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HOLOMORPHIC FAMILIES OF GEODESIC DISCS

IN INFINITE DIMENSIONAL TEICHMULLER SPACES

HARUMI TANIGAWA

1. Introduction

The theory of quasiconformal mappings plays an important role in Teichmϋl-

ler theory. The Teichmϋller spaces of Riemann surfaces are defined as quotient

spaces of the spaces of Beltrami differentials, and the Teichmϋller distances are

defined to measure quasiconformal deformations between the Riemann surfaces

representing points in the Teichmϋller spaces. The Teichmϋller spaces are com-

plex Banach manifolds equipped with natural complex structures such that the

canonical projections are holomorphic. It is known (see Gardinar [4]) that the

Teichmϋller distance, defined independently of the complex structures, coincides

with the Kobayashi distance.

In spite of the naturality of the definition of a Teichmϋller space as a

quotient of Beltrami differentials, for given two Beltrami differentials it is hard to

determine whether they are equivalent or not. For this reason, it is not trivial to

describe geodesic lines with respect to the Teichmϋller-Kobayashi metric.

In finite dimensional cases, each pair of points determines a unique geodesic

line through them, and the geodesic line is obtained by the unique extremal

differential called a Teichmϋller differential. Namely, each geodesic line through

the base point is represented as {tμ : — 1 < t < 1} with a Teichmϋller differen-

tial μ. On the other hand, little was known about infinite dimensional cases for a

long time. In this case, it is known that there exists a point p which contains two

different extremal Beltrami differentials μx and μ2, and both of the sets {tβ\/

|| μι || oo: - 1 < t < 1} and {tμ2A\ β2 II «,: - 1 < t < 1} are geodesic lines. Howev-

er, one cannot conclude immediately that these lines are distinct, since equivalence

of μι and μi does not imply equivalence or non-equivalence of tμ\ and tμ2 for

tΦ 1.

Recently, L. Zhong [20] showed non-uniqueness of geodesic lines through
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certain points in the universal Teichmϋller space. In this paper, we shall

construct, in any infinite dimensional Teichmϋller space, a non-trivial family with

a complex analytic parameter, of geodesic discs through a pair of points. Our

proof is not a direct extension of [20] but makes full use of the characteristic

properties of ends with infinite hyperbolic area, pointed out by Taniguchi [16] and

Maitani [10]. Our construction is related to the following problem.

For a finite dimensional Teichmϋller space T(S), we used the equality of the

Kobayashi distances and the Teichmϋller distances, together with properties of the

boundary dT(S) (in the sense of Bers), to show certain rigidity property of

proper holomorphic mappings of Δ into T(S), where Δ stands for the unit disc

{z ^ C; I z\ < 1} ([17]). Namely, we showed that no proper holomorphic mapping

can be deformed with a complex analytic parameter. Here, we have a natural ques-

tion : is the same true for proper holomorphic mappings into an infinite dimensional

Teichmύller space T(R)? To this question, Professor C. McMullen suggesed how to

construct non-rigid holomorphic proper mappings of Δ into infinite dimensional

Teichmϋller spaces (oral communication). His idea is as follows (see Sections 2 and

3 for details): on an analytically infinite Riemann surface R there exists an extre-

mal Beltrami differential μ with a degenerate Hamilton sequence (cf. Section 2).

Replacing μ by 0 on a local disc, we have an extremal Beltrami differential on R

which vanishes on the local disc, in contrast with the case of an analytically finite

Riemann surface. Deforming such a Beltrami differential on the local disc, we get a

non-trivial family of holomorphic proper mappings of Δ into T(R) with a

complex analytic parameter. We develop his idea to construct a holomorphic fami-

ly of geodesic discs. Of course, a holomorphic isometry Δ —* T(R) in such a fami-

ly is a non-rigid proper holomorphic mapping.

In the last section, we shall show that there still exist rigid holomorphic

mappings into infinite dimensional Teichmϋller spaces. We investigate the bound-

ary behavior of a holomorphic mapping of Δ into T(R) and give a sufficient con-

dition for holomorphic mappings into T(R) to be rigid.

The author would like to thank Professor C. McMullen and Professor H. Shiga

for useful suggestion and information.

2. Notation

In this section we fix our notation and recall some known facts which we use.

See Lehto [9] for details.

Let R be a Riemann surface with a hyperbolic metric, and let p : H —• R be a

universal covering map with a covering transformation group Γ, where H denotes
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the upper half plane.

Denote by Bι(R) the space of all Beltrami differentials on R with supremum

norms smaller than 1. Each element τ ^ B\{R) lifts to a (—l,l)-form τ = p*τ for

Γ on H, namely, f ° γ X γ'/γ' = f for every γ ^ Γ. It is well-known that there

exists unique quasiconformal homeomorphism fτ : H —* H with Beltrami differen-

tial f whose extension to H U R fixes 0,1 and °°, where R stands for the real

axis. This quasiconformal homeomorphism fτ induces a group isomorphism of the

Fuchsian group Γ onto the Fuchsian group fτ Γ(fτ)~ι. The Fuchsian group

fτΓ{fτ)~ι determines a Riemann surface Rτ = H//' r/^(/ τ)~1 a n d / r is projected to

a quasiconformal mapping fτ: R—+Rτ. Thus each element τ ^ B\{R) determines

a pair of a Riemann surface Rτ and a quasiconformal mapping fτ: R-* Rτ with

Beltrami differential r. (In general, a Beltrami differential on i? determines a

quasiconformal mapping uniquely up to left compositions of conformal mappings.

We have defined fτ as above in order to cancel this ambiguity for arguments in

following sections.) Two elements Γi and r2 in Bι(R) are said to be equivalent

provided / T l | R = f*2 | R. It is known that this equality holds if and only if RTι

— RX2 and fT2 ° {fTι)~ι is homotopic to the identity with a homotopy constant on

the border of R. An element r e Bi(R) is said to be ίπviα/ if it is equivalent to 0.

A quasiconformal mapping with a trivial differential is also said to be trivial.

The Teichmuller space T(R) of R is the quotient space of Bi(R) by the above

equivalence relation. For each r ^ Bι(R), let [r] denote the point of T(R) deter-

mined by T. It is known that T(R) is a Banach manifold equipped with a natural

complex structure such that the canonical projection TΓ : Bi(R) —* T(R) is holo-

morphic.

Let A(R) denote the space of all holomorphic integrable quadratic differen-

tials on R. The space A(R) is identified with the cotangent space of T(R) at [0].

The dimension of T(R) and that of A(R) are finite if and only if R is analytically

finite, or equivalently, if and only if 7̂  is a finitely generated Fuchsian group of

the first kind.

The Teichmuller distance d([μo\, [vo]) of two points [μol and [IΛJ in T(R) is

defined by

d([μ0], [vol) = 2"inf {logKfu.^-i \ μ e [ μ 0 ] , v e [v0]},

where Kfno<jv)-i stands for the maximal dilatation of fu ° (fu)~ι. There always

exist quasiconformal mappings which attain the infimum. The Teichmuller dis-

tance coincides with the Kobayashi hyperbolic distance (see Gardinar [4 Chapter

7]).

A Beltrami differential μ ^ Bι(R) is said to be extremal provided that the
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supremum norm is minimal in its equivalence class. It is known that a Beltrami

differential μ is extremal if and only if there exists a sequence iφj}T=ι of elements

in A(R) with unit integral norm such that ||μ||<χ> = limŷ oo IR μφj. Such a sequ-

ence is called a Hamilton sequence for μ. Note that {φj} may not contain a subsequ-

ence which converges in norm. A Hamilton sequence {φj} is said to be degenerate

if it converges to 0 uniformly on compact subsets in R.

A Beltrami differential of the form zφ/\ φ | on R with some z ^ Δ = {z ^

C ; I z\ < 1} and φ ^ A(R) is called a Teichmuller differential Obviously, Teich-

mϋller differentials are extremal. It is known that if an equivalence class [μ] ^

T(R) contains a Teichmuller differential, then the Teichmuller differential is the

unique extremal differential in the equivalence class [μ]

If dim T(R) < °° then each equivalence class [μ] ^ T(R) contains a unique

Teichmuller differential. On the other hand, whenever dim T(R) = °o, there ex-

ists an extremal differential with a degenerate Hamilton sequence which is not a

Teichmuller differential. Such a differential is constructed, for example, as follows.

(This may be a known fact. We represent, however, since it seems hard to find a

reference in which this fact is written in the following form.)

PROPOSITION 2.1. //dim T(R) = °°, there exists an extremal differential on R

with a degenerate Hamilton sequence which is not a Teichmuller differential.

Proof When dim T{R) = °°, the Banach space A(R) is also infinite dimen-

sional. Hence there exists a sequence {0, }f=i ^ A(R) with || φj || = JR | φj | = 1

for j = 1,2,3..., which converges to a quadratic differential φ ^ A(R) but does

not converges in norm. We may assume in addition that 0 = 0 since otherwise we

may replace {φj} by {(φj — φ)/\\ φj — φ ||}. It is easy to see that there exists an

exhaustion of R by compact sets {Kj}JLi and a subsequence {ΦN)7=I of

{0; }jLi such that / κj\κj-i \ ΦNA > 1 ~~ l/2 y and f & I ΦNIC I < l/2 y for each posi-

tive integer j and k with j < k. Put

μ = ΦN,A ΦNΪ I on Kj\Kj-u j = 1,2,3,....

Then for each z ^ Δ, the Beltrami differential zμ is an extremal differential with

the degenerate Hamilton sequence {0^}.

Let / : Δ •—• T(R) be a holomorphic isometry with respect to the Poincare

distance on Δ and the Teichmuller distance. We shall call the image f(Δ) a geode-

sic disc. If g : Δ —* Bι(R) is a holomorphic mapping such that £(0) = 0 and that

for each z ^ Δ the Beltrami differential g(z) is an extremal differential with

\\g(z) ||oo = I z | , then π ° g(Δ) is a geodesic disc through [0], where π : Bχ(R) —*
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T(R) is the canonical projection. If a Beltrami differential μ ^ Bχ{R) is extremal

then {zμ/\μ lU z ^ 4}is a geodesic disc through [0] and [μ].

When dim T(R) < oo every geodesic disc through [0] is of the form {zφ/

\ φ\; z & Δ) for an element φ ^ A(R). Such a geodesic disc is called a Teichmύl-

ler disc. When dim T(R) = oo there exists a geodesic disc which is not a Teich-

mϋller disc.

Let M be a finite or infinite dimensional complex space, and let / : Δ —• M be

a holomorphic mapping. We shall say / is rigid if every holomorphic mapping

/ : Δ x Δ—*M with /( , 0) = / ( * ) on Δ depends only on the first variable,

namely, / ( , ζ) = / ( ) for each ζ ^ Δ.

3. Holomorphic family of geodesic discs

In this section, we shall construct holomorphic families of geodesic discs

through certain pairs of points in infinite dimensional Teichmϋller spaces.

In what follows, the Riemann surface R is assumed to be analytically infinite

unless noticed otherwise. In this case, the Fuchsian group Γ representing R is

either infinitely generated or of the second kind. Let U c R be a Jordan domain

with analytic boundary. The following fact plays an important role. (For an

element of Bι(R), triviality is considered with respect to the equivalence relation

for J

THEOREM 3.1 (Taniguchi [16], Maitani [10]). Let R and U be as above. Let fv

be a Quasiconformal self-mapping of R with trivial Beltrami differential v ^ Bi(R)

supported in D. Then the restriction of fv to R\U coincides with the identity mapping.

Recall that in the previous section we defined a quasiconformal mapping with

a Beltrami differential so that the ambiguity of compositions of conformal map-

pings is cancelled.

Proof Taniguchi [16] showed the above statement for a certain class of

Riemann surfaces with no border ([16 Theorem 3]). Maitani [10] extended the

statement of [16] as follows: if a homology preserving quasiconformal self-mapping

/of a Riemann surface is conformal on an end G with infinitely generated homolo-

gy group, then the restriction of / to G is the identity map. These results covers

the statement of the above theorem except for the case that the Fuchsian group Γ

is finitely generated of the second kind. In this case, the above statement follows

immediately from the definition of fv. O
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In general, for a trivial Beltrami differential v and a positive number t e

(0, 1), tv is not necessarily trivial (Gehring [5]). We recall the following example

by Reich (see Kra [8] p.250) constructed in the case of the universal Teichmϋller

space T(Δ). Set τ α (ζ) = - αζ/( l - α ζ ) for ζ e Δ and α e J 1 / 2 = {α e C

I α I < 1/2}. If a Φ 0, then rα is trivial as an element of Bι(Δ) but there exists a

positive number t e (0,1) such that ίτα is not trivial. Note that the assignment

a »-* τa is a holomorphic mapping of 4i/2 into B\{Δ). The above theorem enables

us to get such a family of Beltrami differentials on R.

PROPOSITION 3.2. There exists a family {va}asΔi/2 of Beltrami differentials on R

supported in U, depending holomorphically on the parameter a, such that each va is tri-

vial and that tava is not trivial for some ta

 e (0,1).

Proof Let Bι(U, R) denote the subset of Bι(R) consisting of all Beltrami

differentials supported in U. Let h: U—*Δ be a Riemann mapping. Then the

assignment μ *-* h*μ for μ ^ Bχ(Δ) is a norm-preserving holomorphic mapping of

Bι(Δ) onto Bι(UyR). Furthermore, if we denote by Tϋ(R) the subset of all

points in T(R) determined by Beltrami differentials in Bι(U), then the assign-

ment μ ^ h*μ induces a bijection H : T(Δ) —• Tϋ(R) by [16 Proposition 2] and

Theorem 3.1. Hence μ ^ B\(Δ) is trivial with respect to the equivalence relation

in B\{Δ) if and only if h*μ ^ Bi(O, R) is trivial with respect to the equivalence

relation in Bι(R). Now for the Reich's family {τa)aeΔm, which is recalled above,

put va = h*τa. It follows that the family {va)a^Δι/2 has the desired property. D

Note that for each a ^ Δm the set of positive numbers t for which tva is

trivial is discrete, since the mapping z •-» [ zva] is a non-constant holomorphic

mapping of Δ into T(R).

Theorem 3.1 also implies the following facts.

LEMMA 3.3. Let v ^ B\(R) be a trivial Beltrami differential supported in U,

and μ ^ Bι(R) be a Beltrami differential supported in R\ U. Then

in particular [μ + v\ = [μ].

Proof Let δ denote the Beltrami differential of fu ° fv. Then for each local

parameter z around a point p ^ R,



HOLOMORPHIC FAMILIES OF GEODESIC DISCS 1 2 3

Since v is trivial and supported in U, it follows from Theorem 3.1 that/v(ί7)

= U and fv I R\ U = id. Hence if p e U then fv(p) ^ Uf μ° fv(p) = 0. There-

fore

x 0 + ^
Oil ( i .u 1 + 0 *

Up <E R\U, then fv(z) = z and υ(p) = 0. Hence we have

δ = Λ I Λ — = μ on R\U.

We conclude from the above two formulae that <5 = μ + v. O

LEMMA 3.4. L#£ v ^ Bι(R) be supported in 0, and μ ^ Bι(R) be supported

in R\U. If v is not trivial, then [μ + v] Φ [μ].

Proof Assume that v is not trivial and that [μ + v] = [μ]. We shall draw a

contradiction.

First, note that fu+v{U) = fu(U) (recall that fu+p(R) =fu(R) under the

assumption [ μ + v] — [ μ] ). In fact fu+v ° {fu)~l is a trivial quasiconformal

self-mapping of the Riemann surface Ru — fu(R) and that its Beltrami differential

is supported in fu(U). Hence, by Theorem 3.1, fu+v(U) = fu{U) and fu+v

From the above remark it follows that (fu)~ι ° fβJrV is a trivial quasiconfor-

mal mapping with Beltrami differential supported in U. Let T denote the Beltrami

differential of C/^)"1 o/*+ y. Then by definition f «/r = fu+v. On the other hand,

the Beltrami differential of fu ° fτ is μ + τ by Lemma 3.3. It follows that v = τ.

This is a contradiction since τ is trivial while v is not. D

Now, we note that there exists extremal Beltrami differntials which vanish on

U, whenever R is not analytically finite. In fact, as is noted in the previous sec-

tion, there exists an extremal Beltrami differential μo on R with a degenerate

Hamilton sequence whenever R is not analytically finite. For such a Beltrami

differntial μ0, set

μ = μ0 on R \ U

= 0 on U.

Then μ is an extremal Beltrami differential with the same degenerate Hamilton
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sequence as that for μ0.

THEOREM 3.5. Let μ be an extremal Beltrami differential which vanishes on U

and does not vanish identically on R. Then there exists a family of geodesic discs

through [0] and [μ] with a complex analytic parameter. In particular, geodesic lines

through certain pairs of points in T(R) are not unique whenever dim T(R) — °°

Proof Let {va) CKΞΔM is the family of trivial Beltrami differentials supported

in U as constructed in Proposition 3.2. Put Δr = iz ^ Δ | z \ < r) where r =

|| μ ||«/(1 + || μ |U). We define a holomorphic mapping Φ : Δ x Δr—• T(R) by

where (z, a) e Δ x J r . Note that || μ IU > || ]>>« lU for α e 4 r . Hence for each

(z, α) e /I X 4 the Beltrami differential z(μ + lΛrVllμlU is extremal with the

same degenerate Hamilton sequence as that for μ. It follows that for each a ^ Δr

the holomorphic mapping z «-• Φ(z, a) is an isometry of Δ into T(i?) with respect

to the Poincare distance in Δ and the Teichmuller distance.

Now we verify that Φ : Δ X Δr~* T(i?) has the desired property. First, for

each a e 4 r , the geodesic disc Φ(J, α) contains Φ(0,α) = [0] and Φ(||μ||oo, a)

— [μ + vα] = [μ]. The last equality follows from the assumption of va to be tri-

vial and Lemma 3.3. Next, note that the holomorphic mapping Φ depends on the

second variable a non-trivially, since /iΛ*/||μ||oo is non-trivial for some positive

number ί, we have Φ(t, a) = [tμ/\\μ\U + tva/\\μ\\<Λ * [tμ/\\μ\\~\ = Φ(t, 0) by

Lemma 3.4. •

4. Examples of rigid holomorphic mappings

As we have shown above, there exist non-rigid holomorphic proper mappings

into T(R). Namely, there exists a family of holomorphic proper mappings in the

form (z, ζ) •-• [zμ + ζv], where μ and v are supported in disjoint sets, whenever

dim T(R) = °°, in contrast with finite dimensional cases.

In this section we shall give a sufficient condition for a holomorphic mapping

of Δ into the infinite dimensional Teichmuller space T(R) to be rigid.

For this purpose we introduce the Bers embedding. Let Q(Γ) denote the

space of all bounded holomorphic quadratic differentials for Γ on the lower half

plane L:

Q{Γ) = {φ holomorphic on L, φ y (7O2 = Φ V γ e Γ, sup | (lmz)2φ(z) \ < 00}.
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(Recall Γ is a Fuchsian group acting on H such that H / Γ = R.) The space Q(Γ)

is a Banach space with norm || φ || = s u p 2 e I \(lmz)2φ(z) | for φ e Q(Γ). For each

μ e ^ ( i ? ) , set

μr=p*μ onH

= 0 on L,

where p : H—•* R is the canonical projection. Then there exists a unique quasicon-

formal self-mapping^ of C with Beltrami differential μ! such that

fu(z) = ( z + O ^ + oα), nearz= - i.

Let S (/*//) denote the Schwarzian derivative of /# | L. Then the assignment μ*~*

S(fu) is a holomorphic mapping of Bi(R) into QCΓ) and induces a holomorphic

injection of T(R) onto a bounded domain in Q(Γ). This mapping 7(7?) —• Q(Γ)

is called the Bers embedding of T(R) (see Lehto [9 Chapter V]). Let T(Γ) denote

the image of T(R). We shall identify T(R) with T(Γ) and regard a holomorphic

mapping into T(R) as a holomorphic mapping into T(Γ) c Q(Γ).

For each 0 ^ Q(Γ), let Ŵ  be the uniquely determined locally schlicht mero-

morphic function on L with Schwarzian derivative φ with W^(z) = ( z + 0 " 1

+ 0(1) near z = — i It is known that T(L) is exactly the set of all points

φ e Q(Γ) such that Wφ can be extended to quasiconformal self-mappings of C.

Let S(Γ) denote the set of all points φ ^ Q(Γ) such that Wφ are schlicht on L.

Than it is easy to see that T(Γ) c S(Γ).

When Γ(.Γ) is finite dimensional we utilized the Fatou's theorem and Riesz'

theorem on bounded analytic functions to show rigidity of holomorphic proper

mappings into T(Γ) ([17]). Even when T(Γ) is infinite dimensional, Fatou-Riesz

type claim is shown for holomorphic mappings of Δ into T(Γ). It is not hard to

verify this directly from the definition of T(Γ). However, more generally, it is

known that Fatou-Riesz type claim is valid for certain holomorphic functions in Δ

with values in Banach spaces. For example, let X be a dual space of a separable

Banach space Y. Then every holomorphic mapping Δ —> X has non-tangential

limits almost everwhere in dΔ in weak topology, hence in the strong topology by

the theorem of Hensgen. See Hensgen [6] for more details and references. Now,

note that the space Q (Γ) is identified with a closed subspace of the dual space of

the Banach space Aι(L/Γ) of all integrable holomorphic quadratic differentials on

the Riemann surface L/Γ. Hence we have the following.

PROPOSITION 4.1. Each holomorphic mapping f : Δ —* T(Γ) has radial limits in

T(Γ) almost everywhere in dΔ. If two holomorphic mappings f:Δ—*T(Γ) and
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g : Δ-* T(Γ) has the same radial limits on a positive measure set in dΔ then f^g

on Δ.

Now, we present a sufficient condition for a mapping of Δ into the infinite

dimensional domain T(Γ) to be rigid.

PROPOSITION 4.2. Let f:Δ—>T(Γ) be a holomorphic mapping. Assume that

there exists a positive measure set E C dΔ such that for each eiθ ^ E the area of the

set C\Wf*(ei
θ)(L) is zero, where f*(etθ) stands for the radial limit of f at etθ. Then f is

rigid.

Before proving this fact we exhibit some examples.

EXAMPLE 1. Let / : Δ—• Γ ( l ) be a holomorphic mapping into the universal

Teichmϋller space defined by f(λ) = [λ]. Then for each λ ^ Δ, the function/ι( )

is a composition of Mόbius transformations and the quasiconformal mapping z ^ 2

+ λz for z ^ Δ and z*~+ z + λ/z for z ^ C\Δ. Hence it is easy to see that / satis-

fies the assumption of Proposition 4.2. Therefore/ is rigid.

EXAMPLE 2. Let S be an analytically finite Riemann surface and let G be a

Fuchsian group acting on H and H/G = S. There exists a natural inclusion map

i : T(G) —* Γ ( l ) , which is known to be proper. Let f : Δ—> T(G) be a holom-

morphic proper map. Then almost every radial limit f*(etθ) of i °f: Δ—>T(1)

corresponds to a totally degenerate boundary group (Shiga [15 Theorem 5]), hence

the area of C\Wf*w*)(D is zero by Thurston's theorem. It follows that i ° f is

rigid. When 5 is of (0,4) type or (1,1) type, the fact that the area of C\Wf^ei
θ){L)

is zero follows also from Matsuzaki's result [12], who proved the Ahlfors conjec-

ture affirmatively for two generator groups.

LEMMA 4.3. Let φ be an element of S(Γ) such that the area of C \ Wφ(L) is

zero. Then every holomorphic mapping f : Δ —* S(Γ) ιvithf(O) — φ is constant.

Proof The proof is parallel to the argument in Shiga [14 Theorem 5]. For a

holomorphic mapping/ : Δ —• S(Γ) with /(0) = 0, put g(λ, z) = Wfu) ° Wm(z)

for (yί, z) ^ Δ X Wf(o)(L). Then g is an admissible map in the sense of

Bers-Royden [3]. Hence for each λ ^ Δ, g(λ, •) is extended to a quasiconformal

homeomorphism of C with Beltrami differential supported in C\WΦ(L) By the

assumption the area of this set is zero, hence g(λ,-) is a Mόbius transformation.
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By the behavior of Wf{λ) and Wm near z = — i, the Mόbius transformation

g(λ, ) is the identity map. It follows that Wfu)(' ) = Wm( ), that is, f(λ)

Proof of Proposition 4.2. Let / : Δ —• T(Γ) be a holomorphic mapping, and

assume that there exists a positive measure set E c 9J such that for each £ l5 ^ i?

the area of the set C \ W^W) (L) is zero. Let/ : Δ X Δ~^> T(Γ) be a holomorphic

mapping with/( , 0) = /(•)• For each 01* ^ E and any sequence {£w) converging

to eiθ, an argument similar to Proposition 4.1 guarantees a subsequence {2:̂ } c

{>2W} such that/(z w , , ) ' ^ ""* 7"CO converge to a holomorphic mapping f*(etθ, ) :

4-~*S(/^) f and that the convergence is uniform in compact subsets in Δ. Hence

f*(eiθ, •) : Δ —• SCO is a holomorphic mapping such that / * ( e " , 0) = f*(eiθ

9').

By Lemma 4.3, the holomorphic mapping f*(eiθ,-) is constant. It follows that holo-

morphic mappings/(*, 0) and/( , ζ) have the same radial limit at every eiθ ^ E

for each ζ ^ A By Proposition 4.1, /( , ζ) = / ( * ,0) for each ζ

G Δ. It follows t h a t / is rigid. D

For a finitely generated Fuchsian group of the first kind G, it is known that

each φ ^ S(G)\ T(G) either corresponds to a cusp or Wφ(L) is dense in C (Bers

[2], Maskit [11]). However, the argument as above yields the following.

PROPOSITION 4.4. For any infinitely generated Fuchsian group Γ of the first kind

there exists analytic sets in dT(Γ) consisting of non-cusps such that for no point φ in

it Wφ{L) is dense in C

Proof. Let U be a regular domain in R = H/Γ which contains at least two

homotopically independent Jordan curves in R, and let μ be an extremal Beltrami

differential which vanishes on U. Set f(z) = [zμ/\\μ IL] for z ^ Δ. Then the holo-

morphic mapping/is proper, hence very radial limit is contained in dT(Γ). For

each z ^ Δ, the quasiconformal mapping fzu/\ ^μ , defined in the beginning of this

section, is conformal in p~ι{U) c H, where p : H—• R is the canonical projection.

Hence there exists no radial limit φ of /such that Wφ(L) is dense in C by Abikoff

[1 Lemma 3]. On the other hand, exactly as in the finite dimensional cases (Shiga

[15 Theorem 5], almost every radial limit is non-cusp. Note that the mapping/is

non rigid. L e t / : Δ X Δ—> T(Γ) be a holomorphic mapping with/( , 0) = / ( * ) •

Then for almost every etθ ^ dΔ such that the radial limit f*(etθ) has the above

property, f*(etθ, ) is a non-constant holomorphic mapping (cf. Rudin [13 Lemma

15.2.3], see also [18 Section 4]). Now the existence of analytic set in dT(Γ) as in

the statement is obvious. Π
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