! (+8)! _
T+p—2! (+2p)7~ X

| D] < TX sup !

LB=1

By this estimate, we can employ the principle of contraction map in GY(T, X)
if|a|TX < 1.
On the other hand, suppose we employ the following norm,

Ul :=inf{C;| Us| < CB!/T'X?).

This norm seems to be natural than that of GY(T', X) according to the definition
of G°(see (1.2)), but we can not estimate the operator norm of tD; ! since

I8
Vil Ty~ < IXN Ul f— oo s

|~

3. Lemmas
Let a(x) = Zazx?/Bl € 0(l x| < pX) (o > 0) and put

(3.1) lalx:= max |a(x)|.
el <ox

Then from the proof of (2.11), we have

(3.2) las] < C(g) |l LELELO/2DY
(pX)'B'

for some positive constant C(g) depending only on the dimension ¢ of x. Here
[¢/2] denotes the integral part of ¢/2.
Now we prove the following,

LemMa 3.1. Let a(x) be as above.
(i) Let U(t,x) € G5(T,X; k) (s >0). Then foramy o > 1, a(x)U (¢, x) €
G(T, X; k) and
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(3.3) Hdwéamaf%%ﬁmhmdUw

() Let U(t,x) € Gi(T, X; k) (s<0) and k = n — 1. Then for any p >
e/ n+ 1), alx)U, xz) € Gi(T, X; k) and

[q/2]!
<
(3.4) laUll < C(q) 0= o 1 Dy laloxl U

Hence, for any holomorphic function a(x) in a neighbourhood of x = 0 and
Ut,e) € G(T, X; k) or Go(T, X; k) there is a positive constant Xo(< X) such
that a(x)U(t, x) € G(T, Y; k) or G3(T,Y; k) forany 0 < Y < X, and

(3.5) laUl < {la@ |+ 0@ |Ul,
where O(Y) 2 0 and O(Y)/Y is bounded as Y | 0.
Proof. We put a(x) U(t, x) = 22 Vigt'2?/1!B!. Then

B Z U 3 !
V a Be7 .
l 0<r<g T 7J1( ;)‘

(i) The case s > 0. We have

L]

[ Vis] < C(@ lallox T x 18]

> Arl+ g2t Bl =yl +sli + k! B!
0<7<8 o' r@e-n

Since Ty B =!I =14 Bl — ! and (|8l —i+s|I|+ K)!IA]
/BI=D!< (Bl + sl + k! we have

laUll < C@ llall U] £ EFHE2D2 o

_ g
C(q) ” a ”pX ” U” (1 _ 1/0) lgr21+1°

(i) The case s < 0. We have

Vil < C@ lal b
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§(2+[q/2])‘ i+ @+D(Bl—D+K! 8]

o =) [I[+n(pl=D + BT IR — DT
We consider the following inequality.

{n|l|+(n+1)(|ﬁl—i)+k}! |Bl' {(n—s)|l|+n[ l+k'
{m—s)l1l+n(Bl—0) +&! (Bl —0)! ]I+ ®+ 1B+ k!

f[ 1Bl —j+1

m m+ (B =7+ 1D +ulll+k

% ﬁ ﬁ n(],B]—j+1)+(n—s)|l|+k—p+1
j=1p=1 (”+1)(lﬁl_j+1)+n|l|+k_17

i (Bl D F =8|l +Ek—p+1
< (1) ,Hl,,nl mF DB =+ D +alll+k—p -

Since 1 <j<i<|B,1<p<mk=n—1ands <0, we have

n(Bl—j+ D+ m—9) Il +k—p+1
m+D(JBT =7+ +ulll+k—»

n(Bl—j+D+m—9sll+Ek—p+1
n(Bl—j+1) +nlll+k—p+1

<

n(Bl—j+D+m—9s)|Il _n—s
w(Bl =i+ +alll = n -

IA

This implies

|l +@w+D(Bl = +K! |8 {(m—s) 1] +n|B]+ K}
{n—=s)11T+n(Bl =0 & (Bl =D I+ +1D) B8]+ k!

< (n+ 1)~ (ﬂ%i) <A+ e,

Hence we have

LUl (|l + &+ DB+ k!
Vsl < C(g) | alox R CEDNIET IV IE )

&l (i+[q/2])!( e )

X & 0 n+ Dp

and this implies the desired inequality (3.4). O
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Remark 3.2. When s 21, if a(t, x) € G*(pT, pX)(p > 1) and U(t, x)
€ GN(T, X; k), thena(t, x) U, x) € G(T, X; k) and

2
(36 laU e < (527) Talon | Ul

(see Miyake [7, Lemma 2.4]). By using this inequality and (3.5), the results in
Theorems A and B hold by assuming the coefficients belong to G°* or G in the
case s = 1.

Next, we shall estimate the operator norm of an integro-differential operator
t’DID(c EN?,j €2, a €ZY) acting on G(T, X; k) (s>0) or Gi(T,
X; k) (s <0).

LemMa 3.3. (i) Lets € Rand (0,7, a) € N? X 22 X 77 satisfy

3.7 slil+ A =9lal+lal=s(jl—=1o)+lol+]lal=—d6<0.

Then the mapping, 1 D} D& : GS(T, X; k) — G5(T, X; k) (s > 0) or t° D{ DZ :
Gi(T, X; k)— Gi(T, X; k) (s <0), is bounded and its operator norm is estimated
by

(3.8) lt°DiD2| < Clo, j, a, s, m)ToI=I X -lalf=0,
Heve C(0, j, at, s, n) is a positive constant depending only on 0, J, «, S and n.
(i) Let (o, j, @) satisfy (3.7) with 6 = 0. Then the opevator norm of D! DE is

estimated as follows:
(A) Ifs >0, then

(3.9s IIDiDg| < T-VX-1e,
(B) Ifs <0, then

a + E(n))elllﬂcx!T—l;IX—tal if |]| + l a,[ > 0,

(3.9)s “ Dt D " S {(1 + E(n))es<lil+|al>T—IJIX—lal if ']I + , a, <0,

where 0 < e(n) = 0 as n— + 00,
Proof. Let U(t,x) = 2 Upt'z?/1'B! and DI DU (¢, x) = 2 Viet'x? /115!,
Then

A

‘/U;:(T;;E)TUI+J—0,E+CV (l—a',l-{—]—()'ENp,‘B'{—Q‘ENq)
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(i) First, we consider the case s > 0. In this case we have

Tl x 8l
Vel GTiT+ BT+ M1
LUl b AsQul+lil = loh 4Bl + el + &
= Thl-lelxlal (I — g)! I +181+ B!
Lul L] (5|ll+|/3|+ — o] — !
= ruseiylel (I = ToD! GHT+TRT+ k! :

In the case s 2 1, this implies immediately
(3.10) |t Di Dz | < CTlel-lix-lalf=3

for some positive constant C. In the case 0 < s < 1, there is a positive constant C
such that

(3.11) I+ DI Dg || < Cs™leITloilix ~lalf=o,

Next, we consider the case s < 0. In this case we have

l V“9 {Tltlxlﬁl
Lul N QU+ ]jl=]o)+ &+ D(Bl+]|a]) + k!
= pu-eixia (=)t {m—s)(I[+]jl=To) +n(Bl+Tal) + k}!
<_clul
TS/!—!U!XIaI

i+ m+ DB+ n(jl=loh)+m+1

&
—+
o
SR
=

{m=9MT+nlBl+n(jl-Toh+m+Dlal+]ol +
By the Stirling formula we have
||+ w+D |8l +nljl—|loD+ ®+Dlal+]|c]+ k!
{(n—s)|l|+nl5|+n([j|—l0|)+(n+1)lal+|0|+6+k}'
<Ck-a{n|l|+(n+1)|l3|+n(|ﬂ_|0|)+(n+1)[ al + o]+ k!
- {n =9l +nlBl+tau(jl—To) +@+Dal+To]+ k!

sl + @+ |8+ kN

= Clo g, a s Mk G — ST+ nl 1+ BT

and hence we obtain (3.8) for s < 0.
(it) The inequality (3.9)s (s > 0) is obvious from the above proof. To prove
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(3.9)s (s £0), we first consider the case #|j|+ w+ 1| al=n(j|+]al
+|al =0.

U+ D+ w+D(Bl+]aD) + B! {m—9|I]+n|B8]+ k!
(=501 +T17D) +ndBl+Ta) + B! W[IT+ =+ DB + i}

rilrGEviel | l_l DB +Eti_ <n + 1)n<m+|a|>+aaa
1=1 m—9il+nlpl+k+1i n

<{em+|a|(1+1/n)ia' it |jl+lal>0,
1+ 1/m'= it |jl+lal=0.

Next, in the case #|j| + (n + 1) a] < 0 we have

(U + D+ +D(Bl+]a) + B! {n—9]I]+xn|B|+E!
{(m—s)(I+17D) +ndBl +lal) + & &I+ &+ DB+ &}
g = ) (1 D e Bl +|a]) k4
i=1 n(IT+15) + n+1(lﬁl+|a|)+k+z
n — s\-ntil+lah-lal
< (")
- {es(lfl+|a|)(1 — s/n)—lal if I” + ' a,[ <0,
a1 - s/n)"« it |jl+lal=0.
These imply the inequality (3.9)s (s < 0). O

4. Proofs of Theorems A and B

Proof of Theorem A. 1In the case s < 0 we fix # =1, and we write G{(T,
X; k) by G°(T, X; k). Let

finite
A= 2 aga(x)t’ DI D2

0,5,a

Then Theorem A is obtained by showing that A defines a contraction map in
G*(T, X; k) by a suitable choice of T, X and k.
By Proposition 1.4, we know that the condition s, < s < s_ is equivalent to

@1 sljl+a-slol+lal=sjl—=loh) +lol+]al=—0d<0,

for (0, j, @) € N? X Z? X Z% such that @, (x) Z 0. We also notice the following
facts.
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() Ifsy<s<s_ thend=0onlyiflj| =0l
(i) If s = s, then d = O only if || =17
(iii) If s = s_, then 6 = Q only if | | <|J].
First, we estimate the operator norm of @gje(x)t° D{ DZ acting on G*(T,
X: k) in the case 6 = 0.
(A) Thecase|o|l=]jl=|al=0.

(42) " aoja(x) Dt] Dza |(T§,)X:k g | aoja(o) l + O(X)
(B) Thecase|o|=|jl>0and|j|l+]al=0."
(4.3) | oo (@)t Di D¢ |7y < AgjasX ™' =0 as X | 0.

Here and in what follows Agses denote various positive constants independent of

T, X and k.
(C) Thecases=s, €Rand|o|>]jl

(4.4) | @oia(x)t” Di DE |7 < Avjas TV X"'*'—>0 as T 10

for any fixed X.
(D) Thecase s =s- € Rand | o] <|J].

(45) |l aoja(x)t° DI DE |4 < Agyas T X% —0 as T 1 + o

for any fixed X.
Next, in the case 0 > 0 we have

(4.6) | @sa(@)t? DI DE Ny, < Apjas T VX147 — 0 as k— + o

for any fixed X and T.

Now by using the assumption (1.6), 22|, =jai=0 | @oe(0) | < 1, we can prove (i),
(i1) and (iii) in Theorem A, except the cases sy = — ©0 in (ii) and s = + ©° in
(iii).

Consider the case s = — o in (ii). Since the Newton polygon N(L) lies in
the lower half plane, we can take § such that 0 < 0 in (4.1) for any s < § except
the cases (| a| — |7, 17| +1al) = (0,0). Then A becomes a contraction map in
G*(T, X; k) for any fixed T > 0 by taking small X depending on s and next
taking large k depending on s, X and 7. This implies the bijectivity of the map-
ping (L) .

In the case s- = + o in (iii), the proof of the bijectivity of the
mapping (L) +« is essentially the same as the above, so we omit it.

(iv) The proof is somewhat different from the above. Since | ¢| = |7] in this

case, we set
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A= ( Z + Z + Z )a(fjoz(-r)le; Dg

o= =lai=0 gl=1ji=0 g >
fa i <0

=A,+ A, + As.
put

Let Ult,z) = 2 Ulx)t' /1! and F (¢, x) = 2. Fi(x)t'/1!. Then the equation,
LU(t, x) = F(t, x), implies the following relations.

!
Ul(l') - Z an]a(-r) Dg U;H(l’) - Z /(j;lf"&jiy am‘a(-r)Dﬁ Ul+J~a('r>
Jl=ral=0 loi=1j120 )
lal<0

= F () + RY(x, D2 Uyx) ;| 1| <1}, finite number of ).

Let UM (x) = (U, (x); | {| = N) be a column vector with length d(N) 1=
P+FN—-—DV(p—DINI(=#{{N;|Il| =N}). Then the above relations

imply a sequence of systems of integro-differential equations of the form,

4.7 {(I—d™N(x, D2 al < 0}UN (x)
=FN(x) + RV (x, DX Ui(x);|l| < N) (N € N).

Let G(X; k) (X >0, ke N) be a Banach space of holomorphic functions

with norm

o - X# o - z°
(48) N Ul = sup [ Us| (5T 47 <+ for U@) = X Us gy

Then D¢ (| | < 0) defines a bounded operator in G (X; k) with norm estimated
by

[ Do < (%)—!a;

Let 4™ (X: k) = Y G(X; k) be a Banach space with norm

(4.9) UMY |y = max | Uix) e, UCx) = 1(Ui(x)) € 9V (X; k).

ili=
The following lemma is a special case of Lemma 4.4 in Miyake [7].
Lexnvia 4.1, Let the condition (1.6) be satisfied. Then there is a positive constant

Xo such that A4V (x, D& | o] < 0) becomes a contraction map in 9V (X k) for any
X £ Xy and anv N € N by taking large k depending only on X, and N.
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The bijectivity of the mapping (L) +» is now easily proved.
This completes the proof of Theorem A. O
Proof of Theorem B. (i) Let so > 0. By Proposition 1.4,
4.10)  sljl+ A —=solol+lal=s(jl—1oh +lol+lal==0<0
for any (0, j, ) with dga(x) # 0. We set

(4.11) A=( 2 + 2 + 2) as.(x)t’° DI D¢

Solsl+lal=0 6=0,101>0 >0
=0

pft A1 + Az + As.

We shall estimate the operator norm of the mapping,
(4.12) A:GSo(X%, X) — G (X, X).

Since Xso()ai—lj?)X-—lm o XraHﬁ’ we have:

(4.13) A4l < ‘ZH Olao,»a(O) [+ 0X),
solil+lal=
(4.14) A, =0 as X1 0@G=203).

Hence the assumption (1.8) implies the existence of a positive constant X, such
that A becomes a contraction map in G%(X%, X) for any 0 < X < X,. This
proves the bijectivity of (L)s. Indeed, it is sufficient to notice that G*(T, X)
C G%(X%, X) for any T with 0 < T < X% and conversely G%(T, X) D
G%(Y*%, Y) if we choose sufficiently small Y.

If we employ the space G* (X%, X; k) instead of G*(X*, X), we can see
that the existence domain of solutions in (T, X)-plane depends only on operators
oja(x)t’ D! D such that § = 0 by letting k— + oo as in the proof of Theorem
A.

(i) Let $o < 0. From (3.9)s (s £ 0) and the assumption (1.9), the operator
norm of the mapping

(4.15) A:GPX*, X;n—1)—GPX®, X;n—1)
is estimated by
(4.16) Al <k +em) + en, X),

where £k <1,e(n) -0 as #— oo, and e(n, X) -0 as X | 0 for any fixed .
Hence the mapping (4.15) becomes a contraction map by a suitable choice of # and
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X. This implies the injectivity of the mapping (L),. The above proof shows that
an equation,

L(t, z; D, D) U(t, x) = F(t, x) € G,

has a unique solution U (¢, x) € Gpeo(X%, X; n — 1) for sufficiently small X and
large n. This proves the surjectivity of the mapping L: G%— G but not the
surjectivity of (L),, because so < 0. ]

Chapter 2. Operators with Euler type principal part

5. Statement of results

The reasonings in the preceding sections go well for more general operators
of the following form which we called of Cauchy-Goursat-Fuchs type in Miyake
[7):

finite
(5.1) Ly = P,(6;) + 2 ba(x)t’D! DE,

ag,7,a
where m = 1, 6, = (4D, - ,t,D,) and

(5.2) P.(6) = > a,0f (a,€C,j& N?),

0= 71 <m
where 8/ = (D) - - (8,Dy,)” for j € N2
Let N(L,,) be the Newton polygon of L,. We assume the following condition.

(B.1) A point (m, 0) is a vertex of N(L,).

Let ky (resp. k-) be the slope of a side of N(L,,) with an end point (m, 0)
which is in the upper (resp. lower) half plane. Let si be the numbers defined by
(1.5).

We shall study the bijectivity of the mappings,

(Lm)c Lm G5 — Gs.
(Lm) (s) Lm . G‘S) — G(s)’
for s, < s < s,

We assume the following additional condition.

B.2) If|lol+mol—1j]—1) <0 then|al+ m+s)(jl—]ch) <0
for (o, 7, @) with bga(x) # 0.
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Now we can prove the following theorem corresponding to Theorem A.

THEOREM C. Let (B.1) and (B.2) be satisfied, and further assume that theve is a

positive constant € such that
(5.3) | P,(1) | > eyl 1] + 1)™ (Poincaré condition),

holds for any I € N?, and

(5.4) 2 | boya(0) | 77796% < g (Spectral condition),

lol=ijl<m
la|=0

holds for some T € R2 and £ € RL. Then we have:

(i) Let s+ < s < s_. Then (Lw)ws is bijective. Furthermore if m + s > 0, then
(Lm)s is bijective.

(it)  (Lm) o) 1s bijective.

(iti) Let s = s+ and m + s4 > 0. If one of the following conditions is satisfied,
then (Lm)s, is bijective:

(5.5) boja(0) =0 for|jl=—1and s, ljl +]al=m

(5.6)  boja(0) = 0 for (0, 7, @) such that| o] <17,
ol +m(o|l—=1jl—1) <O0and|a|+ m+s)(jl—]a])=0.

We remark that we may assume 7= (1,---,1) and €= (1, --,1) in (5.4)
without loss of generality (see Remark 1.2).

Remark 5.1. (i) From the proof, we see that if boe(z) =0 when | o]+
m (o] —17] —1) <0, then the same results as in Theorem A hold.

(ii) In the above theorem, some conditions can be weakend. For example, in (i)
if bgie(0) = 0 as in (5.6), then the condition m + s > 0 can be replaced by
another one (see also an example in §7). But we do not discuss such a problem in

this paper.

Combining the arguments in Miyake [7] with the proof of Theorem C, we can
prove the following,

THEOREM D. Let k- = 0 and assume that there is a positive constant & such
that

(5.7) inf | 2 ar'|>e Ry:=[0, ©)),

reR2izl=1 lii=m



NEWTON POLYGONS, GEVREY INDICES 39

(5.8) 2 [ bya(0) [ 07778 < &,

lol=171=m
jaf=0

for some T € RE and € € RY. Then the mapping,
Ly :G™/G°— G*™/G",

is bijective for every s with s+ < s < 4+ 00,
We omit the proof of this theorem, since it is the same as [7, Theorem 1.1]
which studied the case k+ > 0.

6. Proof of Theorem C

The proof is essentially the same as that of Theorem A, so we omit the detail
except different points.

We introduce a Banach space G*(T, X; k; m) instead of G*(T, X; k)
(s >0) or G{(T, X; k) (s £0) as follows.

Let U(t, x) = 2 Upt'z®/1'B' € G*. Then U(t, x) € G(T, X; k; m) if
I U“(TS.)x;k;m < + oo which is defined below.

i © L T\IiX(Hr;l“m -
6.1 Uy = S}fﬁp| Uss| GEmlIT+8+aT =0,
. © . v WA = I F B+ K1)

Then it can be proved that

(6.3) G'= U G(T,X;k;m), G®= U N G(T, X; k; m),
7,X>0 X>0 T>0
for any fixed k and m (see Lemma 2.3 and Miyake [7, §2]).

Corresponding to Lemma 3.1 we can prove the following,

Lenia 6.1, Let U(t, x) € GN(T, X; k;m) and a(x) € 0( | x| < pX)
(o > 0). Then we have

(i) If s >0, then a(x)U (t, x) € G(T, X; k; m) for anv p > 1 and it holds
that

(6.4) laUl < C(q) 1222

1—-1/p) la/21+1 laloxll UI.

Here C(q) is the sawme constant appeared in Lemma 3.1.
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(i) If s<0, then a(x)U(t, x) € G(T, X; k; m) for any 0 > (1 — s5)/2
and 1t holds that

[g/2]!
<
(6.5) laUll < C(g) A= =32 lalxl UI.

Hence for any holomorphic function a(x) i a neighbourhood of the origin, there is
a positive constant Xo such that a(x) defines a bounded operator on G*(T, X ; k; m)
Jor any 0 < X < X, and we have

(6.6) aU Sy < 1) | + 0O} Ul

where O(X)/X is bounded as X | 0.

The proof is similar to that of Lemma 3.1, and it is sufficient to notice the fol-
lowing inequality. Let s < 0. Then for any ¢ with 0 < 7 < | 8] we have

(@ =9l +18]+ kN 1Bl (@ +mlil+2(B]l—0) + k!
{(A+mlIT+2[Bl+K (BT =0 {(A—=9s[I[+][BI—7+ k!
! [Bl+1—j

T aA+Tmli+2(pIFI—H Tk

% fI (1—s)|l|+|,8[—j+1+k
o A+mliT+2dpl—H +1+k

J

1— s>‘
< =2
< (15
We remark that P,(d:;) defines an invertible operator in both spaces G° and
G'® under the assumption (5.3) and its inverse operator Pyz(d,) is given by

(6.7) Pil (@)U, z) = 2 Ui(x) W‘

Therefore our problem is reduced to prove the bijectivity of the mapping,
(I:m)s LmP,ZI((X) :GS— G° or
L) s LnPi(0) : GO — G,

Since LnPnt(6) = I — 22 boye(x)t’ DI D¥ P, (6)) = I — B, it is sufficient
to prove that B becomes a contraction map in a suitable space G*(T, X; k; m)
under the assumptions of the theorem as in the proof of Theorem A. For that pur-
pose, we have to estimate the operator norm of the mapping,
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(6.8) t? D} DE P,* () : GS(T, X; k; m) — GS(T, X; k; m).
We note that the assumption (B.1) and the condition that sy < s < s_ imply that

(6.9) s{jl+(1—s)|o|+|a|~mi—5so,
for any (o, j, &) with bsja(x) # 0. We note also

If s, <s<s_ then d =0 onlyif|o| =17
(6.10) If s=s, thend=0onlyif|a| =17l
If s=s_, then d =0 onlyif | o] <|j]

Now we can prove the following,

LEMMA 6.2. Let Pu(0:) be as above and (0,], @) € N* X Z? X Z7 satisfy
(6.9) and (B.2). Then the operator novm of t° DI DE Py'(0)) of the mapping (6.8) is
estimated as follows :

O Iflol+m(al =1j1—1) 20, then

(6.11) [ t* D! Dg Py*(0) | < C(m, &, s, 0, , a) T'7I-lix~laif=3,
(i) Ifl ol +m( o]l —1j] —1) <O, then

(6.12) |t D! D& P;'(0) | < C(m, o, s, 0, 7, ) T'7I-HIx el
(i) Iflo| = |jl S mand | a| =0, then

(6.13) I £* DI D& Py} (6) || < &5t

Proof.  Put t° Di D P,;*(6,) U (¢t, x) = 2 Vipt'x®/118). Then we have

/! 1 U
(l_ 0.)1 P (l“’]_ O') I+1—-0,8+a-

(6.14) Vig =
From this expression, the inequality (6.13) is obvious.
(A) The case s > 0. In this case, we have

11y 181 .
o L 1 < Com, <0, 0,4, Tk U]

x | 1|joremtoi-yi-o L Em I+ 18]+ k+ (s +m (il =lo) +|alil
{(s+mlIT+187T+ K}

In the case | | + m( a| — []l — 1) = 0, we easily obtain (6.11) since

s+mjl=loh +lal=mdjl=lol+1) —lo]l-0.
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In the case | o] +m(Jo| —]j] —1) <0, the condition (B.2) implies (6.12) im-
mediately.
(B) The case s < 0. In this case, we have

| Vig | T"X 11" < Cm, &0, 0, 7, )T X U

x | 1|lot+mioi=lii-v {A+mlil+2[8]+k+A+m(jl=]c]) +2]al}!
(=9l +1Bl+k+ A =50;T=ToD FTall

Iflol+m(o|—1j] —1) >0, then
[ Vig| TVX ] 11" < C(m, &, 0,7, )T VX1 | U|

o Atmli+2|B[+k+]|j|l—m+2|al]}!
A=+ +k+A=9T=Toh +Tall

Now by the relation (6.9), we have
| Vigl TV X 8 11" < C(m, &, s, 0, j, )T 70Xl | U]

SAa+mli+28l+k+jl—m+2]al)!

X A= F BTk + i T=mT2lal

which implies (6.11) immediately.
If|lo]l+m(o|—]j] —1) <0, then by (B.2) we have

| Vig| TV X 1[1" < C(m, &, 0,7, )TV X U

A+mlil+2[p[+k+A=9(jl=]cD) +|a]!

“Ha -l F Bl Fk+a—-sd/~-Toh +laDd

and this implies (6.12). ]

Proof of Theovem C. First of all, we have to make clear the meaning of
assumption (B.2). It is a condition for (g, j, @) with |o| <|j|. Let o]l =17l
Then | o] < m implies | a| <0, and also | 6| = m implies | o| + |a| < m by
(B.1). Hence if | | = 17| > m, we have |a| <m —|a| <O0.

(i) Let us consider the case sy < s < s-. In this case, d =0 only if | o]
= l]l We rewrite the operator Em ‘= L, Py' as follows.

- 4
(6.15) L,=1— 2 B/t z; D, D).
i=1

Here,

Bi= X boa(x)t’ DI D P;'(5)).
lol=1il<m
lal=0
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By = 20 boa(x)t? DI DE P (0).
ol="j
a'<0

By = 22" boja(x)t” D] D Py'(81),
a,],a
where the summation is taken over (o, 7, @) such that (B.2) is satisfied with
il > 1ol
By = 2% bga(x)t” DI DE Py (0),
g,5,a

where the summation is taken over (g, 7, &) which is excluded in B, (1 = 1,2,3),
and hence in this summation 6 > 0, because s, < s < s_.

Let us estimate the operator norm of each B; acting on G*(T, X; k; m).

(6.16) 1B, ]| < et {m % | b0y (0)| + O (X))
=0

(6.17) | B. < CX“ for some a > 0.

(6.18) I Bs| < C(X)T™" for some b > 0.

(6.19) | B,|| < C(T, X)k=¢ for some ¢ > 0.

By the condition (5.4), we can take small positive constant X so that || By || +
| Bo| < 1. Next we take large T so that || Bi| + | B2l + | Bs| < 1. and finally
we take large k so that ZLX | B; | < 1. This proves the bijectivity of (L) .

In order to prove the bijectivity of (L,)s, we need more careful estimate for
B;. Let (0,7, a) satisfy the condition (B.2) with |j| > ]o]and let 0 <d <
m + s. Then the operator norm of the mapping,

t° D! Dff Pyt (00« G°(XY, X; k; m) — G¥(XY, X; k; m)
1s estimated by
| t2 DI D2 P;;1|| < CXdCoi-in=a

Here d(Ja] = 171) — | a] > 0 by the above choice of d. Hence the operator norm
of

By : G (XY X; k;m) — GS(X4, X; k; m)

tends to 0 as X | 0. This implies the bijectivity of (Ln)s.
(ii)  The bijectivity of (L) is obvious from the above proof, since in this
case 6 > 0 for any (o, 7, @) with |o| > ||

(ii1)  Let us consider the case s = s,. We rewrite the operator L, as follows.
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5

(6.20) Ly,=1— 2 Ci(t, x; D, D,).
i=1

Here,

Ci= 2 boa(x)t’ Di D P;' () (= By).
lol=1jl<m
lal=0

C = ‘ lZH boja(x)t° DI DE Py'(0:) (= By).
ol=1j
lal<o

C3 = Z W boja(x)to Di’ Dg szl(at),

o,j,a
where the summation is taken over (g, j, @) such that | o] + m( o] —|j] — 1)
>0and 6 = 0.
Cy = 22 bsja(x)t° Di DE P*(3) (= By).
ag,),a
Cs = 2% boja(x)t° DI DE Py (0),
..

where the summation is taken over (0,7, @) which is excluded in
C, (1=1,2,3,4), and hence 0 > 0 in this summation.

Let || C, || denote the operator norm of C; acting on G*(T, X; k; m). As in (i)
we can choose small positive constant X, such that | Ci|| + | C.ll <1 for any
0<X<X, and any T> 0. Since | Cs| < C(T, X))k for some ¢ > 0, this
term does not play any role in the proof of the bijectivity by letting k — oo.

First, consider the case where the condition (5.5) is satisfied, that is,

(5.5) bya(©) =0for|j|=—1and s:|j| +|al=m.

This implies [ boja lox = O(X) as X | 0. Therefore the operator norm of
Cs: G+(X4, X; k; m) = G+(X4 X; k; m) is estimated by

[ Csll € Clg) ZP Coia || boya llox X 2 01=12D=lal
< Clg) 2P CoaXdsemmit
+ Clg) T2 ClpX d-sti-s=m,

where the summation 2.V is taken over (o, 7, a) which satisfies (5.5), and 22
is taken over (g, j, @) such that | a| > || except || =0 and | 7| = — 1. Here
we used the relation, —|a|=s,(|j] —|o|) +|0| —m. In the summation
2% if|o| — || = 1, then | ¢| = 1. Therefore,
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| o]

= max{]—]——[—[ (0, 7, @) in the summation X" 2>] < m.

Hence for any d with sy + max{m — 1, ¢} <d < s+ + m, the operator norm of
C; tends to zero as X | 0. As in (i), the operator norm of Cqs: G+ (X%, X; k; m)
— G(X? X; k; m) tends to zero as X | 0, since d < s, + m. This proves the
bijectivity of (Lu)s,.

Next, we consider the case where the condition (5.6) is satisfied. Note that the
operator norm of

Cs: G+(X4, X; k; m)— G+(X%, X; k; m)

tends to zero as X | 0 if d > sy + m. The condition (5.6) assures that we can
choose d > sy + m so that the operator norm of Cs: G(X¢ X; k; m) — G*+
(X4, X; k; m) tends to zero as X | 0, as the above.

This completes the proof. ]

7. Example
We consider the following partial differential operator,
(7.1)  P={tD, + D} + a{tD, + 13D, D} + bD} (a, b € C\{0}).

The Newton polygon N(P) is given as follows.

W

3, —2)

(i) By Theorem C, the Cauchy problem,

(7.2) {Pu(f, ) =f(t z) € G,

u(t,x) —wlt, x) =002 (we G,

is uniquely solvable in G* for any s = 2.
(ii) Theorem A implies that the Cauchy problem,

Pu(t,z) =f, x) € G,

(7.3) {u(t, ) —wlt, x) =0 (we Gf),

is uniquely solvable in G*® for any s < 1.
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(iii) Looking at the vertex (4, —1) of N(P), we consider the Goursat
problem,

{Pu(t, x) =f(t, x) € G’

(7.4) w(t, z) — wit, ) = 0(tz®) (w € G°).

Let

L= (0:+ 1) +a'{tD? D;*+ D: D;% + a™ oD D
= (0: +1) — A.

Then the unique solvability of the Goursat problem (7.4) is equivalent to the bijec-
tivity of the mapping

(7.5) L :G— G’

Since s+ =1 and s- = 2, let 1 < s < 2. The condition (B.2) is satisfied only if
s = 1. In this case, the conditions (5.5) and (5.6) are not satisfied, since ab # 0.
So we have to take care to estimate the operator norms for

tD2 D733, + 1)7Y, D, D;3(8, + 1)~} and D! D2(3, + 1)1
acting on the space G'(T, X), and we have:

| tD? D726, + D)7 < T X2,
| D, D725, + D' < T  X%2,
| DIt D2, + D7 < TX 2.

Now the operator norm of A(d; + 1)7!: G1(X? X) — G'(X? X) is estimated by
lA@G, + 1) <|al™(3/2 4+ |b]). Therefore the problem (7.4) is uniquely
solvable in G'if |a| > | b| + (3/2).
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