MUKAI-UMEMURA'S EXAMPLE OF THE FANO THREEFOLD WITH GENUS 12 AS A COMPACTIFICATION OF C^{3}

MIKIO FURUSHIMA

§0. Introduction

Let (X, Y) be a smooth projective compactification with the non-normal irreducible boundary Y, namely, X is a smooth projective algebraic threefold and Y a non-normal irreducible divisor on X such that $X-Y$ is isomorphic to C^{3}. Then Y is ample and the canonical divisor K_{X} on X can be written as $K_{X}=$ $-r Y(1 \leqq r \leqq 4)$. Thus X is a Fano threefold. In particular, Pic $X \cong \mathbf{Z} \mathfrak{O}_{X}(Y)$. The non-normality of Y implies that $r \leqq 2$ (cf. [4]). In the case of $r=2$, such a (X, Y) is uniquely determined up to isomorphism, in fact, $(X, Y) \cong\left(V_{5}, H_{5}^{\infty}\right)$, where $X=V_{5}$ is a Fano threefold of degree 5 in \mathbf{P}^{6}, and $Y=H_{5}^{\infty}$ is a ruled surface swept out by lines which intersect the line Σ with the normal bundle $N_{\Sigma \mid X}$ $\cong \mathscr{O}_{\Sigma}(-1) \oplus \mathscr{O}_{\Sigma}(1)$, in particular, Σ is the singular locus of Y. In the case of $r=1$, there is an example of such a compactification of \mathbf{C}^{3}, in fact, let $X=V_{22}^{\prime}$ be a Fano threefold of genus $g=12$ constructed by Mukai-Umemura [11] and $Y=$ H_{22}^{\prime} be the ruled surface swept out by conics which intersect the line ℓ in V_{22}^{\prime} with the normal bundle $N_{\ell \mid X} \cong \mathscr{O}_{\ell}(-2) \oplus \mathscr{O}_{\ell}(1)$, then H_{22}^{\prime} is a non-normal hyperplane section of V_{22}^{\prime} such that $V_{22}^{\prime}-H_{22}^{\prime}$ is isomorphic to \mathbf{C}^{3}, in particular, the line ℓ is the singular locus of H_{22}^{\prime} (cf. [6]).

Now, in this paper, we will construct a birational map $\pi: V_{22}^{\prime} \cdots \rightarrow V_{5}$ such that the restriction π_{0} of π on $V_{22}^{\prime}-H_{22}^{\prime}$ gives an isomorphism $V_{22}^{\prime}-H_{22}^{\prime} \cong V_{5}-$ $H_{5}^{\infty} \cong \mathbf{C}^{3}$, via the resolution of indeterminancy of the double projection of V_{22}^{\prime} from the singular locus Sing H_{22}^{\prime} of H_{22}^{\prime} which is a line on V_{22}^{\prime} (see Theorem 1). Furthermore, we will study the detailed structure of the desingularization and the normalization of the boundary divisor H_{22}^{\prime} (see Theorem 2).

Recently, Mukai ($\left[11_{\mathrm{a}}\right]$) proved that there is a 4 -dimensional family of Fano threefolds of first kind with index one, genus 12 which are the compactifications of \mathbf{C}^{3} with non-normal boundaries, in particular, our example ($V_{22}^{\prime}, H_{22}^{\prime}$) belongs
to this Mukai's family.
I would like to thank Professor N. Nakayama for the stimulating conversations we had and for his valuable comments.

Notation

$K_{X} \quad$ Canonical divisor on a variety X
$\omega_{X} \quad$ Canonical sheaf on X
$N_{C \mid X} \quad$ Normal bundle of C in X
$|H| \quad$ Complete linear system associated with a divisor H
Bs $|H| \quad$ Base locus of the linear system $|H|$
Sing $X \quad$ Singular locus of X
$\rho(X) \quad$ Picard number of X
$E_{\text {red }} \quad$ Reduction of a scheme E
$\operatorname{supp} D \quad$ Support of a divisor D
(i)-curve Smooth rational curve with self-intersection number - i
$b_{i}(X) \quad:=\operatorname{dim} H^{i}(X ; \mathbf{R})$
$h^{i}(\mathscr{F}) \quad:=\operatorname{dim} H^{i}(* ; \mathscr{F})$
$\chi(\mathscr{F}) \quad:=\sum_{i=0}(-1)^{i} h^{i}(\mathscr{F})$

§1. Mukai-Umemura's example

Let $\mathbf{C}[x, y]$ be the polynomial ring of two complex variables x and y. The special linear group $S L(2, \mathbf{C})$ acts $\mathbf{C}(x, y)$ as follows:

$$
\left\{\begin{array}{l}
x^{\sigma}=a x+b y \\
y^{\sigma}=c x+d y
\end{array} \quad \text { for } \sigma=\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right) \in S L(2, \mathbf{C})\right.
$$

Let us denote by R_{n} a vector space of homogeneous polynomials of degree n in $\mathbf{C}[x, y]$. Let $f(x, y)=\sum_{i=0}^{n} a_{i}\binom{n}{i} x^{n-i} y^{i} \in R_{n}$ be a non-zero homogeneous polynomial of degree n. We take ($a_{0}: a_{1}: \ldots: a_{n}$) as homogeneous coordinates on the projective space $\mathbf{P}\left(R_{n}\right) \cong \mathbf{P}^{n}$, on which $S L(2, \mathbf{C})$ acts. Let us denote by $X(f)$ the closure of $S L(2, \mathbf{C})$-orbit $S L(2, \mathbf{C}) \cdot f$ of f in $\mathbf{P}\left(R_{n}\right)$. Then $S L(2, \mathbf{C})$ acts on $X(f)$.

Now, we consider the following two polynomials:

$$
\begin{aligned}
& f_{6}(x, y)=x y\left(x^{4}-y^{4}\right), \text { and } \\
& h_{12}(x, y)=x y\left(x^{10}+11 x^{5} y^{5}+y^{10}\right)
\end{aligned}
$$

We put

$$
\begin{aligned}
& V_{5}:=X\left(f_{6}\right) \hookrightarrow \mathbf{P}\left(R_{6}\right) \cong \mathbf{P}^{6}, \text { and } \\
& V_{22}^{\prime}:=X\left(h_{12}\right) \hookrightarrow \mathbf{P}\left(R_{12}\right) \cong \mathbf{P}^{12} .
\end{aligned}
$$

Then we have

Lemma 1 (Lemma 3.3 in [11]). (1) $V_{5} \hookrightarrow \mathbf{P}^{6}$ is a Fano threefold of index 2, genus 21 and the hyperplane section of V_{5} is the positive generator of Pic $V_{5} \cong \mathbf{Z}$
(2) V_{22}^{\prime} is a Fano threefold of index 1 , genus 12 and the hyperplane section of V_{22}^{\prime} is the positive generator of Pic $V_{22}^{\prime} \cong \mathbf{Z}$.

The defining equations for V_{5}, V_{22}^{\prime} are given as follows respectively:

$$
\left(V_{5}\right)\left\{\begin{array}{l}
a_{0} a_{4}-4 a_{1} a_{3}+3 a_{2}^{2}=0 \\
a_{0} a_{5}-3 a_{1} a_{4}+2 a_{2} a_{3}=0 \\
a_{0} a_{6}-9 a_{2} a_{4}+8 a_{3}^{2}=0 \\
a_{1} a_{6}-3 a_{2} a_{5}+2 a_{3} a_{4}=0 \\
a_{2} a_{6}-4 a_{3} a_{5}+3 a_{4}^{2}=0
\end{array}\right.
$$

$\left(V_{22}^{\prime}\right) \quad \sum_{\lambda=0}^{\rho}\binom{8}{\lambda}\binom{8}{\rho-\lambda}\left(a_{\lambda} a_{\rho+4-\lambda}-4 a_{\lambda+1} a_{\rho+3-\lambda}+3 a_{\lambda+2} a_{q+2-\lambda}\right)=0$

$$
(0 \leq \rho \leq 16)
$$

Now, we put

$$
\begin{aligned}
& H_{5}^{\infty}:=V_{5} \cap\left\{a_{0}=0\right\} \hookrightarrow \mathbf{P}^{5} \\
& H_{22}^{\prime}:=V_{22}^{\prime} \cap\left\{a_{0}=0\right\} \hookrightarrow \mathbf{P}^{11} .
\end{aligned}
$$

Let us denote by $\operatorname{Sing} H_{5}^{\infty}$ (resp. Sing H_{22}^{\prime}) the singular locus of H_{5}^{∞} (resp. H_{22}^{\prime}). Then we have

Proposition 1 ([5]). (1) $V_{5}-H_{5}^{\infty}=V_{5} \cap\left\{a_{0} \neq 0\right\} \cong \mathbf{C}^{3}$,
(2) $\Sigma:=$ Sing $H_{5}^{\infty}=\left\{a_{0}=a_{1}=\cdots=a_{4}=0\right\} \cong \mathbf{P}^{1}\left(a_{5}: a_{6}\right) \hookrightarrow \mathbf{P}^{6}$ is a line on V_{5}. In particular, H_{5}^{∞} is a non-normal hyperplane section of V_{5} swept out by lines which intersect the line Σ.

Proposition 2 ([6]). H_{22}^{\prime} is a non-normal hyperplane section such that $V_{22}^{\prime}-H_{22}^{\prime}$ $=V_{22}^{\prime} \cap\left\{a_{0} \neq 0\right\} \cong \mathbf{C}^{3}$.

We will study the detailed structure of H_{22}^{\prime} below.
Lemma 2. (1) $\ell:=\operatorname{Sing} H_{22}^{\prime}=\left\{a_{0}=\cdots=a_{10}=0\right\} \cong \mathbf{P}^{1}\left(a_{11}: a_{12}\right) \hookrightarrow \mathbf{P}^{12}$ is a line on V_{22}^{\prime}.
(2) The normal bundle $N_{\ell \mid V_{22}^{\prime}} \cong O_{\ell}(-2) \oplus O_{\ell}(1)$, and there is no other line in V_{22}^{\prime} which intersects the line ℓ.
(3) H_{22}^{\prime} is a unique member of the linear system $\left|O_{V_{z 2}^{\prime}}(1) \otimes I_{\ell}^{3}\right|$, where I_{ℓ} is the ideal sheaf of ℓ in $O_{V_{2}^{\prime} .}$. In particular, H_{22}^{\prime} is a ruled surface swept out by conics in V_{22}^{\prime} which intersect the line ℓ.

Proof. We shall rewrite the defining equation (V_{22}^{\prime}) as follows:

For simplicity, let us denote by $\left\{a_{j}=1\right\}$ the affine part $\left\{a_{j} \neq 0\right\}$ of $\mathbf{P}^{12}\left(a_{0}: \ldots: a_{j}: \ldots: a_{12}\right)$, namely, $\left\{a_{j}=1\right\} \cong \mathbf{C}^{12}\left(a_{0}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{12}\right)$.

$$
\text { Claim 1. } H_{22}^{\prime} \cap\left\{a_{1}=1\right\} \cong \mathbf{C}^{12}\left(a_{2}, a_{6}\right)
$$

In fact, setting $a_{0}=0, a_{1}=1$ in the equations (e.0) - (e.9) in $\left(V_{22}^{\prime}\right)^{*}$, one can easily see that the coordinate functions $a_{3}, a_{4}, a_{7}, a_{8}, \ldots, a_{12}$ are given by the polynomials of a_{2} and a_{6}. This proves the claim.

Now, we have $H_{22}^{\prime} \cap\left\{a_{1}=0\right\}=V_{22}^{\prime} \cap\left\{a_{0}=a_{1}=0\right\}=\left\{a_{0}=a_{1}=\ldots=\right.$ $\left.a_{10}=0\right\} \cong \mathbf{P}^{1}\left(a_{11}: a_{11}\right)$ (a line in $\left.V_{22}^{\prime}\right)$. Since $H_{22}^{\prime}-H_{22}^{\prime} \cap\left\{a_{1}=0\right\} \cong \mathbf{C}^{2}$ by the Claim 1, we have that H_{22}^{\prime} is non-normal (cf. [5]) and hence Sing $H_{22}^{\prime}=H_{22}^{\prime} \cap$ $\left\{a_{1}=0\right\}$. This proves (1).

Next, let us consider the affine part $H_{22}^{\prime} \cap\left\{a_{12}=1\right\} \hookrightarrow \mathbf{C}^{12}\left(a_{1}, \ldots, a_{11}\right)$ of H_{22}^{\prime}. Setting $a_{0}=0, a_{12}=1$ in the defining equation $\left(V_{22}^{\prime}\right)^{*}$, one can get the defining equation of $H_{22}^{\prime} \cap\left\{a_{12}=1\right\}$ in \mathbf{C}^{11}. More precisely, from (e.9) - (e.16) with $a_{12}=1$, putting $x:=a_{9}, y:=a_{10}, z_{10}:=a_{11}$, one can get the following:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
(\mathrm{e} .16)^{\prime} & a_{8}=2^{2} x z-3 y^{2} \\
(\mathrm{e} .15)^{\prime} & a_{7}=2^{2} \cdot 3 x z^{2}-3^{2} y^{2} z-2 x y
\end{array}\right.} \\
& \text { (e.14) } \quad 7 a_{6}=2^{4} \cdot 3^{2} x z^{3}-2^{2} \cdot 3^{3} y^{2} z^{2}+2^{2} \cdot 3^{2} x y z \\
& -3^{2} \cdot 5 y^{3}-2^{2} \cdot 5 x^{2} \\
& \text { (e.13)' } \quad a_{5}=2^{3} \cdot 3^{2} x y z^{2}-2 \cdot 3^{3} y^{3} z+3 x y^{2}-2^{2} \cdot 5 x^{2} z \\
& \text { (e.12)' } \quad a_{4}=-2^{4} \cdot 3 x^{2} z^{2}-2^{5} x^{2} y+2^{3} \cdot 3^{3} x y^{2} z-3^{3} \cdot 5 y^{4} \\
& \text { (e.11) } \quad a_{3}=-2^{4} \cdot 5 x^{3}-2^{4} \cdot 3^{3} x^{2} z^{3}+2^{4} \cdot 3^{3} x^{2} y z \\
& +2^{3} \cdot 3^{4} x y^{2} z^{2}-2^{2} \cdot 3^{4} x y^{3}-3^{5} y^{4} z \\
& \text { (e.10) } \quad a_{2}=-2^{5} \cdot 5^{2} x^{3} z-2^{7} \cdot 3^{3} x^{2} z^{4}+2^{4} \cdot 3^{3} \cdot 11 x^{2} y z^{2} \\
& +2^{6} \cdot 3^{4} x y^{2} z^{3}-2^{3} \cdot 3^{3} \cdot 29 x y^{3} z-2^{3} \cdot 3^{5} y^{4} z^{2} \\
& +2^{3} \cdot 3^{2} \cdot 7 x^{2} y^{2}+3^{4} \cdot 5^{2} y_{5} \\
& (\text { e.9 })^{\prime} \quad a_{1}=-2^{4} \cdot 3^{2} \cdot 5 \cdot 7 x^{3} z^{2}-2^{8} \cdot 3^{4} x^{2} z^{5}+2^{6} \cdot 3^{3} \cdot 19 x^{2} y z^{3} \\
& +2^{7} \cdot 3^{5} x y^{2} z^{4}-2^{5} \cdot 3^{4} \cdot 17 x y^{3} z^{2}-2^{4} \cdot 3^{6} y^{4} z^{3} \\
& -2^{3} \cdot 3^{3} x^{2} y^{2} z+2^{2} \cdot 3^{6} \cdot 5 y^{5} z+2^{7} \cdot 5 x^{3} y \\
& +3^{3} \cdot 5 \cdot 19 x y^{4}
\end{aligned}
$$

CLAIM 2. $H_{22}^{\prime} \cap\left\{a_{12} \neq 0\right\} \cong V(f):=\left\{(x, y, z) \in \mathbf{C}^{3} ; f(x, y, z)=0\right\}$, where
(*) $f(x, y, z)=b_{0} x^{4}+\left(b_{1} y z+b_{2} z^{3}\right) x^{3}+$

$$
\begin{gathered}
\left(b_{3} y^{3}+b_{4} y^{2} z^{2}+b_{5} y z^{4}\right) x^{2}+\left(b_{6} y^{4} z+b_{7} y^{3} z^{3}\right) x \\
+b_{8} y^{6}+b_{9} y^{5} z^{2}, \\
\left(b_{0}=-2^{8} \cdot 5^{2}, b_{1}=2^{9} \cdot 3^{3} \cdot 5, b_{2}=-2^{6} \cdot 3^{4} \cdot 5,\right. \\
b_{3}=-2^{8} \cdot 3^{3} \cdot 7, b_{4}=-2^{4} \cdot 3^{4} \cdot 127, b_{5}=2^{9} \cdot 3^{5}, \\
\left.b_{6}=2^{2} \cdot 3^{6} \cdot 89, b_{7}=-2^{8} \cdot 3^{6}, b_{8}=-3^{6} \cdot 5^{3}, \mathrm{~b}_{9}=2^{5} \cdot 3^{7}\right)
\end{gathered}
$$

In fact, putting a_{1}, \ldots, a_{8} in (e.k)' $\left(9 \leqq k \leqq 16\right.$) into (e.8) with $a_{12}=1$, one can get the equation $f(x, y, z)=0$. It is easy to see that the polynomial $f(x, y, z)$ is irreducible. Hence, $V(f)$ is the defining equation of $H_{22}^{\prime} \cap$ $\left\{a_{12} \neq 0\right\}$ in \mathbf{C}^{3}.

By the defining equation of $V(f)$, one can see the singular locus Sing $V(f)=\{x=y=0\}$ and the multiplicity of $V(f)$ at a general point of Sing $V(f)$ is equal to three.
Thus $H_{22}^{\prime} \in\left|\mathscr{O}_{V_{22}^{\prime}}(1) \otimes I_{\ell}^{3}\right|$. Since $h^{0}\left(\mathscr{O}_{V_{22}^{\prime}}(1) \otimes I_{\ell}^{3}\right) \leqq 1$ by Iskovskih [7], H_{22}^{\prime} is a unique member of $\left|\mathscr{O}_{V_{22}^{\prime}}(1) \otimes I_{\ell}^{3}\right|$. This implies that any conics in V_{22}^{\prime} intersecting the line ℓ is always contained in H_{22}^{\prime}. By Iskovskih [7], for every point $p \in V_{22}^{\prime}$, there is a finite number of conics passing through p. Thus we have the assertion (3). The assertion (2) is proved in Mukai-Umemura [11].
Q.E.D.

§2. Double projection

We will study the double projection of V_{22}^{\prime} from the line ℓ, which is the singular locus of H_{22}^{\prime}. For simplicity, we put $X:=V_{22}^{\prime}, Y:=H_{22}^{\prime}$.

First, let us consider the linear system $|\mathscr{H}|:=\left|\mathscr{O}_{X}(1) \otimes I_{\ell}^{2}\right|$ on X. Let σ_{1} : $X_{1} \rightarrow X$ be the blowing up of X along the line ℓ in X. By Lemma 2-(2), we have L_{1} $:=\sigma_{1}^{-1}(\ell) \cong \mathbf{F}_{3}$ (Hirzebruch surface). We put $\left|\mathscr{H}_{1}\right|:=\left|\sigma_{1}^{*} H-2 L_{1}\right|$, where $H \in$ $\left|\mathscr{O}_{X}(1)\right|$. Let Y_{1} be the proper transform of Y in X_{1}. By Lemma 2-(3), we have a linear equivalence $Y_{1} \sim \sigma_{1}^{*} H-3 L_{1}$. By Lemma 5.4 in Iskovskih [7], we have

Lemma 3. (1) $\operatorname{dim}|\mathscr{H}|=\operatorname{dim}\left|\mathscr{H}_{1}\right|=6$,
(2) $\operatorname{dim}\left|\sigma_{1}^{*} H-3 L_{1}\right|=0$, namely, Y_{1} is the unique member of the linear system $\left|\sigma_{1}^{*} H-3 L_{1}\right|$,
(3) $\left(\sigma_{1}^{*} H-2 L_{1}\right)^{3}=2$,
(4) $Y_{1} \cdot L_{1} \sim 3 \ell_{1}+7 f_{1}$ in L_{1}, where ℓ_{1}, f_{1} is the negative section, a fiber of L_{1} respectively.

Let $K_{X_{1}}$ be a canonical divisor on X_{1}. Then we have $K_{X_{1}} \sim-\sigma_{1}^{*} H+L_{1}$. Since $\left(L_{1} \cdot \ell_{1}\right)=1$, we have $\left(K_{X_{1}} \cdot \ell_{1}\right)=0$. By the following exact sequence of normal bundles:

$$
\begin{aligned}
& 0 \rightarrow N_{\ell_{1} \mid L_{1}} \rightarrow N_{\ell_{1} \mid X_{1}} \rightarrow N_{L_{1}\left|X_{i}\right| \ell_{1}} \rightarrow 0 \\
& \text { ill ill ill } \\
& \mathscr{O}(-3) \mathscr{O}(a) \oplus \mathscr{O}(b) \quad \mathscr{O}(1)
\end{aligned}
$$

where $a+b=2$, we have

Lemma 4.

$$
N_{\ell_{\ell} \mid X_{2}} \cong\left\{\begin{array}{l}
\text { (a) } \mathscr{O}(-1) \oplus \mathscr{O}(-1), \\
(\mathrm{b}) \\
(\mathrm{O}(-2) \oplus \mathscr{O} \\
(\mathrm{c}) \\
\mathscr{O}(-3) \oplus \mathscr{O}(1) .
\end{array},\right. \text { or }
$$

Lemma 5. Bs $\left|H_{1}\right|=\ell_{1}$, where $\mathrm{Bs}\left|H_{1}\right|$ is the base locus of $\left|H_{1}\right|$.

Proof. Since $\left(\sigma_{1}^{*} H-2 L_{1}\right) \cdot \ell_{1}=-1, \ell_{1} \subseteq \mathrm{Bs}\left|\mathscr{H}_{1}\right|$. By Lemma 2-(2), there is no other line in X which intersects ℓ. Thus, by the same argument as in the proof of Lemma 5.4 -(ii) in [7], we have the claim.
Q.E.D.

Let us denote by $\pi_{2 \ell}$ a rational map defined by the linear system $\mid \mathscr{O}_{X}(1) \otimes$ $I_{\ell}^{2} \mid$, which is called the "double projection from ℓ ". Then we have a diagram:

where $\Phi_{1}:=\Phi_{\left|\mathscr{H}_{1}\right|}$ is a rational map defined by the linear system $\left|\mathscr{H}_{1}\right|$.
Next, we will resolve the indeterminancy of the rational map $\Phi_{1}: X_{1} \cdot \rightarrow \mathbf{P}^{6}$

Lemma 6. (1) Sing $Y_{1}=2 \ell_{1}$, namely, ℓ_{1} is the singular locus of Y_{1} with the
multiplicity 2,
(2) $Y_{1} \cap L_{1}=A_{1}+A_{2}+A_{3}$, where A_{i}^{\prime} 's are non-singular rational curves and $A_{1} \sim 2 \ell_{1}, A_{2} \sim \ell_{1}+4 f_{1}, A_{3} \sim 3 f_{1}$ in L_{1}.

Proof. Looking at the blowing up $\sigma_{1}: X_{1} \rightarrow X$ locally, one may identify the Zariski open set $\sigma_{1}^{-1}\left(X_{1} \cap\left\{a_{12} \neq 0\right\}\right)$ with the blowing up $\mu: M \rightarrow \mathbf{C}^{3}(x, y, z)$ with the center Sing $V(f)=\{x=y=0\} . M$ is covered by two coodinate patch. es $U_{0}=\mathbf{C}^{3}(r, s, t), U_{1}=\mathbf{C}^{3}(u, v, w)$, with $r \cdot v=1$ on $U_{0} \cap U_{1}$, and μ is given by

$$
\mu:\left\{\begin{array}{l}
x=r s=u \\
y=s=u v \\
z=t=w
\end{array}\right.
$$

Let V_{1} be the proper transform of $V(f)$ in M. Then we have

$$
\begin{aligned}
& V_{1} \cap U_{0}=\left\{f_{1}^{*}(r, s, t)=0\right\}, \text { where } \\
& f_{1}^{*}:=b_{0} r^{4} s+\left(b_{1} s t+b_{2} t^{3}\right) r^{3}+\left(b_{3} s^{2}+b_{4} s t^{2}+b_{5} t^{4}\right) r^{2} \\
& \quad+\left(b_{6} s^{2} t+b_{7} s^{3}\right) r+b_{8} s^{3}+b_{9} s^{2} t^{2}, \text { and } \\
& \\
& V_{1} \cap\{s=0\}=\left\{r^{2} t^{3}\left(b_{2} r+b_{5} t\right)=0\right\} .
\end{aligned}
$$

This shows that $\{r=s=0\}$ is the singular locus of V_{1} with the multiplicity 2 and $V_{1} \cap\{s=0\}$ consists of three irreducible non-singular rational curves. Since $Y_{1} \cdot L_{1} \sim 2 \ell_{1}+7 f_{1}$, we have the assertions (1) and (2).
Q.E.D.

Let $\sigma_{1}: X_{i} \rightarrow X_{i-1}$ be the blowing up of X_{i-1} along the section ℓ_{i-1} of L_{i-1} with $\left(\ell_{i-1}^{2}\right)_{L_{i-1}} \leqq 0$, and put $L_{i}:=\sigma_{i}^{-1}\left(\ell_{i-1}\right)(i \geqq 2)$. Let f_{i} be a fiber of $L_{i}, \quad Y_{i}$ the proper transform of Y_{i-1} in X_{i}, and put $\mathscr{H}_{i}:=\sigma_{i}^{*} \mathscr{H}_{i-1}-L_{i}$.

Lemma 7.
(1) $Y_{2} \cap L_{2}=B_{1}+B_{2}$, where $B_{1} \sim 2 \ell_{2}, B_{2} \sim 2 f_{2}$ in L_{2},
(2) Sing $Y_{2}=2 \ell_{2}$,
(3) $\mathrm{Bs}\left|\mathscr{H}_{2}\right|=\ell_{2}$.

Proof. By Lemma'4, we have the following three cases:

$$
L_{2} \cong \begin{cases}(\mathrm{a}) & \mathbf{P}^{1} \times \mathbf{P}^{1} \\ (\mathrm{~b}) & \mathbf{F}_{2} \\ (\mathrm{c}) & \mathbf{F}_{4}\end{cases}
$$

Since $Y_{2} \sim \sigma_{2}^{*} Y_{1}-2 L_{2}$, we have

$$
Y_{2} \cdot L_{2} \sim \begin{cases}\text { (a) } & 2 \ell_{2} \\ \text { (b) } & 2 \ell_{2}+2 f_{2} \text { if } L_{2} \cong \mathbf{P}^{1} \cong \mathbf{P}_{2}^{1} \\ \text { (c) } & 2 \ell_{2}+4 f_{2} \text { if } L_{2} \cong \mathbf{F}_{4}\end{cases}
$$

On the other hand, by blowing up $U_{0}=\mathbf{C}^{3}(r, s, t)$ along $\{r=s=0\}$, one can get the local equation for Y_{2}. From this, one can show that $\operatorname{Sing} Y_{2}=2 \ell_{2}$, and $Y_{2} \cap L_{2}=B_{1}+B_{2}$, where $B_{1} \sim 2 \ell_{2}, B_{2} \sim 2 f_{2}$ in L_{2}. Thus we have $L_{2} \cong \mathbf{F}_{2}$. Since $\left(H_{2}, \ell_{2}\right)=-1, \ell_{2} \subseteq \mathrm{Bs}\left|\mathscr{H}_{2}\right|$. On the other hand, since $\left|\mathscr{H}_{2}\right| \cap L_{2} \subseteq$ $\left|\mathscr{H}_{2 \mid L_{2}}\right|=\left|\ell_{2}+f_{2}\right|$, we have the claim.
Q.E.D.

Corollary 8. $\quad L_{2} \cong \mathbf{F}_{2}$, namely, $N_{\ell_{1} \mid X_{1}} \cong \mathscr{O}(-2) \oplus \mathscr{O}$.
Similarly, one can show the following

Lemma 9.
(1) $Y_{3} \cap L_{3}=C_{1}+C_{2}$, where $C_{1} \sim 2 \ell_{3}, C_{2} \sim 2 f_{3}$ in L_{3}.
(2) Sing $Y_{3}=2 \ell_{3}+2 f_{3}$,
(3) $\mathrm{Bs}\left|\mathscr{H}_{3}\right|=\ell_{3}$,
(4) $L_{3} \cong \mathbf{F}_{2}$, namely, $N_{\ell_{3} X_{3}} \cong \mathscr{O}(-2) \oplus \mathscr{O}$,
(5) $Y_{4} \cap L_{4}=D$, where $D \sim 2 \ell_{4}$ in L_{4},
(6) $\quad L_{4} \cong \mathbf{P}^{1} \times \mathbf{P}^{1}$, namely, $N_{\ell_{3} \mid X_{3}} \cong \mathscr{O}(-1) \oplus \mathscr{O}(-1)$.

Let $L_{j}^{(4)}(1 \leqq j \leqq 3)$ be the proper transform of L_{j} in X_{4} and $A_{i}^{(4)}$ ($1 \leqq i \leqq 3$), $f_{1}^{(4)}$ be the proper transforms of A_{i}, a fiber f_{1} in X_{4} respectively. Then we have easily

$$
\begin{gather*}
\mathscr{H}_{4}=\sigma_{4}^{*} \mathscr{H}_{3}-L_{4} \sim Y_{4}+L_{1}^{(1)}+2 L_{2}^{(4)}+3 L_{3}^{(4)}+4 L_{4} \tag{2.1}\\
K_{X_{4}} \sim-\left(Y_{4}+2 L_{1}^{(4)}+3 L_{2}^{(4)}+4 L_{3}^{(4)}+5 L_{4}\right) \tag{2.2}\\
\left(L_{4} \cdot \ell_{4}\right)=\left(L_{4} \cdot f_{4}\right)=-1,\left(\ell_{4} \cdot \ell_{4}\right)=0 \tag{2.3}
\end{gather*}
$$

$$
\begin{equation*}
\left(\mathscr{H}_{4}^{3}\right)=\left(\mathscr{H}_{4} \cdot \mathscr{H}_{4} \cdot \mathscr{H}_{4}\right)=5 \tag{2.4}
\end{equation*}
$$

$$
\left|\mathscr{H}_{4}\right| \cap L_{4}=\left|\ell_{4}\right|
$$

$$
\begin{equation*}
\left(\mathscr{H}_{4} \cdot \mathscr{H}_{4} \cdot Y_{4}\right)=0 \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\left(\mathscr{H}_{4} \cdot \mathscr{H}_{4} \cdot L_{4}\right)=\left(\mathscr{H}_{4} \cdot \mathscr{H}_{4} \cdot L_{j}^{(4)}\right)=0(j=2,3) \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\left(\mathscr{H}_{4} \cdot A_{2}^{(4)}\right)=5,\left(\mathscr{H}_{4} \cdot f_{1}^{(4)}\right)=1 . \tag{2.8}
\end{equation*}
$$

By (2.5), we have
Lemma 10. $\mathrm{Bs}\left|\mathscr{H}_{4}\right|=\phi$.
Let $\Phi: X_{4} \rightarrow \mathbf{P}^{6}$ be a morphism defined by the linear system $\left|\mathscr{H}_{4}\right|$. We put V $:=\Phi\left(X_{4}\right) . \operatorname{By}(2.4), \operatorname{deg} V=5 . \operatorname{By}(2.6),(2.7),(2.8), X-Y \cong X_{4}-\left(Y_{4} \cup L_{4} \cup\right.$ $\left.L_{1}^{(4)} \cup L_{2}^{(4)} \cup L_{3}^{(4)}\right) \cong V-\Phi\left(L_{1}^{(4)}\right) \cong \mathbf{C}^{3}$.

By (2.3), L_{4} can be blown down along ℓ_{4}, and then blowing downs can be done step by step (cf. Reid [12]). Finally we have a smooth projective threefold V^{+}with
$b_{2}\left(V^{+}\right)=2$, and morphisms $\Phi_{2}: X_{4} \rightarrow V^{+}, \Phi_{1}: V^{+} \rightarrow V$, a birational map $\rho: X \rightarrow \rightarrow V^{+}$(which is called a flop) such that
(i) $\Phi=\Phi_{1}{ }_{\rho}^{\circ} \Phi_{2}$
(ii) $X_{1}-\ell_{1} \stackrel{\rho}{\cong} V^{+}-\Sigma_{1}$, where $\Sigma_{1}:=\Phi_{2}\left(L_{4} \cap L_{1}^{(4)}\right)$
(iii) $V^{+}-\rho\left(Y_{1}\right) \cong V-\Phi\left(Y_{4}\right)$
(D-1)

Let Y_{1}^{+}, L_{1}^{+}be the proper transforms of Y_{1}, L_{1} in V^{+}respectively. We put $\Gamma:=\Phi\left(Y_{4}\right)=\Phi_{1}\left(Y_{1}^{+}\right)$and $Z:=\phi\left(L_{1}^{(4)}\right)=\Phi_{1}\left(L_{1}^{+}\right)$. Then, by (2.6), (2.7), (2.9), Γ is a smooth rational curve of degree 5 in \mathbf{P}^{6} and Z is a ruled surface swept out by lines which intersect the line $\Sigma:=\Phi_{1}\left(\Sigma_{1}\right)$ on V. In particular, $\Gamma \hookrightarrow Z$ and $\Gamma \cap \Sigma=$ \{one point\}. Let γ be a conic in X which intersect the line ℓ. Then $\gamma \hookrightarrow$ Y. Let γ_{1} be the proper transform of γ in X_{1} and $\gamma_{1}^{+}:=\rho\left(\gamma_{1}\right) \hookrightarrow Y_{1}^{+}$. Since $K_{V^{+}}=\rho_{*}\left(K_{X_{1}}\right)=-Y_{1}^{+}-2 L_{1}^{+}$, we have $\left(K_{V^{+}} \cdot \gamma_{1}^{+}\right)=-1$. Thus, $\Phi_{1}: V^{+}$ $\rightarrow V$ be the contraction of an extremal ray by K.M.M. [9]. Since Y_{1}^{+}is contracted to the smooth curve Γ by Φ_{1}, V is smooth by Mori [10]. By (2.4), we have deg $V=5$. Moreover, we have $K_{V} \sim-2 Z$. Since $V-Z \cong \mathbf{C}^{3}$ by construction, Z is ample, thus, V is a Fano threefold of first kind with index 2, genus 21 . Since Z is swept out by lines in V, Z is non-normal. In fact, the singular locus of Z is just the line $\Sigma:=\Phi_{1}\left(\Sigma_{1}\right)$. Therefore we have $(V, Z) \cong\left(V_{5}, H_{5}^{\infty}\right)$ (see $\left.\S 1\right)$, namely

Theorem 1. Let $\left(V_{22}^{\prime}, H_{22}^{\prime}\right), \ell:=\operatorname{Sing} H_{22}^{\prime},\left(V_{5}, H_{5}^{\infty}\right)$ be as before. Then the double projection $\pi_{2 \ell}: V_{22}^{\prime} \rightarrow V_{5}$ of V_{22}^{\prime} from the line ℓ gives an isomorphism $V_{22}^{\prime}-\mathscr{H}_{22}^{\prime}$ $\xrightarrow{\sim} V_{5}-H_{5}^{\infty}\left(\cong \mathbf{C}^{3}\right)$.

Remark 1. Let $\Sigma:=\operatorname{Sing} H_{5}^{\infty}$ be the singular locus of H_{5}^{∞}. Then, Σ is a line on V_{5} with the normal bundle $N_{\Sigma \mid V_{5}} \cong \mathscr{O}(-1) \oplus \mathscr{O}(1)$. The set $\left\{x \in \sum\right.$; there is a unique line passing through the point $x\}$ consists of the only point p (cf. [5]). One can easily see that there is a smooth rational curve Γ of degree 5 in V_{5} such that
$\Gamma \cap \Sigma\{p\}$ and $\Gamma \hookrightarrow H_{5}^{\infty}$. Then the linear system $\left|\mathscr{O}_{V_{5}}(3) \otimes I_{\Gamma}^{2}\right|$ defines the inverse birational map $\pi_{2 \ell}^{-1}: V_{5} \rightarrow V_{22}^{\prime}$ with $V_{5}-H_{5}^{\infty} \xrightarrow{\sim} V_{22}^{\prime}-H_{22}^{\prime}$ (cf. [7]).

§3. Normalization and resolution of the boundary divisor

First, we will prepare some general results on a non-normal hyperplane section of a Fano threefold of special series.

Let X be a Fano threefold of special series, namely, X is a smooth threefold $V_{2 g-2} \hookrightarrow \mathbf{P}^{g+1}$ of degree $2 g-2$. Then the anticanonical line bundle $-K_{X}$ is an ample generator of Pic $X \cong \mathbf{Z}$. Let Y be a non-normal member of the linear system $\left|-K_{X}\right|$. Since Pic $X \cong \mathbf{Z}[Y], Y$ is irreducible. Let $\sigma: S \rightarrow Y$ be the normalization, and let $I \hookrightarrow \mathscr{O}_{Y}$ be the conductor of σ. We put $E:=\operatorname{loc} I$ (the locus of I) and $D:=\sigma^{-1}(E)$. Since Y is Cohen-Macaulay, E and D are Cohen-Macaulay. Since $Y \sim-K_{X}, H^{i}\left(X, \mathscr{O}_{X}\right)=0$ for $i>0$ and $H^{i}(X$, $\left.\mathfrak{O}_{X}(-Y)\right)=0$ for $i<3$, we have

$$
\begin{gather*}
\omega_{Y} \cong \mathscr{O}_{Y} \tag{3.1}\\
H^{1}\left(Y, \mathscr{O}_{Y}\right)=0, H^{2}\left(Y, \mathscr{O}_{Y}\right) \cong \mathbf{C} \tag{3.2}\\
\omega_{S} \cong I \otimes \sigma^{*} \omega_{Y} \cong I \text { (i.e. } K_{S} \sim-D \text { as a Weil divisor). } \tag{3.3}
\end{gather*}
$$

By (3.34.2), (3.34.3) in Mori [10], we have exact sequences:

$$
\begin{align*}
& 0 \rightarrow \mathscr{O}_{Y} \rightarrow \sigma_{*} \mathscr{O}_{S} \rightarrow \omega_{E} \rightarrow 0 \tag{3.4}\\
& 0 \rightarrow \sigma_{*} \omega_{S} \rightarrow \mathscr{O}_{Y} \rightarrow \mathscr{O}_{E} \rightarrow 0 \tag{3.5}
\end{align*}
$$

Taking σ^{*} in (3.5), we have

$$
\begin{equation*}
0 \rightarrow \omega_{S} \rightarrow \mathscr{O}_{S} \rightarrow \sigma^{*} \mathscr{O}_{E} \cong \mathscr{O}_{D} \rightarrow 0 \tag{3.6}
\end{equation*}
$$

By (3.2), (3.3), (3.3), we have

Lemma $11([14]) . h^{0}\left(\mathscr{O}_{E}\right)=1$ and $h^{1}\left(\mathscr{O}_{E}\right)=0$, namely $E_{\text {red }}$ is connected and each irreducible component E_{i} of $E_{\text {red }}$ is a smooth rational curve.

Take a general hyperplane section H of X. From (3.4), we get

$$
\begin{equation*}
0 \rightarrow \mathscr{O}_{Y}(H) \rightarrow \sigma_{*} \mathscr{O}_{s} \otimes \mathscr{O}_{Y}(H) \rightarrow \omega_{E}(H) \rightarrow 0 \tag{3.7}
\end{equation*}
$$

Since $H^{1}\left(Y, \mathscr{O}_{Y}(H)\right)=0$, we have

$$
\begin{equation*}
h^{0}\left(\sigma_{*} \mathscr{O}_{s} \otimes \mathscr{O}_{Y}(H)\right)=h^{0}\left(\mathscr{O}_{Y}(H)\right)+h^{0}\left(\omega_{E}(H)\right) \tag{3.8}
\end{equation*}
$$

We put $\delta:=(H \cdot E)_{X}$.
$\operatorname{Claim}(3.9) . \quad h^{0}\left(S, \sigma^{*} H\right)=g+\delta$.

In fact, since E is Cohen-Macaulay, $h^{0}\left(\omega_{Y}(H)\right)=h^{1}\left(\mathscr{O}_{E}(-H)\right)$. By the following exact sequence:

$$
0 \rightarrow \mathscr{O}_{E}(-H) \rightarrow \mathscr{O}_{E} \rightarrow \mathscr{O}_{E \cap H} \rightarrow 0
$$

we have $h^{1}\left(\mathscr{O}_{E}(H)\right)=h^{0}\left(\mathscr{O}_{E \cap H}\right)-h^{0}\left(\mathscr{O}_{E}\right)=\delta-1 . \quad$ Since $\quad h^{0}\left(\sigma^{*} H\right)=$ $h^{0}\left(\sigma_{*} \mathscr{O}_{S}\left(\sigma^{*} H\right)\right)=h^{0}\left(\sigma_{*} \mathscr{O}_{S} \otimes \mathscr{O}_{Y}(H)\right)$ and $h^{0}\left(\mathscr{O}_{Y}(H)\right)=g+1$, we have $h^{0}(S$, $\left.\sigma^{*} H\right)=g+\delta$.

Let $\Delta\left(S, \sigma^{*} H\right):=\operatorname{dim} S+\operatorname{deg} \sigma^{*} H-h^{0}\left(S, \sigma^{*} H\right)$ be the Δ-genus of the polarized variety $\left(S, \sigma^{*} H\right)$ (cf. [3]). Since $\operatorname{dim} S=2$ and $\operatorname{deg} \sigma^{*} H=\left(H^{3}\right)_{X}$ $=2 g-2$, we have

Lemma 12. $\quad \Delta\left(S, \sigma^{*} H\right)=g-\delta$.
Lemma 13. $\left(D \cdot \sigma^{*} H\right)=2(E \cdot H)=2 \delta$.

Proof. By (3.36.2) in Mori [10], we have

$$
0 \rightarrow \mathfrak{O}_{E} \rightarrow \sigma_{*} \mathscr{O}_{D} \rightarrow \omega_{E} \rightarrow 0
$$

Thus we have $\chi\left(\sigma_{*} \mathscr{O}_{D} \otimes H\right)=\chi\left(\mathscr{O}_{E}(H)\right)+\chi\left(\omega_{E}(H)\right)=2 \delta+\chi\left(\mathscr{O}_{E}\right)+\chi\left(\omega_{E}\right)$ $=2$. On the other hand, $\chi\left(\sigma_{*} \mathscr{O}_{D} \otimes H\right)=\chi\left(\mathscr{O}_{D} \otimes \sigma^{*} H\right)=\left(D \cdot \sigma^{*} H\right)+\chi\left(\mathscr{O}_{D}\right)$. Since $\chi\left(\mathscr{O}_{D}\right)=\chi\left(\mathscr{O}_{S}\right)-\chi\left(\omega_{S}\right)=0$, we have $\left(D \cdot \sigma^{*} H\right)=2 \delta$.
Q.E.D.

Let $C \in\left|\sigma^{*} H\right|$ be a smooth member. By Bertini's theorem, such a member C exists. Let us denote by $g(C)$ the genus of C.

Lemma 14. $g(C)=g-\delta$.
Proof. By the adjunction theorem, $2 g(C)-2=C\left(\omega_{s}+C\right)$. Since $\left(C^{2}\right)$ $=2 g-2$ and $\left(C \cdot \omega_{s}\right)=2 \delta$ by Lemma 13, we have $g(C)=g-\delta$.

Let $\mu: M \rightarrow S$ be the minimal resolution, and put $\psi:=\mu \circ \sigma: M \rightarrow Y$. Since $K_{S} \sim-D$ (as a Weil divisor), we have $K_{M} \sim-\widehat{D}-\sum_{i} m_{i} \Delta_{i}\left(m_{i}>0, m_{i} \in \mathbf{Z}\right)$, where \hat{D} is the proper transform of D in M and $U_{i} \Delta_{i}$ is the exceptional set of μ.

Lemma 15. M is rational or ruled.

Proof. Since $H^{0}\left(M, \mathscr{O}_{M}\left(m K_{M}\right)\right)=0$ for $m>0$, by the classification of surfaces, we have the lemma.
Q.E.D.

Lemma 16. If $h^{1}\left(\mathscr{O}_{M}\right)=0$, then $\operatorname{sing} S$ consists of at worst rational singularities, in particular, S is rational.

Proof. Let us consider the following exact sequence:

$$
0 \rightarrow H^{1}\left(S, \mathscr{O}_{S}\right) \rightarrow H^{1}\left(M, \mathscr{O}_{M}\right) \rightarrow H^{0}\left(S, R^{1} \mu_{*} \mathscr{O}_{M}\right) \rightarrow H^{2}\left(S, \mathscr{O}_{S}\right) \rightarrow
$$

By assumption, we have $H^{1}\left(M, \mathscr{O}_{M}\right)=0$. Since $H^{2}\left(S, \mathscr{O}_{S}\right) \cong H^{0}\left(S, \omega_{S}\right)=0$, we have the claim.
Q.E.D.

Now, Mukai-Umemura's example V_{22}^{\prime} is a special class of Fano threefolds of special series with the genus $g=12$, and H_{22}^{\prime} is a non-normal hyperplane section of V_{22}^{\prime} such that $V_{22}^{\prime}-H_{22}^{\prime} \cong \mathbf{C}^{3}$. We can apply the above lemmas to these $X:=$ V_{22}^{\prime} and $Y:=H_{22}^{\prime}$.

Lemma 17. Assume that $(X, Y)=\left(V_{22}^{\prime}, H_{22}^{\prime}\right)$. Then we have
(1) $E_{\text {red }} \cong \mathbf{P}^{1}$,
(2) $Y-E_{\text {red }} \cong \mathbf{C}^{2}$,
(3) $H^{1}(Y ; \mathbf{Z})=0, H^{2}(Y ; \mathbf{Z}) \cong \mathbf{Z}, H^{3}(Y ; \mathbf{Z})=0$,
(4) S is a rational surface and Sing S consists of at worst rational singularities.
(5) $g(C)=12-\delta$ for a general smooth member $C \in\left|\sigma^{*} H\right|$.

Proof. By Lemma 2 and its proof, we have (1) and (2). Since $X-Y \cong \mathbf{C}^{3}$, we have $H^{i}(X ; \mathbf{Z}) \cong H^{i}(Y ; \mathbf{Z})$ for $i \geqq 0$. It is known that $H^{i}\left(V_{22}^{\prime} ; \mathbf{Z}\right)=H^{i}$ $\left(\mathbf{P}^{3} ; \mathbf{Z}\right)$ for $i \geqq 0$, that is, V_{22}^{\prime} has the same cohomology as \mathbf{P}^{3}. This proves (3). Let us consider the following exact sequence (cf. [1]):
(*) $0 \rightarrow H^{2}(Y ; \mathbf{Z}) \rightarrow H^{2}(S ; \mathbf{Z}) \oplus H^{2}(E ; \mathbf{Z}) \rightarrow H^{2}(D ; \mathbf{Z}) \rightarrow$

$$
\rightarrow H^{3}(Y ; \mathbf{Z}) \rightarrow H^{3}(S ; \mathbf{Z}) \rightarrow 0
$$

Since $H^{3}(Y ; \mathbf{Z})=0$, we have $H^{3}(S ; \mathbf{Z})=0$. Since $b_{3}(M)=b_{3}(S)=0$ (cf. [2]), $b_{1}(M)=0$, hence, $h^{1}\left(\mathscr{O}_{M}\right)=h^{1}\left(\mathscr{O}_{S}\right)=0$. By Lemma 16 , we have (4). Since $g=12$, by Lemma 14 , we have (5).
Q.E.D.

Lemma 18. $K_{M}+\psi^{*} H$ is nef.
Proof. Assume that $K_{M}+\psi^{*} H$ is not nef. Then, by Cone theorem and Con. traction theorem in [8] (cf. [9]), there is a contraction $\pi: M \rightarrow Z$ of the extremal ray, where Z is normal and $\pi^{-1}(z)$ is connected for any $z \in Z$.

Case (a). $\operatorname{dim} Z=2$. Then there is a curve R such that $\pi(R)$ is a point and $R^{2}<0,\left(K_{M}+\psi^{*} H\right) \cdot R<0$. Since $\left(\psi^{*} H \cdot R\right) \geqq 0$ and $R^{2}<0$, we have $R \cong \mathbf{P}^{1}$ and $R^{2}=-1$, hence, $\left(\psi^{*} H \cdot R\right)=0$. Thus R is an exceptional curve of μ. Since $\mu: M \rightarrow S$ is the minimal resolution, this is a contradiction.

Case (b). $\operatorname{dim} Z=1$. Since M is rational, we have $Z \cong \mathbf{P}^{1}$. Since $\rho(M)=$ $\rho(Z)+1=2, M$ is isomorphic to \mathbf{F}_{n} (Hirzebruch surface), namely, $\pi: M \rightarrow Z \cong$ \mathbf{P}^{1} is a \mathbf{P}^{1}-bundle over \mathbf{P}^{1}. For a fiber f, we have $\left(K_{M}+\psi^{*} H\right) \cdot f<0$. Hence, $\left(\psi^{*} H \cdot f\right)=(H \cdot \phi(f))=1$ since $\left(K_{M} \cdot f\right)=-2$. Thus, Y is a ruled surface swept out by lines on X. By Lemma 2-(2), $E_{\text {red }}$ is a line on X and $E_{\text {red }} \cap \psi(f)$ $=\emptyset$ for a general fiber f. This shows that $\phi(f) \subset Y-E_{\text {red }} \cong \mathbf{C}^{2}$. This is a contradiction.

Case (c). $\operatorname{dim} Z=0$. In this case, $M \cong \mathbf{P}^{2}$. For a smooth member $C \in$ $\left|\psi^{*} H\right|$, we put $\operatorname{deg} C=d$. Then, $C^{2}=d^{2}=22$, this is a contradiction.
Q.E.D.

By Lemma 2-(3), $Y:=H_{22}^{\prime}$ is a ruled surface swept out by conics which intersect the line $\ell:=\operatorname{Sing} Y$ in $X:=V_{22}^{\prime}$, where $\ell=E_{\text {red. }}$ Take a general conic γ in Y. Then, $\gamma \cap E_{\text {red }} \neq \emptyset$. Let $\hat{\gamma}$ be the proper transform of γ in M. Then we have $\left(\psi^{*} H \cdot \hat{\gamma}\right)=(H \cdot \gamma)=2$. Since $K_{M}+\phi^{*} H$ is nef by Lemma 18, we have $\left(K_{M}+\right.$ $\left.\psi^{*} H\right) \cdot \hat{\gamma} \geqq 0$, hence, $\left(K_{M} \cdot \hat{\gamma}\right) \geqq-2$. On the other hand, since $K_{M} \sim-\hat{D}-\sum_{i}$ $m_{i} \Delta_{i}\left(m_{i} \geqq 0, m_{i} \in \mathbf{Z}\right)$, we have $\left(K_{M} \cdot \hat{\gamma}\right) \leqq 0$.
$\operatorname{Claim}(1) . \quad\left(K_{M} \cdot \hat{\gamma}\right) \neq 0$.
In fact, if $\left(K_{M} \cdot \hat{\gamma}\right)=0$, then $(\hat{D} \cdot \hat{\gamma})=0,\left(\Delta_{i} \cdot \hat{\gamma}\right)=0$ for each i. We take a general γ. Thus $\mathbf{P}^{1} \cong \hat{\gamma} \hookrightarrow M-\hat{D}-\cup \Delta_{i} Y-E_{\text {red }} \cong C^{2}$. This is a contradiction.

Claim (2). There is an irreducible conic γ_{0} in Y such that $\left(K_{M} \cdot \hat{\gamma}_{0}\right)=-2$ (that is, $\hat{\gamma}_{0} \cong \mathbf{P}^{1}$ with the self-intersection number $\hat{\gamma}_{0}^{2}=0$).

In fact, by Claim (1), we have $\left(K_{M} \cdot \hat{\gamma}\right)=-1$ or -2 for any conic γ in Y. If $\left(K_{M} \cdot \hat{\gamma}\right)=-1$, then $\hat{\gamma}$ is a (-1)-curve. Thus, M contains a continuous family of (-1)-curves. This is a contradiction.

Let $\tau: M \rightarrow \mathbf{P}^{1}$ be a morphism defined by the linear system $\left|\hat{\gamma}_{0}\right|$. For a general p in $\mathbf{P}^{1}, \tau^{-1}(p) \sim \hat{\gamma}_{0}$.

Lemma 19. $K_{M}+\psi^{*} H \sim(11-\delta) \hat{\gamma}_{0}$.

Proof. By Basepoint-free Theorem of Kawamata [7], we have $\mathrm{Bs} \mid m\left(K_{M}+\right.$ $\left.\phi^{*} H\right) \mid=\emptyset$ for $m \gg 0$. We put $\hat{f}:=\tau^{-1}(p)$ (a general fiber of τ). By Claim (2), $\left(K_{M}+\psi^{*} H\right) \hat{f}=0$. Let $\tau_{m}: M \rightarrow Z_{0}$ be a morphism defined by the linear system $\left|m\left(K_{M}+\phi^{*} H\right)\right|$. Since M is rational and since $\tau_{m}(\hat{f})$ is a point, we have $Z_{0} \cong$ \mathbf{P}^{1}, in particular, we have $m\left(K_{M}+\phi^{*} H\right) \sim k \hat{\gamma}_{0}$. Since $\left(\psi^{*} H \cdot K_{M}\right)=-2 \delta$, $\left(\phi^{*} H \cdot \psi^{*} H\right)=22$ and $\left(\phi^{*} H \cdot \hat{\gamma}_{0}\right)=2$, we have $(22-2 \delta) m=2 k$, hence, $k=(11-\delta) m$. Since Pic M has no torsion, we have $\left(K_{M}+\psi^{*} H\right) \sim(11-\delta) \hat{\gamma}_{0}$.
Q.E.D.

Corollary 20. Bs $\left|K_{M}+\phi^{*} H\right|=\emptyset$.

Let \hat{f} be a regular fiber of τ. Then $\phi(\hat{f})=\gamma \hookrightarrow Y \hookrightarrow X$ is a conic in X.

Lemma 20. Each Δ_{i} is contained in a singular fiber of τ.

Proof. Assume that Δ_{1} not contained in any singular fiber of τ. Then $\tau_{\mid \Delta_{1}}: \Delta_{1}$ $\rightarrow \mathbf{P}^{1}$ is a surjective morphism, hence, $\left(\Delta_{1} \cdot \hat{f}\right) \neq 0$ for a regular fiber \hat{f}. Since $\psi\left(\Delta_{1}\right)$ is a point and since $\phi(\hat{f})=: \gamma$ is a conic in $Y \hookrightarrow X$, we have an infinite number of conics in X passing through the point $\psi\left(\Delta_{1}\right) \in X$. On the other hand, for each point $x \in X$, the number of conics passing through the point x is finite by Iskovskih [7]. Thus we have an contradiction.
Q.E.D.

Lemma 21. Let B be an irreducible component of a singular fiber of $\tau: M \rightarrow \mathbf{P}^{1}$. Then $B^{2}=-1$ or -2 . Furthermore,
(i) $B^{2}=-1 \Leftrightarrow \phi(B)=E_{\mathrm{red}} \cong \mathbf{P}^{1}$
(ii) $B^{2}=-2 \Leftrightarrow B=\Delta_{i}$ for some i.

Proof. Since $\left(K_{M}+\psi^{*} H\right) B=(11-\delta) \cdot(\hat{\gamma} \cdot B)=0$, we get $\left(K_{M} B\right)=$ - $\left(\psi^{*} H \cdot B\right) \leqq 0$. Since $B \cong \mathbf{P}^{1}$ and $B^{2}<0$, we have $B^{2}=-1$ or $B^{2}=-2$. (i): $B^{2}=-1 \Leftrightarrow\left(K_{M} \cdot B\right)=-1 \Leftrightarrow\left(\psi^{*} H \cdot B\right)=1 \Leftrightarrow(H \cdot \psi(B))=1 \Leftrightarrow \psi(B)$ is a line in $Y \Leftrightarrow \phi(B)=E_{\text {red }}$ (because $E_{\text {red }}=$ Sing Y is a unique line in Y by Lem. ma 2-(2)). (ii): $B^{2}=-2 \Leftrightarrow \phi(B)$ is a point of $Y \Leftrightarrow B$ is a component of the exceptional set of $\mu \Leftrightarrow B=\Delta_{i}$ for some i.
Q.E.D.

Corollary 22. Sing S consists of (at worst) rational double points.
Proof. For each Δ_{i}, one has $\left(\Delta_{i} \cdot \Delta_{i}\right)=-2$. This proves the corollary.
Lemma 23. $\delta=4$.
Proof. Let $C \in\left|\sigma^{*} H\right|$ be a smooth member. By Bertini theorem, such a member C exists. We put $C_{0}:=\sigma(C)$. Then $\sigma: C \rightarrow C_{0}$ is the normalization. We may assume that C_{0} is contained in a $K 3$ surface H_{0}, which is a hyperplane section of $X:=V_{22}^{\prime}$. Since Sing $Y=: E_{\text {red }}$ is a line in X, Sing C_{0} consists of only one point p_{0}. On the other hand, from the defining equation (*) in Lemma 2, the local equation of C_{0} around p_{0} in H_{0} can be written as $u_{0} x^{3}+u_{1} x^{2} y+u_{2} x y^{3}+$ $u_{3} y^{5}=0$, where $p_{0}=(0,0)$. Thus C_{0} has two singular points p_{0} and p_{0}^{\prime} (infinitely near singular point lying over p_{0}) with the multiplicity three and two respectively. Since H_{0} is a $K 3$ surface, the arithmetic genus $p_{a}\left(C_{0}\right)=\frac{1}{2}\left(C_{0} C_{0}\right)+1=12$, hence, the genus $g(C)=p_{a}\left(C_{0}\right)-4=8$. Since $g(C)=12-\delta$ by Lemma 12 , we have $\delta=4$.

> Q.E.D.

Lemma 24. $K_{M}^{2}=-6$ and $b_{2}(M)=16$.
Proof. Since $\left(K_{M}+\psi^{*} H\right)^{2}=K_{M}^{2}-4 \delta+22=0$ and $\delta=4$, we have $K_{M}^{2}=$ -6 . By Noether formula, we have $b_{2}(M)=16$.
Q.E.D.

Lemma 24. The number of the singular fiber of $\tau: M \rightarrow \mathbf{P}^{1}$ is equal to one.

Proof. Let $F_{i}(1 \leqq i \leqq t)$ be a singular fiber of $\tau, 1+\alpha_{i}$ the number of the irreducible components of F_{i}, and e_{i} the number of the irreducible components of $\overline{F_{i}-\Delta}$, where $\Delta:=\cup \Delta_{i}$. By Lemma 21, $e_{i}=$ the number of irreducible components of $\hat{D} \cap F_{i}=$ the number of (-1)-curves in F_{i}. Since M is rational, we have $b_{2}(M)=2+\sum_{i} \alpha_{i}$. Since $b_{2}(M)=b_{2}(S)+b_{2}(\Delta)$ and $b_{2}(\Delta)=\sum_{i}\left(1+\alpha_{i}\right.$ $-e_{i}$), we have $b_{2}(S)=2-\sum\left(1-e_{i}\right)$. On the other hand by the following exact sequence (cf. [1]):

$$
\begin{array}{cc}
0 \rightarrow H^{2}(Y ; \mathbf{Z}) \rightarrow H^{2}(S ; \mathbf{Z}) \oplus H^{2}(E ; \mathbf{Z}) \rightarrow H^{2}(D ; \mathbf{Z}) \rightarrow 0, \\
\text { ॥I } & \text { ॥I } \\
\mathbf{Z} & \mathbf{Z}
\end{array}
$$

we have $b_{2}(S)=b_{2}(D)$. Since $K_{M} \sim-\hat{D}-\sum m_{i} \Delta_{i}$ and $\left(K_{M} \cdot \hat{f}\right)=-2$ for a regular fiber \hat{f} of τ, we have $(\hat{D} \cdot \hat{f})=2$. This shows that $b_{2}(\widehat{D})>\sum e_{i}$. Thus we have $2-\sum\left(1-e_{i}\right)=b_{2}(S)=b_{2}(D)=b_{2}(\widehat{D})>\sum e_{i}$, that is, $2>t \geqq 1$. Therefore we have $t=1$.
Q.E.D.

Lemma 25. $\widehat{D}=2 \widehat{D}_{1}+3 \widehat{D}_{2}+3 \widehat{D}_{3}$, where \widehat{D}_{1} is a section of $\tau: M \rightarrow \mathbf{P}^{1}$ and \widehat{D}_{i} 's are the (-1)-curves in the singular fiber of τ for $i=2,3$.

Proof. Let $\sigma_{1}: X_{1} \rightarrow X, Y_{1}, L_{1}, A_{i}(1 \leqq i \leqq 3), \ell_{1}, f_{1}$ be as in Lemma 6. Since $Y_{1} \sim \sigma^{*} H-3 L_{1}$, by the adjunction formula, we have $K_{Y_{1}} \sim-\left.2 L_{1}\right|_{Y_{1}} \sim$ $-2\left(A_{1}+A_{2}+A_{3}\right)$ as a Weil divisor. Let $\nu: \bar{S}_{1} \rightarrow Y_{1}$ be the normalization and A_{1}^{\prime} (resp. \bar{A}_{1}^{\prime}) be the closed subscheme in Y_{1} (resp. \bar{S}_{1}) defined by the conductor of ν. Since $\operatorname{Sing} Y_{1}=A_{1}, \operatorname{supp} A_{1}=\operatorname{supp} A_{1}^{\prime}$.

Claim (1). There is a morphism $\eta: \bar{S}_{1} \rightarrow S$ such that $\sigma \circ \eta=\sigma_{1} \circ \nu$ (see D-2).

In fact, let \bar{A}_{i} be the proper transform of A_{1} in \bar{S}_{1}. Since $\bar{S}_{1}-\cup \operatorname{supp} \bar{A}_{i} \cong$ $Y_{1}-\cup \operatorname{supp} A_{i} \cong Y-\operatorname{supp} E$, we have the claim. In particular, $\eta\left(\operatorname{supp} \bar{A}_{3}\right)$ is a point on $S, \bar{S}_{1}-\operatorname{supp} \bar{A}_{3} \cong S-\eta\left(\operatorname{supp} \bar{A}_{3}\right) \quad$ and $\quad \eta\left(\operatorname{supp} \bar{A}_{1} \cup \operatorname{supp} \bar{A}_{2}\right)$ $=\operatorname{supp} D$.

We put $D_{1}:=\eta_{*}\left(\bar{A}_{2}\right)$. Since $A_{2} \sim \ell_{1}+4 f_{1}$ in L_{1}, A_{2} is reduced, hence, D_{1} is reduced. Let \widehat{D}_{1} is the proper transform of D_{1} in M.

Claim (2). $\quad \widehat{D}_{1}$ is a section of $\tau: M \rightarrow \mathbf{P}^{1}$, and $\left(\psi^{*} H \cdot \widehat{D}_{1}\right)=1$.
In fact, let γ be a general conic $Y \hookrightarrow X$, and $\bar{\gamma}$ the proper transform of γ in $Y_{1} \hookrightarrow X_{1}$. Then we have $\left(L_{1} \bar{\gamma}\right)=1$. Since $Y_{1} \cdot L_{1} \sim\left(2 \ell_{1}\right)+\left(\ell_{1}+4 f_{1}\right)+\left(3 f_{1}\right)$ and $\bar{\gamma} \hookrightarrow Y_{1}$, we have $\left(A_{2} \cdot \bar{\gamma}\right)=1$, hence, $\left(\widehat{D}_{1} \cdot \bar{\gamma}\right)=1$, where $\bar{\gamma}$ is the proper transform of γ in M. Thus \widehat{D}_{1} is a section of $\tau: M \rightarrow \mathbf{P}^{1}$. Since $\left(\sigma_{1}^{*} H \cdot A_{2}\right)=$ $\left(\sigma_{1}^{*} H \cdot \ell_{1}+4 f_{1}\right)=1$, we have $\left(\phi^{*} H \cdot \widehat{D}_{1}\right)=1$.

Claim (3). $\widehat{D} \sim 2 \widehat{D}_{1}+3 \widehat{D}_{2}+3 \widehat{D}_{3}$, where $\widehat{D}_{2}, \widehat{D}_{3}$ are the (-1)-curves in the singular fiber of τ.

In fact, since $-K_{M} \sim \hat{D}+\sum m_{i} \Delta_{i}$, we have $2=(\widehat{D} \cdot \hat{f})+\sum m_{i}\left(\Delta_{i} \cdot \hat{f}\right)$ for a regular fiber \hat{f} of τ. Since Δ_{i} 's are contained in the singular fiber of τ, we have $(\widehat{D} \cdot \hat{f})=2$. Since $\eta\left(\operatorname{supp} \bar{A}_{1} \cup \bar{A}_{2}\right)=\operatorname{supp} D$ and $\left(A_{2} \cdot \bar{\gamma}\right)=1$, we have $\widehat{D}=$ $2 \widehat{D}_{1}+\sum n_{i} \widehat{D}_{i}\left(i \geqq 2, n_{i} \in \mathbf{Z}, n_{i}>0\right)$. We note that the proper transform of γ in M is linearly equivalent to a regular fiber \hat{f} of $\tau: M \rightarrow \mathbf{P}^{1}$. Since \widehat{D}_{i} 's ($i \geqq 2$) are contained in the singular fiber of τ, by Lemma $21, \widehat{D}_{i}$'s are the (-1)-curves in the singular fiber of τ. Hence $\left(\psi^{*} H \cdot \widehat{D}_{i}\right)=1(i \geqq 2)$.

Let us recall the normalization $\sigma: C \rightarrow \mathrm{C}_{0}$ (see the proof of Lemma 6). From the local defining equation of C_{0} in H_{0} there, one can see that $\sigma^{-1}\left(p_{0}\right)$ consists of three distinct points, where $p_{0}:=\operatorname{Sing} C_{0}$. This shows that $\widehat{D}=2 \widehat{D}_{1}+a \widehat{D}_{2}$ $+b \widehat{D}_{3}$, where $a+b=6$, since $\left(\phi^{*} H \cdot \widehat{D}\right)=8$. On the other hand, since $\bar{K}_{S_{1}} \sim$ $-2 \nu^{*}\left(A_{1}+A_{2}+A_{3}\right)-\bar{A}_{1}^{\prime}$ as a Weil divisor, we have $D \sim-K_{S} \sim 2 \eta_{*} \nu^{*} A_{2}+$ $\left(2 \eta_{*} \nu^{*} A_{1}+\eta_{*} \bar{A}_{1}^{\prime}\right)$. Since $\operatorname{supp} D_{1}=\operatorname{supp} \eta_{*} \nu^{*} A_{2}$ and $\operatorname{supp} \eta_{*} \bar{A}_{1}^{\prime}=\operatorname{supp}$ $\eta * \bar{A}_{1} \hookrightarrow \operatorname{supp} D$, we have $a=b=3$. This completes the proof.
Q.E.D.

Theorem 2. Let $(X, Y):=\left(V_{22}^{\prime}, H_{22}^{\prime}\right)$ be as in §1. Let $\sigma: S \rightarrow Y:=H_{22}^{\prime}$ be the normalization, and E the non-normal locus defined by the conductor of σ, and D the analytic inverse image of E. Let $\mu: M \rightarrow S$ be the minimal resolution and $\mu^{-1}(\operatorname{Sing} S)=\cup \Delta_{i}$, where Δ_{i} 's are irreducible. Then,
(1) E is non-reduced and $E_{\text {red }} \cong \mathbf{P}^{1}$,
(2) Sing $S=p_{0}, p_{0}$ is a rational double point of A_{13}-type,
(3) $D \sim 2 D_{1}+3 D_{2}+3 D_{3}$ as a Weil divisor on S, where D_{i} 's are irreducible reduced Weil divisors on S such that $D_{i} \cong \mathbf{P}^{1}$ and $D_{1} \cap D_{2} \cap D_{3}=\left\{p_{0}\right\}$,
(4) there is a fibering $\tau: M \rightarrow \mathbf{P}^{1}$ with exactly one singular fiber $\tau^{-1}(0)$ such that $\tau^{-1}(0)=\cup \Delta_{i} \cup \widehat{D}_{2} \cup \widehat{D}_{3},\left(\widehat{D}_{i} \cdot \widehat{D}_{i}\right)=-1,\left(\Delta_{j} \cdot \Delta_{j}\right)=-2$ for $i \geqq 2, j \geqq 1$, in particular, \widehat{D}_{1} is a section of τ (see Figure 2 below), where \widehat{D}_{i} is the proper transform of \widehat{D}_{i} in M, and
(5) $K_{M} \sim-2 \widehat{D}_{1}-3 \widehat{D}_{2}-3 \widehat{D}_{3}-\sum_{i=1}^{7}(3+i) \Delta_{i}-\sum_{i=1}^{6}(3+i) \Delta_{14-i}$, where $\left(\widehat{D}_{1} \cdot \Delta_{7}\right)=\left(\widehat{D}_{2} \cdot \Delta_{1}\right)=\left(\widehat{D}_{3} \cdot \Delta_{13}\right)=1,\left(\widehat{D}_{i} \cdot \widehat{D}_{i}\right)=0(i \neq j),\left(\Delta_{i} \cdot \Delta_{i+1}\right)=1$, $\left(\Delta_{i} \cdot \Delta_{j}\right)=0(|i-j|>1)$.

Proof. By Lemma 2-(1), $E_{\text {red }} \cong \mathbf{P}^{1}$. By Lemma $23,(E \cdot H)=4$ for a hyper. plane section H of $X:=V_{22}^{\prime}$. This proves (1). By Lemma 24, $\tau: M \rightarrow \mathbf{P}^{1}$ has exactly one singular fiber and the self-intersection number of each irreducible component the singular fiber is equal to -1 or -2 . By Lemma 21 and Lemma $25, \widehat{D}_{2}$ and \widehat{D}_{3} are the (-1)-curves in the singular fiber of τ, and other components of the singular fiber are the exceptional divisor of μ. This enables us to determine the type of the singular fiber of τ (see Figure 2). This proves (2), (3), (4).

Since $K_{M} \sim-\hat{D}-\sum m_{i} \Delta_{i}$, by the adjunction formula, we have (5)
Q.E.D.

Remark 2. Our example ($V_{22}^{\prime}, H_{22}^{\prime}$) of a compactification of \mathbf{C}^{3} gives a counter example to Theorem (3.16) in the paper of Peternell [14].

REFERENCES

[1] G. Barthel - L. Kaup, Topologie des espaces complexes compacts singulieres, Montreal Lecture notes, Vol. 80 (1986).
[2] L. Brenton, Some algebraicity criteria for singular surfaces, Invent. math., 41 (1977), 129-147.
[3] T. Fujita, On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci. Univ. of Tokyo, 22 (1975), 103-115.
[4] M. Furushima, Singular del Pezzo surfaces and analytic compactifications of 3-dimensional complex affine space \mathbf{C}^{3}, Nagoya Math. J., 104 (1986), 1-28.
[5] M. Furushima - N. Nakayama, The family of lines on the Fano threefold V_{5}, Nagoya Math. J., 116 (1989), 111-122.
[6] M. Furushima, Analytic compactifications of \mathbf{C}^{3}, Compositio Math., 76 (1990), 163-196.
[7] V. A. Iskovskih, Fano 3-folds II, Math. U. S. S. R. Izvestiya, 12 (1978), 469-506.
[8] Y. Kawamata, The cone of curves of algebraic varieties, Ann. Math., 119 (1984), 603-633.
[9] Y. Kawamata - K. Matsuda - M. Matsuki, Introduction to the minimal model problem, in Algebraic Geometry, Sendai, (T. Oda, ed,) Advanced Studies in Pure Math., 10 (1987), Kinikuniya, Tokyo and North-Holland, Amsterdam, 551-590.
[10] S. Mori, Threefolds whose canonical bundles are not numerical effective, Ann. Math., 116 (1982), 133-176.
[11] S. Mukai- H. Umemura, Minimal rational threefolds, Lecture Notes in Math., 1016, Springer-Verlag (1983), 490-518.
[11a] S. Mukai, On Fano threefolds, to appear in "Projective Geometry", Trieste (1989).
[12] M. Reid, Minimal of canonical 3-folds, Algebraic Varieties and Analytic Varieties (S. Iitaka, ed.), Advanced Studies in Pure Math., 1(1983), Kinokuniya, Tokyo and North-Holland, Amsterdam, 131-180.
[13] Th. Peternell - M. Schneider, Compactifications of \mathbf{C}^{3}, I, Math. Ann., 280 (1988), 129-146.
[14] Th. Peternell, Compactifications of \mathbf{C}^{3}, II, Math. Ann., 283 (1989), 121-137.

Department of Mathematics
College of Education
Ryukyu University
Nishihara-cho, Okinawa
903-01, Japan

