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HOLOMORPHIC FAMILIES OF GEODESIC DISCS
IN INFINITE DIMENSIONAL TEICHMULLER SPACES

HARUMI TANIGAWA

1. Introduction

The theory of quasiconformal mappings plays an important role in Teichmiil-
ler theory. The Teichmiiller spaces of Riemann surfaces are defined as quotient
spaces of the spaces of Beltrami differentials, and the Teichmiiller distances are
defined to measure quasiconformal deformations between the Riemann surfaces
representing points in the Teichmiiller spaces. The Teichmiiller spaces are com-
plex Banach manifolds equipped with natural complex structures such that the
canonical projections are holomorphic. It is known (see Gardinar [4]) that the
Teichmiller distance, defined independently of the complex structures, coincides
with the Kobayashi distance.

In spite of the naturality of the definition of a Teichmiller space as a
quotient of Beltrami differentials, for given two Beltrami differentials it is hard to
determine whether they are equivalent or not. For this reason, it is not trivial to
describe geodesic lines with respect to the Teichmiiller-Kobayashi metric.

In finite dimensional cases, each pair of points determines a unique geodesic
line through them, and the geodesic line is obtained by the unique extremal
differential called a Teichmiiller differential. Namely, each geodesic line through
the base point is represented as {fu: — 1 < ¢t < 1} with a Teichmiiller differen-
tial #. On the other hand, little was known about infinite dimensional cases for a
long time. In this case, it is known that there exists a point p which contains two
different extremal Beltrami differentials gy and gz, and both of the sets {fu/
leilw: =1 <t<1} and {tup Mgzl w: — 1 < t <1} are geodesic lines. Howev-
er, one cannot conclude immediately that these lines are distinct, since equivalence
of y1 and gz does not imply equivalence or non-equivalence of fu; and fu, for
t# 1.

Recently, L. Zhong [20] showed non-uniqueness of geodesic lines through
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certain points in the universal Teichmiller space. In this paper, we shall
construct, in any infinite dimensional Teichmiiller space, a non-trivial family with
a complex analytic parameter, of geodesic discs through a pair of points. Our
proof is not a direct extension of [20] but makes full use of the characteristic
properties of ends with infinite hyperbolic area, pointed out by Taniguchi [16] and
Maitani [10]. Our construction is related to the following problem.

For a finite dimensional Teichmiiller space T (S), we used the equality of the
Kobayashi distances and the Teichmiiller distances, together with properties of the
boundary 07 (S) (in the sense of Bers), to show certain rigidity property of
proper holomorphic mappings of 4 into T(S), where 4 stands for the unit disc
{z€ C;| z| <1} (17). Namely, we showed that no proper holomorphic mapping
can be deformed with a complex analytic parameter. Here, we have a natural ques-
tion : is the same true for proper holomorphic mappings mto an infinite dimensional
Teichmiiller space T (R)? To this question, Professor C. McMullen suggesed how to
construct non-rigid holomorphic proper mappings of 4 into infinite dimensional
Teichmiiller spaces (oral communication). His idea is as follows (see Sections 2 and
3 for details): on an analytically infinite Riemann surface R there exists an extre-
mal Beltrami differential ¢ with a degenerate Hamilton sequence (cf. Section 2).
Replacing ¢ by O on a local disc, we have an extremal Beltrami differential on R
which vanishes on the local disc, in contrast with the case of an analytically finite
Riemann surface. Deforming such a Beltrami differential on the local disc, we get a
non-trivial family of holomorphic proper mappings of 4 into T(R) with a
complex analytic parameter. We develop his idea to construct a holomorphic fami-
ly of geodesic discs. Of course, a holomorphic isometry 4 — T (R) in such a fami-
ly is a non-rigid proper holomorphic mapping.

In the last section, we shall show that there still exist rigid holomorphic
mappings into infinite dimensional Teichmiiller spaces. We investigate the bound-
ary behavior of a holomorphic mapping of 4 into T (R) and give a sufficient con-
dition for holomorphic mappings into 7 (R) to be rigid.

The author would like to thank Professor C. McMullen and Professor H. Shiga
for useful suggestion and information.

2. Notation

In this section we fix our notation and recall some known facts which we use.
See Lehto [9] for details.

Let R be a Riemann surface with a hyperbolic metric, and let p : H— R be a
universal covering map with a covering transformation group I, where H denotes
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the upper half plane.

Denote by B;(R) the space of all Beltrami differentials on R with supremum
norms smaller than 1. Each element 7 € B;(R) lifts to a (—1,1)-form T = p*7 for
I on H, namely, T° 7 X ?’/r’ = 7T for every v € I'. 1t is well-known that there
exists unique quasiconformal homeomorphism f?: H— H with Beltrami differen-
tial 7 whose extension to H U R fixes 0,1 and ©©, where R stands for the real
axis. This quasiconformal homeomorphism f° induces a group isomorphism of the
Fuchsian group I' onto the Fuchsian group fZI'(f?)~'. The Fuchsian group
fr (5! determines a Riemann surface R7 = H/ATI'(f7)~! and f7 is projected to
a quasiconformal mapping f*: R — R’. Thus each element 7 € B;(R) determines
a pair of a Riemann surface R® and a quasiconformal mapping f*: R — R® with
Beltrami differential 7. (In general, a Beltrami differential on R determines a
quasiconformal mapping uniquely up to left compositions of conformal mappings.
We have defined f° as above in order to cancel this ambiguity for arguments in
following sections.) Two elements 7; and 7, in Bi(R) are said to be equivalent
provided fo|R = f%|R. It is known that this equality holds if and only if R®
= R% and f2° (f9)~! is homotopic to the identity with a homotopy constant on
the border of R. An element 7 € B;(R) is said to be trivial if it is equivalent to 0.
A quasiconformal mapping with a trivial differential is also said to be trivial.

The Teichmiiller space T (R) of R is the quotient space of B1(R) by the above
equivalence relation. For each 7 € B;(R), let [7] denote the point of T (R) deter-
mined by 7. It is known that 7 (R) is a Banach manifold equipped with a natural
complex structure such that the canonical projection 7 : Bi(R) — T (R) is holo-
morphic.

Let A(R) denote the space of all holomorphic integrable quadratic differen-
tials on R. The space A(R) is identified with the cotangent space of T (R) at [0].
The dimension of T (R) and that of A(R) are finite if and only if R is analytically
finite, or equivalently, if and only if I" is a finitely generated Fuchsian group of
the first kind.

The Teichmiiller distance d ([io], [Vol) of two points [ioe] and [vol in T (R) is
defined by

d(led, [l = 5 inf {log Kyeagpres | 1 € [to], v € D),

where Ksu.s»-1 stands for the maximal dilatation of f#° (f*)~'. There always
exist quasiconformal mappings which attain the infimum. The Teichmiiller dis-
tance coincides with the Kobayashi hyperbolic distance (see Gardinar [4 Chapter
7).

A Beltrami differential ¢ € B,(R) is said to be extremal provided that the
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supremum norm is minimal in its equivalence class. It is known that a Beltrami
differential y is extremal if and only if there exists a sequence {¢;}{%; of elements
in A(R) with unit integral norm such that || || = limjoe S& #¢;. Such a sequ-
ence is called a Hamilton sequence for p. Note that {@;} may not contain a subsequ-
ence which converges in norm. A Hamilton sequence {¢;} is said to be degenerate
if it converges to 0 uniformly on compact subsets in R.

A Beltrami differential of the form 26/| ¢l on R with some z€E A= {z€
C;|z| <1} and ¢ € A(R) is called a Teichmiiller differential. Obviously, Teich-
miller differentials are extremal. It is known that if an equivalence class [yl €
T (R) contains a Teichmiiller differential, then the Teichmiiller differential is the
unique extremal differential in the equivalence class [¢]

If dim T (R) < o then each equivalence class [¢] € T (R) contains a unique
Teichmiuller differential. On the other hand, whenever dim T (R) = o, there ex-
ists an extremal differential with a degenerate Hamilton sequence which is not a
Teichmiiller differential. Such a differential is constructed, for example, as follows.
(This may be a known fact. We represent, however, since it seems hard to find a
reference in which this fact is written in the following form.)

ProposiTioN 2.1. If dim T (R) = o0, there exists an extremal differential on R
with a degenevate Hamilton sequence which is not a Teichmiiller diffevential.

Proof. When dim T (R) = o, the Banach space A(R) is also infinite dimen-
sional. Hence there exists a sequence {@)}2; € A(R) with|l ¢;| = [zl ¢;] =1
for j = 1,2,3..., which converges to a quadratic differential @ € A(R) but does
not converges in norm. We may assume in addition that ¢ = O since otherwise we
may replace {¢;} by {(¢; — )/l ¢; — ¢ [}. It is easy to see that there exists an
exhaustion of R by compact sets {Kj}3, and a subsequence {¢y}iz; of
{¢;} 1 such that S ghge | 0| > 1 —1/27 and S x| éw| < 1/27 for each posi-
tive integer j and k with j < k. Put

#=-¢—N—I/‘ ¢Nl! Onl{i\Ki—h ]= 172739"--

Then for each z € 4, the Beltrami differential zg is an extremal differential with
the degenerate Hamilton sequence {¢N,}.

Let f:4— T(R) be a holomorphic isometry with respect to the Poincaré
distance on 4 and the Teichmiiller distance. We shall call the image f(4) a geode-
sic disc. 1f g : A— Byi(R) is a holomorphic mapping such that g(0) = 0 and that
for each z € A the Beltrami differential g(2) is an extremal differential with
lg@) Il =1|2|, then 7« g(4) is a geodesic disc through [0], where 7 : B(R) —
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T (R) is the canonical projection. If a Beltrami differential ¢ € B,(R) is extremal
then {zu/ |l ; z € A}is a geodesic disc through [0] and [g].

When dim T (R) < o every geodesic disc through [0] is of the form {2/
| ¢|; 2 € A} for an element ¢ € A(R). Such a geodesic disc is called a Teichmiil-
ler disc. When dim T (R) = oo there exists a geodesic disc which is not a Teich-
miiller disc.

Let M be a finite or infinite dimensional complex space, and let f : 4 — M be
a holomorphic mapping. We shall say f is rigid if every holomorphic mapping
f:AX A— M with f(+,0)=f(:) on A depends only on the first variable,
namely, f(+, £) = f(*) for each { € 4.

3. Holomorphic family of geodesic discs

In this section, we shall construct holomorphic families of geodesic discs
through certain pairs of points in infinite dimensional Teichmiller spaces.

In what follows, the Riemann surface R is assumed to be analytically infinite
unless noticed otherwise. In this case, the Fuchsian group I representing R is
either infinitely generated or of the second kind. Let U C R be a Jordan domain
with analytic boundary. The following fact plays an important role. (For an
element of B;(R), triviality is considered with respect to the equivalence relation

for Bi(R).)

THEOREM 3.1 (Taniguchi [16], Maitani [10]). Let R and U be as above. Let f”
be a quasiconformal self-mapping of R with trivial Beltrami differential v € Bi(R)
supported in U. Then the restriction of f* to R\U coincides with the identity mapping.

Recall that in the previous section we defined a quasiconformal mapping with
a Beltrami differential so that the ambiguity of compositions of conformal map-
pings is cancelled.

Proof. Taniguchi [16] showed the above statement for a certain class of
Riemann surfaces with no border ([16 Theorem 3]). Maitani [10] extended the
statement of [16] as follows: if a homology preserving quasiconformal self-mapping
f of a Riemann surface is conformal on an end G with infinitely generated homolo-
gy group, then the restriction of f to- G is the identity map. These results covers
the statement of the above theorem except for the case that the Fuchsian group I
is finitely generated of the second kind. In this case, the above statement follows
immediately from the definition of f”. O
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In general, for a trivial Beltrami differential v and a positive number ¢ €
(0, 1), tv is not necessarily trivial (Gehring [5]). We recall the following example
by Reich (see Kra [8] p.250) constructed in the case of the universal Teichmiller
space T(4). Set () = —al/(1 —al) for (€A and a € 4, ={aEC;
la| <1/2}. If a@ # 0, then 7, is trivial as an element of B;(4) but there exists a
positive number ¢ € (0,1) such that fzr, is not trivial. Note that the assignment
o™ T4 is a holomorphic mapping of 4;/2 into Bi(4). The above theorem enables
us to get such a family of Beltrami differentials on R.

PROPOSITION 3.2. There exists a family {Va} aear, of Beltrami differentials on R
supported in U, depending holomorphically on the parameter &, such that each Vo is tvi-
vial and that taVa is not trivial for some t, € (0,1).

Proof. Let B,(U, R) denote the subset of B,(R) consisting of all Beltrami
differentials supported in U. Let h: U— A be a Riemann mapping. Then the
assignment ¢ > h*y for 4 € By(4) is a norm-preserving holomorphic mapping of
Bi(4) onto Bi(U, R). Furthermore, if we denote by T7(R) the subset of all
points in T(R) determined by Beltrami differentials in By(U), then the assign-
ment g — h*y induces a bijection H : T(4) — T#(R) by [16 Proposition 2] and
Theorem 3.1. Hence u# € Bi(4) is trivial with respect to the equivalence relation
in B;(4) if and only if h*u € By(U, R) is trivial with respect to the equivalence
relation in B;(R). Now for the Reich’s family {74} aear., which is recalled above,
put Vg = h*7,. It follows that the family {Va}aes,. has the desired property. [

Note that for each & € A, the set of positive numbers ¢ for which fve is
trivial is discrete, since the mapping 2z~ [ 2v,] is a non-constant holomorphic
mapping of 4 into T (R).

Theorem 3.1 also implies the following facts.

LemMa 3.3. Let v € By(R) be a trivial Beltrami differential supported in U,
and ¢t € Bi(R) be a Beltrami differential supported in R\ U. Then

ferr=frefr,
in particular [p + v] = [,

Proof. Let 0 denote the Beltrami differential of f* ° f*. Then for each local
parameter z around a point p € R,
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o L L XFR Ay
L4 f" X v X 2R
Since v is trivial and supported in U, it follows from Theorem 3.1 that (U)
= U and f*| R\ U= id. Hence if p € U then f*(p) € U, p ° f*(p) = 0. There-

fore

0= (1) ig =y on U.
If p € R\ U, then f*(z) = z and v(p) = 0. Hence we have
X1+0
0= IJIT =pu on R\ U.
We conclude from the above two formulae that d = g + v. O

Lemma 3.4. Let v € Bi(R) be supported in U, and p € Bi(R) be supported
in R\ U. If v is not trivial, then [u + v] # [p].

Proof. Assume that v is not trivial and that [g + v] = [g]. We shall draw a
contradiction.

First, note that f“**(U) = f“(U) (recall that f***(R) = f#(R) under the
assumption [ g+ vl = [ 4] ). In fact f#™ - (f*)~! is a trivial quasiconformal
self-mapping of the Riemann surface R* = f“(R) and that its Beltrami differential
is supported in f“(U). Hence, by Theorem 3.1, f**(U) = f“(U) and f** -
(M R\U=id

From the above remark it follows that (f#)~! e f#* is a trivial quasiconfor-
mal mapping with Beltrami differential supported in U. Let 7 denote the Beltrami
differential of (f“)~! < f***. Then by definition f*° f*= f#*. On the other hand,
the Beltrami differential of f#° f* is 4 + 7 by Lemma 3.3. It follows that v = 7.
This is a contradiction since 7 is trivial while v is not. O

Now, we note that there exists extremal Beltrami differntials which vanish on
U, whenever R is not analytically finite. In fact, as is noted in the previous sec-
tion, there exists an extremal Beltrami differential g, on R with a degenerate
Hamilton sequence whenever R is not analytically finite. For such a Beltrami
differntial g, set

p=po on R\U
=0 onU.

Then g is an extremal Beltrami differential with the same degenerate Hamilton
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sequence as that for .

THEOREM 3.5. Let u be an extremal Beltrami differential which vanishes on U
and does not vanish identically on R. Then there exists a family of geodesic discs
through [0] and [yl with a complex analytic parameter. In particular, geodesic lines
through certain pairs of points in T (R) are not unigue whenever dim T (R) = oo

Proof. Let {va} aear, is the family of trivial Beltrami differentials supported
in U as constructed in Proposition 3.2. Put 4, = {z € 4;|z| < #} where r=
I/ + || gt o). We define a holomorphic mapping @ : 4 X 4,— T(R) by

— + Vo
@(Z, a) = [Zgu'm‘:],
where (z, @) € 4 X 4,. Note that || gl > | va |l for a € 4,. Hence for each
(z, @) € 4 X A, the Beltrami differential z2(u + va)/| ¢t [l is extremal with the
same degenerate Hamilton sequence as that for g It follows that for each a € 4,
the holomorphic mapping z — @(z, @) is an isometry of 4 into T (R) with respect
to the Poincaré distance in 4 and the Teichmiiller distance.

Now we verify that @ : 4 X 4,— T (R) has the desired property. First, for
each @ € 4,, the geodesic disc @ (4, a) contains ®(0,@) = [0] and (| ¢ [, @)
= [y + val = [p]. The last equality follows from the assumption of Vg to be tri-
vial and Lemma 3.3. Next, note that the holomorphic mapping @ depends on the
second variable a non-trivially, since tva/”u |l is non-trivial for some positive
number ¢, we have (¢, @) = [t/|| plle + tva/ll o] # [t/ ]| ] = @ (2, 0) by
Lemma 3.4. O

4. Examples of rigid holomorphic mappings

As we have shown above, there exist non-rigid holomorphic proper mappings
into T (R). Namely, there exists a family of holomorphic proper mappings in the
form (z, {) = [zu + {v], where g and v are supported in disjoint sets, whenever
dim T (R) = o0, in contrast with finite dimensional cases.

In this section we shall give a sufficient condition for a holomorphic mapping
of 4 into the infinite dimensional Teichmiiller space T (R) to be rigid.

For this purpose we introduce the Bers embedding. Let Q(I") denote the
space of all bounded holomorphic quadratic differentials for I" on the lower half
plane L :

Q) = {¢; holomorphicon L, ¢ 7 (yN)2=¢ ¥V y ET, su?| (Imz)%¢ (z) | < o0},
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(Recall I' is a Fuchsian group acting on H such that H/I' = R.) The space @(I")
is a Banach space with norm || ¢ | = sup.e; |(Im2)2¢(2) | for ¢ € Q(I'). For each
t € Bi(R), set

¢ =p*u onH
=0 on L,

where p : H— R is the canonical projection. Then there exists a unique quasicon-
formal self-mapping f, of C with Beltrami differential ¢ such that

f(2) =@+ '+0Qd), nearz= — 1.

Let S(f.) denote the Schwarzian derivative of f, | L. Then the assignment g+
S (f,) is a holomorphic mapping of Bi(R) into @ (I") and induces a holomorphic
injection of T (R) onto a bounded domain in @ (I"). This mapping T(R) = Q")
is called the Bers embedding of T (R) (see Lehto [9 Chapter V]). Let T(I") denote
the image of T (R). We shall identify T (R) with T(I") and regard a holomorphic
mapping into T (R) as a holomorphic mapping into T(I") < Q(I').

For each ¢ € Q(I"), let Wy be the uniquely determined locally schlicht mero-
morphic function on L with Schwarzian derivative ¢ with Wy(2) = (z +1)!
+ 0(1) near z= — . It is known that T (L) is exactly the set of all points
¢ € Q') such that Wy can be extended to quasiconformal self-mappings of C.
Let S(I") denote the set of all points ¢ € Q@ (I") such that Wy are schlicht on L.
Than it is easy to see that T(I") C S(I').

When T (I') is finite dimensional we utilized the Fatou’s theorem and Riesz’
theorem on bounded analytic functions to show rigidity of holomorphic proper
mappings into T (I") ((17]). Even when T (I') is infinite dimensional, Fatou-Riesz
type claim is shown for holomorphic mappings of 4 into 7(I"). It is not hard to

verify this directly from the definition of T (I"). However, more generally, it is
known that Fatou-Riesz type claim is valid for certain holomorphic functions in 4
with values in Banach spaces. For example, let X be a dual space of a separable
Banach space Y. Then every holomorphic mapping 4 — X has non-tangential
limits almost everwhere in d4 in weak topology, hence in the strong topology by
the theorem of Hensgen. See Hensgen [6] for more details and references. Now,
note that the space @ (I") is identified with a closed subspace of the dual space of
the Banach space A;(L/I") of all integrable holomorphic quadratic differentials on
the Riemann surface L/I". Hence we have the following.

PrROPOSITION 4.1. Each holomorphic mapping f : A— T (I') has radial limits in
T(I') almost everywhere in 0A4. If two holomorphic mappings f:A4— T ") and
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g:A— T (I') has the same radial limits on a positive measure set in 04 then f= g

on 4.

Now, we present a sufficient condition for a mapping of 4 into the infinite
dimensional domain T (I") to be rigid.

Proposition 4.2. Let f:A— T(I') be a holomorphic mapping. Assume that
there exists a positive measure set E C A such that for each e'® € E the area of the
set C\Wyyeiy (L) is zero, where fx(e’®) stands for the radial limit of f at €'’. Then f is
rigid.

Before proving this fact we exhibit some examples.

ExampLE 1. Let f:4— T (1) be a holomorphic mapping into the universal
Teichmiller space defined by f (1) = [A]. Then for each 1 € A4, the function f;(*)
is a composition of Mobius transformations and the quasiconformal mapping z = z
+ Az for z € A and z+— z + A/z for z € C\A. Hence it is easy to see that f satis-
fies the assumption of Proposition 4.2. Therefore f is rigid.

ExampLE 2. Let S be an analytically finite Riemann surface and let G be a
Fuchsian group acting on H and H/G = S. There exists a natural inclusion map
1:T(G)— T (1), which is known to be proper. Let f: 4— T(G) be a holom-
morphic proper map. Then almost every radial limit fx(e®®) of i=f: 44— T (1)
corresponds to a totally degenerate boundary group (Shiga [15 Theorem 5]), hence
the area of C\ Wig@n (L) is zero by Thurston’s theorem. It follows that i - f is
rigid. When S is of (0,4) type or (1,1) type, the fact that the area of C\W;*w) w)
is zero follows also from Matsuzaki's result [12], who proved the Ahlfors conjec-
ture affirmatively for two generator groups.

LEmMMA 4.3. Let ¢ be an element of S(I") such that the area of C\ Ws(L) is
zevo. Then every holomorphic mapping f: A — S(I) with f(0) = ¢ is constant.

Proof. The proof is parallel to the argument in Shiga [14 Theorem 5]. For a
holomorphic mapping f : 4 — S(I") with £(0) = ¢, put g(4, 2) = Wy ° W (2)
for (A, 2) € A X Wypy(L). Then g is an admissible map in the sense of
Bers-Royden [3]. Hence for each 4 € A4, g(4, ) is extended to a quasiconformal
homeomorphism of C with Beltrami differential supported in C\ Ws(L) By the
assumption the area of this set is zero, hence g(4,-) is a Mobius transformation.
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By the behavior of Wyn and Wy near z= — ¢, the Mobius transformation
g (A, +) is the identity map. It follows that Wyy () = Wy (), that is, f(R)
= f(0). O

Proof of Proposition 4.2. Let f:A4— T(I") be a holomorphic mapping, and
assume that there exists a positive measure set E C 04 such that for each ¢ € E
the area of the set C \ Wy (L) is zero. Let f:A X A— T () be a holomorphic
mapping with f(+, 0) = f (). For each ¢’ € E and any sequence {z,} converging
to €', an argument similar to Proposition 4.1 guarantees a subsequence {zm} C
{zn} such that f(zm,*) : 4 — T(I") converge to a holomorphic mapping f«(e®,*) :
A— S(I'), and that the convergence is uniform in compact subsets in 4. Hence
f«(e®, ) :4— SI') is a holomorphic mapping such that fx(e®, 0) = f«(e, ).
By Lemma 4.3, the holomorphic mapping f«(e’,-) is constant. It follows that holo-
morphic mappings f(+, 0) and f(-, &) have the same radial limit at every ¢? € E
for each £ € A. By Proposition 4.1, f( - ,{) =f( - ,0) for each (
€ A. It follows that f is rigid. O

For a finitely generated Fuchsian group of the first kind G, it is known that
each ¢ € S(G)\ T (G) either corresponds to a cusp or Wy(L) is dense in C (Bers
[2], Maskit [11]). However, the argument as above yields the following.

ProposiTION 4.4.  For any infinitely genevated Fuchsian group I' of the first kind

there exists analytic sets in 0T (I') consisting of non-cusps such that for no point ¢ in
it Ws(L) is dense in C

Proof. Let U be a regular domain in R = H/I" which contains at least two
homotopically independent Jordan curves in R, and let ¢ be an extremal Beltrami
differential which vanishes on U. Set f(2) = [z/| ¢t |l] for z € A. Then the holo-
morphic mapping f is proper, hence very radial limit is contained in 07 (I"). For
each z € A, the quasiconformal mapping fzu/|iull., defined in the beginning of this
section, is conformal in p™*(U) C H, where p : H— R is the canonical projection.
Hence there exists no radial limit ¢ of f such that W4(L) is dense in C by Abikoff
[1 Lemma 3]. On the other hand, exactly as in the finite dimensional cases (Shiga
[15 Theorem 5], almost every radial limit is non-cusp. Note that the mapping f is
non rigid. Let f: 4 X A— T (I') be a holomorphic mapping with £(+, 0) = f ().
Then for almost every e? € @4 such that the radial limit f«(e’®) has the above
property, fx(e®®, ) is a non-constant holomorphic mapping (cf. Rudin [13 Lemma
15.2.3], see also [18 Section 4]). Now the existence of analytic set in 07 (I") as in
the statement is obvious. J
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