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THE ARC-LENGTH VARIATION OF ANALYTIC CAPACITY

AND A CONFORMAL GEOMETRY

TAKAFUMI MURAI

§ 1. Introduction

For a domain Ω in the extended complex plane CU{oo}, H°°(Ω)

denotes the Banach space of bounded analytic functions in Ω with

supremum norm || \\Hoa. For ζ e Ω, we put

c(ζ; Ω) = sup{|/'(ζ)|;/e tf~(β), \\f\\H» < 1},

where /'(co) = lim^^ z{f'(oo) — f(z)} if ζ = oo. The analytic capacity of

a compact set E in C is defined by

where ΩE is the component of Ec = CU{oo} — E containing oo. Ahlfors

[1] shows that, for a domain Ω and a compact set £ c f l , the equality

ϊ(E) = 0 holds if and only if any function in H°°(ΩOΩE) has an analytic

extension to Ω. Thus a compact set E satisfying Riemann's theorem of

removable singularities is characterized by ϊ(E) = 0. Garabedian [8]

studies analytic capacity from the point of view of the dual extremum

problem. The quantitative properties of analytic capacity are important in

the study of conformal mappings, the 2-dimensional fluid dynamics and

singular integrals ([16], [17], [23]). Vitushkin [34], Gamelin [7], Garnett

[11], Zalcman [35] show that γ( ) is applicable to study approximation

problems, and Ahlfors-Beurling [2], Pommerenke [22], Suita [30], [31], [32]

study ϊ(') from the point of view of a conformal invariant. The author

studied γ(-) in terms of integral geometry [17], [18] and fluid dynamics [19].

In this paper, we are concerned with the variation of Y(E) for a

small change of E. The approach in this direction is given by Havinson

[13], Garabedian-Schiffer [10], Schiffer-Hawley [27], Schiffer-Spencer [28],

Smith [29]. We shall discuss, in this paper, a variation of Y(E) for a
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finite union E of arcs. Here are two motivations to deal with such a set.

Given a compact set F c C with a smooth boundary, we can study the

Hadamard variation and the Schiffer variation [25]. Then we obtain a

finite union E of arcs such that ϊ(F) is expressed as a perturbation from

T(E) and the number of components of E is less than or equal to that

of F. Thus, in order to get global properties, it is necessary to study a

variation of T(E). Another motivation is as follows. Given a compact

set F, we can find a finite union G of closed disks so that \ϊ(F) — ϊ(G)\

is arbitrarily small. Removing some arcs from G, we obtain a finite union

E of arcs such that \ΐ(G) — ΐ(F)\ is arbitrarily small and the number of

components of E is less than or equal to that of F. Thus a variation of

T(E) is necessary. As is seen in the second motivation, for our variation,

we may restrict our attention to compact sets E such that E consists of a

finite number of mutually disjoint arcs [Cj)n

j=1 and each arc Cj is expressed

as a finite union of closed analytic arcs, where a closed arc is analytic

if it is contained in an open analytic arc. Let s/ denote the totality of

such compact sets and let !F denote the totality of domains Ω such that

Ωc e <*/. For E e s/, it is natural to study ϊ(E) in terms of the arc-length

\dz\. From this point of view, we shall focus on the variation of ϊ{E)

with respect to \dz\9 and, as application of our results, we shall study the

structure of ϊ(A[JB) for two bounded continua A and B. For fe H°°(ΩE),

— /"'(oo) is the 1/2-coefficient of / at 00 and, in the case where E is con-

nected, the Ahlfors function (i.e., the function attaining ϊ(E)) is nothing

but Riemann's mapping from ΩE onto the unit disk D. Thus our principle

is related to Lowner's differential equation for multiply-connected domains

(cf. [15, p. 116]). In fact, we shall deduce, in § 9, Lowner's D. E. for simply-

connected domains [33, p. 387] from our formula in §3. For β e J ^ , dΩ

denotes the boundary of Ω having two sides to each zeF (F = Ωc —

{endpoints}), there correspond two points z±e3Ω. Let H\Ω) denote the

ίf2-space of analytic functions in Ω such that

( 1 ) lim f \f(z)f\dz\ = 0 (ζ e {endpoints of F}),
n o Js{ζtδ)

( 2) H/IU. = ( £ {|/(*+)|2 + \f(z_)f}\dz\Jβ < 00 ,

where f(zε) is the non-tangential limit of / at zε e dΩ (ε = ± ) and S(ζ, δ)

is the circle of center ζ and radius δ. For Ω e J^, there uniquely exists

a pair (g(- Ω), φ(- Ω)) of functions in H\Ω) such that g(oo;β) = 0,
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φ(oo; Ω) — 1 and

( 3) -rφ(z; Ω) dz — g(z; Ω)\dz\ almost everywhere (a.e.) on 3 ΰ ,
z

where the orientation of dz is chosen so that Ω lies to the left [8]. For any

ζ e Ω — {oo}, there exists uniquely a pair (K(-, ζ; β), L( , ζ; Ω)) of functions

such that K( , ζ; β), ( - ζ)L( , ζ; β) e iϊ2(β), K(oo, ζ; β) = L(oo, ζ; β) = 0,

C;β) = l and

(4) ~L(z, ζ; Ω)dz = K(z, ζ; Ω)\dz\ a.e. on 3Ω [4] .

The kernel K(z, ζ; Ω) is called the Szego kernel and L(z, ζ; Ω) is called

the L-kernel [4]. (The Szego kernel is written by K in [4]. In this note,

we use the notation K) For z, ζ e Ω — {oo}, z =£ ζ, we define

χ > ; β ) H 0 ( z ; β ) | 2 - | # ( z ; β ) | 2 ,

z9 ζ, oo; β) = 2Re[{Lfe ζ; β)g(s; β) - i ίfe ζ; β)0(^; β)}0(ζ; β)

- {L(z, ζ; )^Γ5) Γ

where Re denotes the real part. For a closed analytic arc Γ, a continuous

function wte Γ on an interval [0, \Γ\] (\Γ\ is the length of Γ) is called the

arc-length representation of Γ, if w0, w]Γ] are endpoints of Γ and jΓ7^ = t

(0<t< |Γ|), where Γ, = {α;s; 0 < s < t). For β e ^ such that Ω - Γe^

and β e Π Γ is at most a singleton, we write β£ = β — Γ, (0 < ί < |Γ|); we

assume that ΩCΠΓ = {w0} iΐ ΩCΠΓ Φ0. We shall show

THEOREM 1.

(5) For any 0 < J < | Γ | , the derivative dc(oo; Ωt)ldt, the limit

limuit Dc(wu, oo; Ωt) (== Dc(wt, oo; Ωt), say) exist and dc(oo;Ωt)/dt

— Dc(wt, oo; βί)/4. The right-derivative dc(oo; Ω0)/dt at t = 0 exists

and dc(oo; Ωt)l3t is continuous on [0, |Γ|].

( 6) For any 0 < t <\Γ\ and any z e Ω — (ΓU {oo}), ZΛe derivative

dDc(z, oo β j / d ί , £/ιe Zirai* limM i t D
2c(wu, z, oo Ωt)( = D2c(wt, z, oo β j ,

say) exisί aλirf dDc(z, oo; β^/dί = D2c(wt, z, oo; β J / 4 . F o r an-y ^ e β

— (Γ{J{oo})f the right-derivative 3D(z, oo; Ω^jdt at t = 0 exists a^d

3Dc(z, oo; Ωt)/3t is continuous on [0, |Γj].

In this theorem, the derivative and the limit at t = |JΓ| are defined by

the arc-length representation of an open analytic arc containing Γ. The

right-derivative 3c(oo; Ω0)l3t is not, in general, equal to Dc(wQ, oo; βo)/4.
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(See Remark 19.) To study Dc(z, oo; β) and D2c(z, ζ, oo; β), we introduce

a wider class of domains. Let ^ denote the totality of domains Ω with

the following property: Ω is expressed as Ω = β* — E with Ee<$/ and a

domain β*, Ω* Z) E bounded by a finite number of Jordan curves {C3)
n

j=ι

such that each C; is a finite union of closed analytic arcs. For β e ^,

the Szegδ kernel and the L-kernel exist; the condition at oo is removed

if β 3 oo. For three distinct numbers w, 2, ζ e β, we define

Dc(z, ζ; β) = \L{z, ζ; β)|2 - |#(z, ζ; β) | 2 ,

Z)2C(H;, Z, ζ; β) = 2Re{Z>L(u;, z, ζ; Ω)L(z, ζ; β)

- DK(w9 z, ζ;

where

DK(w, z, ζ; β) - L(w, z; Ω)L(w, ζ; Ω) - K(w, z; Ω)K(w, ζ; β ) ,

DL(w, z, ζ; β) - L(H;, 2; Ω)K(w, ζ; β) - iί(w;, z; Ω)L(w, ζ; β ) .

In the above definition, we replace K(-, 00; β) = K(oo, β) by — g( β),

and replace L( , 00; β) = — L(oo, β) by — φ{ β) if β 9 00 and one of

ϋ>, z, ζ is 00. The following proposition plays an important role in our

conformal geometry.

PROPOSITION 2. The differential forms Dc(z, ζ; Ω)\dz\\dζ\ and

D2c(w, z, ζ; Ω)\dw\\dz\\dζ\ are conformally invariant, Dc(z, ζ; Ω) = Dc(ζ, z; Ω)

and D2c(w, z, ζ; β) is invariant for any permutation of a triple (w, z, ζ).

In this proposition, Dc(z, ζ; Ω)\dz\\dζ\ is conformally invariant in the

following sense: Dc(z, ζ; β) = Dc(h(z), h(ζ); h(Ω))\h/(z)h/(ζ)\i if h is con-

formal, where

h'{z) =

^ ^ ζ{h(ζ) — h(oo)} if z = 00, h(oo) Φ 00

^ ^ h(ζ)/ζ if z = 00, h(oo) = 00

limζ_2(z — ζ)/ι(ζ) if z Φ 00, h(z) = 00 .

The meaning of the conformal invariance of D2c(w, z, ζ; Ω)\dw\\dz\\dζ\ is

analogous. Our results are applied as follows. Given E e st, we can

write jB=C 1 U UCn with mutually disjoint arcs {C^=1. Using the

arc-length representations of Cd (1 < j < 71), we define a right-continuous

arc-length representation Wt (0<t< \E\) of .E. Let Ωt = {VFS; 0 < s < ί}c

(0 < ί < 1251). Then e(oo; β t) is continuous on [0, \E\]. Theorem 1 shows

that
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( 7 ) ΐ(E) = c(oo;Ec) - AΓ | J " Dc(Wl9 oo;Ωt)dt.
4 Jo

The quantity Dc(Wt, oo β j is defined by the limit limult Dc(Wu, oo β j .

Thus, to study Dc(Wt, oo; Ωt), it is sufficient to investigate Dc(Wu, oo; Ωt)

for u > ί sufficiently near to ί. Given 0 < t < |JS| and z e Ωt — {oo}, we

take a right-continuous arc-length representation W* (0 < s < £) of Ω\; Wf

may not be equal to Ws, in general. Since Dc(z9 oo; Ωf) (Ωf = {W*;

0 < u < s}c) is continuous on [0, £], we have

(8) Dc(z, oo β,) = Dcfe oo βf) + A Γ D 2 C ( W * , 2 ; , oo;Ωf)du
4 Js

(0 < s < t).

Using Proposition 2, we can study D2c(w, z, oo; Ω) by taking conformal

mappings from Ω onto canonical domains. We shall show

THEOREM 3. If Ω is simply or doubly connected, then D2c(w, z, ζ; Ω) < 0.

As application of this theorem, we here deduce Suita's subadditivity

[32]: r(AUB) < γ(A) + ϊ(B), if A and B are disjoint two continua. For

the sake of simplicity, we work only with A, B e^f. Using (7) with E=

A {JB and a right-continuous arc-length representation Wt (0 <t<\A\JB\)

such that WQe A, we have

\ Dc(WtlOO;Ωt)dt.

For | A | < ί < j A U B | , we take an arc-length representation Wf (0 < s < t)

of {Ws;0<s<t\ so that Wf = VFUI( e B). Then W*_|i4| = W(. Using (8),

we have, with Ωf = {W*; 0 < α < s}c,

Z)c(2, oo Qt) = ΰ c f e oo βf_uι) + 1 f D2c(iys*, 2, oo Ωf)ds
4 Jί-|4|

< Dc(z, co β*_ |A|) (zeΩt- {oo}).

Letting 2 tend to W?_lAί = VF, along β, we obtain Z)c(Wt, oo; ί3() <

). Since

1 ΛI^UB| 1 r

±\ Dc(Wt, cc;β()dί<i-
4 J \A\ 4 J

\A\JB\

MI
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we obtain γ(A\JB) < γ(A) + γ(B). Suita's method is based on RengeΓs

inequality [33, p. 393] which is an application of Bieberbach's area method.

On the other hand, our method is based on a differential equation for

arcs and yields a quantitative estimate of γ(A) + γ(B) — γ(A\JB). The

inequality D2c < 0 for simply-connected domains is closely related to the

triangle inequality with respect to the hyperbolic distance. The study of

D2c for doubly-connected domains is related to the theory of elliptic

functions [12] and the proof of D2c < 0 consequently reduces to an in-

equality of Mδbius type in elementary geometry:

+ WL < 2 cos(α + a')cos{β + β>)
RR'qq' QQ'rr' ~ P P

st
sin(α + α')sin(/3 + β').

(R, Q, R, Q', r, q, r\ q\
a, a\ β, β\ s, t are
positive, a<b<0<af<b')

In §§ 8-9, we shall study the structure of D2c for simply and doubly

connected domains. For general multiply-connected domains, the behav-

iour of D2c is very complicated, and we do not refer to the general case

in this paper. In § 2, we shall prepare some elementary properties which

will be used later. In § 3, we shall show a formula for Szegδ kernels

and shall deduce Theorem 1 from this formula. The proof of the formula

will be given in §§ 4-7. The proof of Theorem 3 will be given in §§ 8-9.
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§ 2. Elementary properties

In this section, we show some elementary properties which are used

later. For p > 1 and βeίf , HP(Ω) denotes the iP-space of functions in

Ω defined by (1) and (2) with the power 2 replaced by p; dΩ has two sides

on the components of Ωc corresponding to arcs, dΩ is single on the

components of Ωc corresponding to Jordan curves, and the integral is

taken over all dΩ with respect to \dz\. We put

c*(ζ; β) = inf f-L f ^ L )dw\; ψ e W(Ω), ψ(ζ) = l) (ζ ψ oo) ,

c*(oo; Ω) = inί{-±-\\φ\\%,;φeHXΩ),φ(oo) = l

Then c*(ζ; β) = c(ζ; β) (ζ e β) [8]. The pair (K(z, ζ; β), L(«, ζ; β)) of the

Szego kernel and the L-kernel is unique and satisfies

K(z, ζ; β) = K(ζ, z; Ω), L(z, ζ; β) = - L(ζ, z; Ω).

The Szegδ kernel K(z, ζ Ω) is a reproducing kernel in the following sense:

f K(z,ζ;Ω)f(z)\dz\
2π J ̂ Ω

Making a double of β, we can treat the pair as a kernel on the Riemann

surface. When no confusion can arise, we write simply K(z, ζ) and L(z, ζ).

Let D(z, r) denote the open disk of center z and radius r, and let D =

D(0, 1). We remark

LEMMA 4. Let Ω a oo. Then φ(z; Ω) is the function attaining c*(oo; Ω)

and

w — z

Let ζΦ oo. Then

( 9 )

φ(ιυΓΩ)\dw\.

1
3Ω (w — z)(w — ζ)

L(z, 0 = ψζ(z)/(z - ζ),

where ψζ is the function attaining c*(ζ; β).

This lemma is essentially known in [4], [8]. Only (9) is not evident
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in the case of Ω a oo. Let ζe Ω — {oo}. Since ψζ is the solution of the

minimum problem c*(ζ; Ω), a measure \w — ζ\-2ψ:(w)\dw\ on dΩ annihilates

all geH*(Ω), g(ζ) = 0. Thus

dw^ ( w ) \ d w \ d w ( c f ^fcθlc

annihilates all geH2(Ω), g(oo) = 0. By Riesz's theorem, we can write

= Uf(w)
— ζ)

on aβ with some ψ* e ff^fl), ψ*(oo)==0 [11, p. 15]. Note that c= ί ψf(w)dw.
J dΩ

Let X*(2:, ζ) denote the kernel in the right-hand side of (9). Then, for

almost all z on 9 Ω,

α; — ̂  |ιt; — ζ|2

I f ^ — ζ f .*/ \ , c I ,
2π JBΩ W - z\ c 2πί(w-ζ)ί

= — f z ~~
dΩ lw — Z

- 0
which shows that

K*(z, ξ)dz = iψζ(z)/(z - ζ)\dz\ a.e. on 3fl, i.e.,

— ψζ(z)l(z - Qdz = Tΐ*(z,ζ)\dz\ a.e. onaf l .
i

Thus the pair (ίΓ *(z, ζ), ψζ(z)l(z - ζ)) satisfies (4). From the form of the

integrand in (9), we see that K*(z, ζ) has no inner function, and hence

this pair satisfies all the conditions of the Szegδ kernel and the L-kernel.

Since (K, L) is unique, we have K(z, ζ) = K*(z, ζ) and L(z, ζ) = ψζ(z)/(z - ζ).

LEMMA 5. Let Ω B OO and ze Ω — {oo}. Then

(10) g(*;β) = J ^ f L(ζ,*)|dζ| = - L Γ K(ζ,z)dζ,
2π J Λi J β

(11) (̂̂  β ) - l - - i - ί Z(ζΓi)|dζ| = 1 - J ^ ί L(ζ,z)dζ.
2π JsΩ 2πi J SΩ

In fact, (4) shows that
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L(ζ, z)g(ζ; Q)dζ
ζ — z

K(ζ,z)φ(ζ;Ω)dζ
2πi

= J - f L(ζ,z)\dζ\.
2π J SΩ

Since

^ f L(ζ,z)φ(ζ;Ω)dζ=~L\ K^¥)φ(ζ; Ω)\dζ\
πi J SΩ 2π J 9Ω2πί ho - -r~> > - 2 π

= y y Jafl ^(ζ, z)g{ζ; Ω)dζ = 0 ,

we have

φ(z; β) = 1 + J ^ ί _L_{0(ζ; β) -
Z7ΓJ J dΩ Q — Z

L(ζ,z){φ(ζ;Ω)-l}dζ
2πi

l
Zπi

This lemma plays an important role to study φ(z; Q); φ(z; Q)2 is called

the Garabedian function of Ωc [11, p. 19]. The Ahlfors function f(z; Ω)

of Ωc (i.e., /( β) e ff~(β), \\f(- Ω)\\Ho» = 1, f'(oo Ω) = γ(Ωc)) is expressed

as g(e; fl)/^(e; β) [11, pp. 18-24]. Thus (10) gives that

φ(z; Ω) = f(z;
r

2πl

for r > 0 satisfying Z)(0, r)c c β. Using this expression, we can define

the Garabedian function of any domain (cf. [29], [30]).

LEMMA 6. Let Ω 3 0, oo and z e Ω — {0, oo}. Then

(12) g(z; Ω) = - UΓ(g, 0; 5)5 , 0(z; Ω) = L(z, 0; β)5 ,

(13) g(0;Ω)=WΠΪ), Φ(0; Ω) = φ(0; Ω),

w /iere Ω = {ζ = 1/ζ ζ e β } .

To see (12), we put

g(z) = - g(llz; Ω)\z , ^(5) = 0(1/5; fl)/5 (5 e β ) .
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Then g, φz e H\Ω), g(co) = 0, lim^Q φ(z)z = 1 and

--φ(z)dz = - — 0(*; Ω)zdz/z2

ί ί

= -ί(«ΓΪ3)|d2|/2: = | W | d 5 | a.e. on g β .

Thus the unicity yields that g(z) = iί(έ, O β) and $(5) = L(έ, O β), i.e.,

(12). Combined with (10) and (11), it follows that

g(0; Ω) = - limZ(C,D;β)ζ = ^(OTfl),

0(0; β) = lim L(ζ, 0; β)ζ = 0(0; Ω).

Thus (13) holds.

As application of (13), we have Dc(0, oo; Ω) = Dc(0, oo; β). If β = β,

then g(0\Ω) is real.

LEMMA 7. Lei flaO, oo. Then

f K(z,ζ;Ω)dzdζ.im
r-Όo (2π)

In fact, (10) shows that, for r > 0 satisfying D(0, r)c c fl,

2π

^ f |£(u>
2τr

f |£(u>; β)|2|d«;| = -i- ί if- f
τr J 3fl 2 π J δfl 2 π J3z?(o,r)c

(2τr) J 5Z>(0,r)c J aZ>(0,r)c I 2/Γ

ί K(z,ζ)dzdζ.
0,r)c J 3Z)(0,r)c

It is known that g'(oo; β) = c(oo; Ω) [11, pp. 18-24]. Thus the first equality

in (12) shows that c(oo Ω) = iί(0, 0; β).

Here is a version of the Hadamard variation to Szegδ kernels. For

a domain Ω a oo whose boundary consists of a finite number of analytic

Jordan curves, we take a non-negative smooth function ^ on 3fi. For a

sufficiently small number ε > 0, let Ωε denote a domain bounded by ξ6 =

ξ + iεp{ξ)dξl\dξ|, ξedΩ containing oo. The variations of the Szego

kernel and the L-kernel with respect to p are defined by
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DpJ(z, • Ω) = l im 1 {J(z, ;Ωε)- J(z, Ω)} (J = K, L).

Then

(14) L>,J(z, Ω) = - L f J-DJ(ξ, z, . β)p(f)|df| (J = If, L),

where 9/9^ is the inner normal derivative at ξedΩ.

This equality plays an important role in the study of the capacity

K(z, z; Ω). Since

DK(ξ, z, z; Ω) = Dc(ξ, z; Ω) > 0 (ξ e Ω)

and = 0 (ξedΩ), we have 3DK(ξ, z, z; Ω)/dnp>0 (ξedΩ), and hence

DpK(z, z; Ω) > 0, by (14). Thus i?0ε, g; β) is monotone with respect to Ω.

This is a typical example how to use (14). In the following section, we

shall show a version of (14) to the arc-length variation. The outline of

the proof of (14) is as follows. Functions J(z, •) = J{z, Ω), Jε(z, •) =

J(z, -;Ωε) (J = K, L; ε > 0) are analytic in a neighborhood of 3Ω with

respect to z. The reproducing property yields that

κ(z, o = A- f κ,(ξ, ζ)κ(ξ^)\dξ\

Zπ J 3Ωε

Studying the difference, we obtain

(15) D,K{z, ζ) = -L- f -ψ--(ξ,ζ)K(ξ^)P(ξ)dξ
Δπi J SΩ dς

2πi JdΩ dξ

+ -λ- ί K(ξ,
2π JSΩ

Using (4), we have

K(z, 0 = 4
Z

K.(z, 0 = 4-{ LXς^L(ξ, z)\dξ\
Zπ J 3Ω

Studying the difference, we obtain
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(16) D,K(z, 0=--^j J3β WX) f^(ξ, z)P(ξ)dξ

dξ

- J- ί Σ(fΓ0L(f, z)p(ξ)d arg(df).
2 π J9o

Note that L(ξ, ζ)L(ξ, 2) = #(?, ζ)#(?, 2) (f e dΩ). Thus, adding (15), (16),

and dividing by 2, we obtain (14) (J = if). Using

Lε(*, ζ) - L(z, ζ) = -A- f Lt(ξ, ζ)K(eΓέ)\dξ\
2π J 9Ω

we obtain (14) (J = L).

Finally we remark that, for z e Ω — {oo},

In fact, let ξ — ξ(t) (0 < t < Q be an arc-length representation of dΩ in

a neighborhood of ξ(0)edΩ, and let ξ'(t) = eiθ(t\ Then

1 dL /^u\ Λ\ w/A 1 dL /Λ/A \ __ 3
~ dt

(f(), 2)f«) (ί(0, 2 ) r ( 0 ^
dξ at

Multiplying this quantity by ξ'(t), we obtain the required equality. As

application, we have, for z, ζ e Ω — {oo}, z ^ t ζ ,

^(f, ζ)L(f, 2)df Λ | f
i dξ i dξ

= Λ | f (f, ζ)K(ξ, z)dξ
dξ

- K(ξ, ζ)K(ξ, z)d arg(df) on f e

, ζ)L(ξ, z)dξ

- K(ξ, ζ)L(ξ, z)d arg(dί) on ξ e dΩ .

Using these identities, we can rewrite (14) (J = K, L) according as our

purpose.
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§ 3. A formula and deduction of Theorem 1

To prove Theorem 1, it is necessary to study the Szego kernels and

the L-kernels. For Ω e & and a closed analytic arc Γ such that Ω — Γ

e ^ and Ωcf]Γ is at most a singleton, we take the arc-length represen-

tation wt (0 < t < \Γ\) of Γ; we assume that Ωc Π Γ = {w0} if ΩCΓ)Γ Φ0.

We write Γt = {w8; 0 < s < t}, Ωt = Ω - Γt (0 < t < \Γ\) and X = {(z, ζ);

z,ζeΩ - (ΓU{oo})}. Recall the definition of DJ (J = if, L). We see that

DJ(wU9 z, ζ; β,) (J = if, L) are defined for 0 < t < u < \Γ\, (z, ζ) e X. We

shall show

THEOREM 8. For any 0 < ί < | Γ | and any (z,ζ)eX, the derivative

dK(z, ζ; Ωt)ldt9 the limit limu ιtDK(wu, z, ζ; Ωt) ( = DK(wt, z, ζ; Ωt)9 say) exist

and

(17) Άz,ζ;Ωt) = l.DK(wt,z,ζ;Ωt).
dt 4

For any (z,ζ)eX, the right-derivative dK(z,ζ; ΩQ)ldt at t = 0 βxisίs αrac?

dK(z,ζ; Ωt)/dt is continuous on [0, |Γ|], These properties hold with K

replaced by L.

In this theorem, we put dL(z, z; Ωt)/dt = 0. From the definition of DL,

we have DL(wt, zy z; Ωt) = 0, and hence, in the case of z — ζ, (17) holds

with K replaced by L. Recall that wt is an endpoint of Γt (0 < t < \Γ\).

Thus this theorem is near to Lόwner's D. E. than Schiffer's variational

formula. In § 8, we shall deduce Lόwner's D. E. for simply-connected

domains from this theorem.

Once this theorem is established, Theorem 1 is deduced as follows.

Note that, for R e &, R 3 0, oo and w, z e R — {0, oo}, w ψ z,

(18) Dc(w, oo;R) = DK(w, 0, 0; R)\wf ,

(19) D2c(w, z,oo;R) = D2c(w, z9 0; R)\wzf ,

where f - 1/f (ξ - w, z) and R = {| = 1/ξ f € i?}. In fact, Lemma 7 and
(12) yield (18). The unicity of (if, L) shows that K(w, z; R) = if(Λ, z;R)ίϋz

and L(α;, ,ε; i?) = — L(z£, έ; R)wz, and hence (12) gives that

, oo; JR) = 2Re[{L(w, z; R)g(w; R) - K(w, z; R)φ(w; R)}φ(z; R)

- {L(w, z; R)φ(w;R) - K(w, z; R)g(w,

, z; R)K(w,0;R) - K(w, z; R)L(w, 0; R)}L(z, 0; R)

- {L(w, z\ R)L(w,0;R) - K(w, z; R)K(w,0; R)}K(z,ϋ; R)]\wz\

= D*c(w,z,0;R)\wz\2,
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which implies (19).

Without loss of generality, we may assume that β — Γ B 0. Let w*

(0 < s < \Γ\) be the arc-length representation of Γ = {f ξ e Γ} such that

wf = w0, and let s = s(t) be the function on [0, \Γ\] defined by wf = zi>£.

Then ds/ώ = \wf |2. Using (18) with R = Ωt, w = wu (u> t), we see, by

Theorem 8, that limu itDc(wu, oo; β,) ( = Dc(wt, oo; β j ) exists and

(20) Dc(wt, oo; β,) = ZλRW, 0, 0; fl*)|n;*|2 (fl* = Ωt).

Since 5 = s(t) is continuous on [0, |JΓ|], Dc(wt, oo; β^ is also continuous

on [0, \Γ\], By Lemma 7, Theorem 8 and (20), we have

= l-DK(w*, 0, 0; β*)K*| 2 = ±-Dc(wt, oo; Ωt).

4 4

Thus (5) holds. Using (19) with R = Ωt, w = wu (w > t), we have

D2c(wt, z9 oo; β;) = Dzc(w*y z, 0;

By Theorem 8 and (19), we obtain

"> v/? V7, ώ^ s y — Γ Γ I ^ I

0; fl*)|« -

= i-l^cία;*, z, 0; β*)|^*έi2 = i - D 2 c ( ^ , z, oo; fl,).
4 4

Thus (6) holds. This completes the deduction of Theorem 1.

Our method of the proof of Theorem 8 requires us to distinguish the

following four cases:

Case I. Ω is bounded by a finite number of analytic Jordan curves,

Γ = [0, 1], Ω 3 Γ and t = 1.

Case II. 0 < ί <\Γ\.

Case III. β ID Γ and * = 0.

Case IV. wQedΩ and * = 0.

The proof will be given in §§4-7. Finally we give the proof of

Proposition 2. A simple calculation shows that Dc(z, ζ; β) = Dc(ζ, z; Ω)

and D2c(w, z,ζ;Ω) is invariant for any permutation of a triple (w, z, ζ) of

distinct numbers in β. Let h be a conformal mapping from β onto β*.
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If Ω a oo, fl*9oo and h(oo) = oo, then the unicity of (if, L) shows that

K(z9 ζ; Ω) = K(h(z), Λ(ζ);

L(z, ζ; β) = L(h(z), A(ζ); Ω*Whf(z)>/W) (*, C e β - {oo}, * =£ Q .

Note that /&' is single-valued and that the values ^h'(z)^h'(ζ)9 \/hf{z)^hr(ζ)

are determined independent of the choice of the branch of j . Thus a

simple calculation shows that, for three distinct numbers w, z, ζ e Ω — {oo},

(21) D*c(w, z, ζ; Ω) = L>2c(/^), Λ(*), Λ(ζ); Ω*)\h\w)h'{z)h'(ζ)\.

This equality holds in the case where ζ = h(ζ) — oo, and in the case

where β £ oo, β* $ oo, also. Equality (19) is equivalent to (21) in the case

where ζ = oo and h(ξ) = 1/ξ. Since any conformal mapping h is expressed

in the form h(ξ) = h*((l/ξ) + a) with aeC and a conformal mapping Λ*

such that Λ*(oo) = oo, we have (21) for any ζ e Ω. Since Dc(w, z9 ζ; Ω) is

invariant for any permutation of (w, z, ζ), we consequently see that (21)

holds for any triple (w, z, ζ) of distinct numbers in Ω. This completes

the proof of Proposition 2.

§ 4. Proof of Case I

In this section, we prove Theorem 8 in the case I. Since Γ = [0, 1],

the function wt — t is the arc-length representation of Γ. We write Ωt =

Ω — [0, t] (t > 0). For a domain RB oo, let q(z; R) denote the conformal

mapping from J? onto Dc such that g(oo R) = oo, ^(oo i?) = lim^^ q(z; R)/z

> 0. We divide the proof into three steps.

First step. We show that dK(z, ζ; Ωt)jdt exists at t = 1.

Let d0 = min{l/2, (the distance between dΩ and [0, 1])}. Given 1/2 <

u < 1 + d0, we take cu(w) = wju. Then the boundary of cu(Ωu) consists of

dcu{Ω) and 3[0, l] c . We write by Jα( , )=e7( , Ωu\ J*( , ) = ^ ( , 5 ̂ .(flJ)

(J=K, L). We write also J ^ J j (J=K,L). Equality (4) and the reflection

principle show that there exists 0 < ε0 < d0 such that Ju{z, •)> ^ ί f e •)>

(J = if, L; |w — 1| < ε0)
 a r e analytic in a neighborhood of 3 Ω as a function

of z. We have

(22) Ku(z, 0 = K*(tu(z), ί.(0) Λ/C'U(Z) V^(ζ) =

— I])
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= K*(z, 0 - (« - ϊ){κ(z, 0 + z^-(z, 0 + ζ-^-(C, z)
^ oz 9ζ

The reproducing property yields that

K*(z, ζ) = ^-\ K*(w,

= -£- ί K*(uw,

30U3[O,1]C

w7ϊ)\dwI + J - f iΓ*(«;, ζ)Z(^ϊ)IdwI

= J - f K*(w, ζjK&ΓU\ dw I + JLpl f f ϋΓ*(u«;, ζ)/iΓ(««;, I)

+ K*(w, ζ)
dw dw

, z))\dw\ + o(\u
J

= K(z, ζ) + ii-lA ί {K(w,

K(w, ζ)w-^-(w, z)}\dw\ + o(\u- 1!).
dw J

Let λδ = 3{[δ, 1 - δ] U-D(0, ί)UZ)(l, δ)}c (0 < δ < d0). Then, combined with

(4), this yields that

lim - A / # * ( z , ζ) - ϋΓ ,̂ ζ)} = 1 f ίκ(w,

dw
, ζ)K(w, z) + K(w, ζ) ,z)\\dw\

= - - ^ f {K(w, ζ)L(w, z)
2πi JSΩ { dw

dw

, ζ)L(w, z))dw
J

^~ f L(w,
27τi J s β

, z)dw = Kfe ζ)
dz

z, ζ)

2πι J

(0<δ<dQ),
2πi J*δ x dw

where, for the integrals on λδ, the orientation of dw is chosen so that

{[δ, 1 - δ] ΌD(0,δ)ΌD(l,δ)}c lies to the left. By (22), we have

dK
(«, ζ; flj = -—-(2;, ζ; β j (0 < δ < do)
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with

T(δ) = - - ί - ί {K(w9 ζ)L(w9 z) + wψ-{w, ζ)L(w, z))dw
2πi hδV dw J

^ ί L(w,ζ)w(w9z)dw.
2πi J*δ dw

Thus dK(z, ζ; Ω1)/dt exists.

Second step. We show that DK(wu z, ζ; β j ex/sίs α îd (17) ZioZds αί

ί - 1.

Since 3K(z, ζ; β^/Sί is independent of δ, we have

3ί 310

Express ^(β) as a summation of Tk(δ) (k = 1, , 5) which are defined by

3w

iO,

T2(δ) = - ί - Γ'ίi^Cx—ίθ? ζ)L(x-/0, z) + xl
IL(χ-ίθ, ζ)L(x-iO, z))dx

2πi Jo { dw J

(x - iO, ζ ) χ i ^ ( x - ίO, z)dx,

= - -L- f α -^-ία;, ζ)L(^, z)dw ,
2πi Jά d,o) 9w;

4(3) = - -L- f L(w, ζ)w^-(w, z)dw ,
2 ^ J J s(i,5) 9w;

5(a) = - - L - f ϋΓ(α;, ζ)L(iι;, 2)dw;

- -L- ί w^-(w, ζ)L(w, z)dw
2πί Js(o,δ) dw

--L-Γ
2πi J5(o,ό)

Γ L(w,ζ)w^(w,z)dw.
2πi J5(o,ό) dw

The behaviour of if (z, ζ), L(,ε5 ζ) near 2 = 1 is as follows. Taking

φ) = *(*; [0, I]-) = 2{(z - 1 )



168 TAKAFUMI MURAI

we put R = <?(£,). Note that g(l) = 1 and K(ξ, q(ζ); R), L(ξ, q(ζ); R) are

analytic across S(0, 1) as a function of ξ. Since

g(2) = 1 + 2 ^ 2 - l + 0 ( | 3 - I D ,

Jqψ) = (z- l)-"« + (z- I)" 4 + 0(\z - l Γ ) (2 -• 1),

we have

2, ζ) = UΓ(g(«), q(ζ);

R) + 0(\z - I))}) + j ^

χ { 2 _ 1)->Λ + (2 _ !)!/« + 0(

., old; R) + (2 - D1/4Aζ + o(|2 - ir)}7F?Γ) (2

and

-^-(2, ζ) = {- j ( 2 - i)-

(z i ) A e + 0(|2 l\jpΨT) (2

where, in general,

= JSΓ(1, g(7); Λ) ( , ^ ) ; )

B. = L(l, g(σ); Λ) + 2 - ^ ( 1 , g(σ); i?).

In the same manner,

L(z, ζ) = {(2 - l)-'/4L(l, g(ζ); β) + (z - l ) ' ^ c + 0(|2 -

(2-*D

and

dz
0 = f- i ( 2 - l)-5/4L(l, q(ζ); R)

I 4

1 ( 2 - l)-3/4βc + O(\z - 1|-^)JV^(O (2

The behaviour of K(z, ζ), L(z, ζ) near 2 = 0 is analogous. We have

J(z, •) = O(\z\-ι<%^-(z, •) = O(!2|-5Ό (2 -> 0, J = K, L).
QZ

We now return to the study of Tk(δ) (k = 1, , 5). We have
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= - J ^ Γ
2τrί Jo

K(x + ίO, ζ)*-^-(x + JO,

Γ- Γ ^ W * + ί0> O'K(x + iθ, z)}dx
π Jo dx2π Jo dx

1

2π
K(l - δ + iO, ζ)K(l - δ + ίO, z) + o(l)

, q(ζ); R)

X {δ-vW'KO., q(z); R)

Zπ
, q(z); R)

In the same manner,

= f- -i-δ-

We have

8(a) = - J ^ f ^ - ( ^ , ζ)L(iι;, «)dα; + o

= - J ^ ί {- l«;-5/4iί:(l, qlζj; R)

X

= - J ^ f Γ- i^- 3 / 2 ^(i, 9(5; R)L(l, q(z); R)
2πl J 5(0,3) L 4

λ{K(l, qlζ); R)B, - L(l, q(z);
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In the same manner,

, q(ζ); R)K(1, q(z); R)

- L(l, q(ζ);

Evidently, T5(δ) = o(l). Using L(l, q(σ); R) = - K(l, q(σ); R) (σ = z,ζ),

we obtain

T(δ) = Σ T*(δ) = [- ±δ-^K(l,W); R)K(l,-qJz); R)
L 2π

—-{K(l, q(ζ); R)AZ - K(l, q(z); R)AC)

1 ,_

, q(ζ); R)AZ - K(\, q(z);
2π

l,q(ζ);R)L(l,q(z) R)

{(,qTd;), - L(l, q(z);

-Lr ' / 2 L(1, Q(0; R)K(1, q(z); R)
2π

- — {JK"(1, q(z); R)BC - L(l, q(ζ); R)AΛ V<7'(z)\V(ζ)
4

= — [- K(l,~q(Q;R)B, + L(l,q(z)\R)Aζ

)-L(l,q(ζ);R)AzWq>(z)Vq'(ζ)

1
[L(l, (?(2); i?)B: + L(l, q(Q; R)B

- K(l, q(z); R)Aζ - K(l, q(Q; R)Az]Vq'(z)Vq'(ζ) + o(l)

( = TJ4 + o(l), say)

which shows that

dK
(z, ζ; Ω,) = Hm T(δ) = TJ4 .

dt s i o

By (4), we have
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l, q(z); R)L(1, q(ζ); R) = K(l, q(z); R)K(l, q(ζj; R),

and hence

DK(1, z, ζ; Ωd = lim{L(u, z)L(u, ζ) - K(u, z)K(u, ζ)}
uϊl

, q(z); R) + (u - 1)"«

X {(« - p-v'LQ., qjζ); R) + (u - 1)^BC + O((u - If'*)}

^ (« - D3/4)}
X {(u - 1)-1/4K(1, q(ζ); R) + (u - ϊ)'/iAζ + 0((u - 1)3/4)}

X Vq7

L,Φ);

Thus DK(1, z, ζ; Ω,) exists and (17) holds.

Final step. We show that dL(z, ζ; Ω^jdt, DLiw,, z, ζ; £?,) exist and (17)

holds with K replaced by L.

We may assume that z Φ ζ. For 1 < u < 1 + d0, we have

LB(z, ζ) - L(z, ζ) = --L- f Lu(w, ζ)L(w, z)dι
2πi Jsou

IW

= _ J _ f Ku(w, ζ)K(w, z)dw + -Λ- f i ^ L,(«>,

= T* + Tf, say.

Taking

we put i?M = qu(Ωu) We have

ρ.(2) = 1 + 2 ^ 2 " - ^ + O(w - 1),

where O( ) means the uniform estimate with respect to zed[l,u]c when

« I 1. Thus

M ζ) =

, ̂ (0; RJ + 2jz~^Ίι^L{\, q^Jζ); Ru) + O(u -
3?

X
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hRJ

where dK , and, in general,

l, qu(σ)l K),

In the same manner,

Lu(z, ζ) = {w

Note that

1
2πί

1

2πί

1

2πi

-1.

•j.

-ί.

(w — w)~1/4(u; —

v l (u 1 JCV1

Jo

( YlfH

Jo

μx~ίμdx —

lV / 4 d —

1/4 xiμ dx ]

1 r' t π /

2ττi

Λ/U — 1

/2"ττ

1

VTTΓ \

« - 1

βί 3 3\
\4' 4/

4' J
M — 1

4 '

\49 4

where the orientation of dw is chosen so that [0, u]c lies to the left.

Thus

L 2ffi J9[i,»]«
, g.(0; Λ.) + (w - u

X {(w - D-WKQ., q(z); R) + (w -
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, ςr.(O; Ru)K(l, q(z); Λ)-L- f (w - u)
2πί J8[i.«o«

i ^ ί (u; - u)
2πΐ J 8[l,a]°

.,c-A_ f (u, - «)»/«(„, _
2πi JKUUV

+ o(« - 1)

A, |) i f(1, g^O; βjif(1, ^ ) ; R)

+ ^ t
4

+ o(u - 1).

In the same manner,

T} = f- -λ^(u
L v 2 π -

4 4

4

+ o(u - 1).

Since

L(l, qr.(ζ); i?JL(l, g(z); Λ) = ΛΓ(1, ̂ ( 0 ; RJK(1, ~φ)\ R)

we have

lim -J—-{Lu(z, ζ) - L(z, ζ)}
w | i W — 1

m t u ^ ^ O EJA; - K(l, q(z); R)AuΛ
Mil 4

; R)B, 4- L(l, g(«); R)BζWq'(zWq'(Q = T0*/4, say.

Thus the right-derivative 3+L(z, ζ; βj)/9ί exists and equals TfjA. In
the same manner, we see that the same property holds for the left-
derivative. Consequently, 3L(z, ζ; Q^/dt exists and equals Tf/4. Since
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DL(1, z, ζ; β.) = Hm{L(w, 2)ff(u, ζ) - K(u, z)L(u, ζ)}

M i l

X {(a - l)-»'Ή(ϊΓg(O; J?) + (M - l)1/4A

X { ( M - 1 ) - 1 / 4 L ( 1 , q ( 0 ; R) + ( u - l ) v * J 3 c

x
= [-L(l,g(Q;R)Άz + L(l,q(z);R)Aζ

l, q(z);

Thus DL(1, 2:, ζ; β^ exists and dL(z, ζ; β^/gί = DL(1, z, ζ; flO/4. This com-

pletes the proof of Theorem 8 in the case I.

§ 5. Deduction of Case II from Case I

In this section, we deduce the case II from the case I. We work

only with K; the argument for L is analogous. The arc-length represen-

tation of a closed analytic arc Γ is denoted by wt ( 0 < ί < | Γ | ) . For

— π < θ < π, let Jίf θ denote the totality of closed arcs Γ such that Γ — {0}

is analytic and Γ is expressed as eίθx + x3/2P(V^O> 0 < x < r in a

neighborhood of 0 with an analytic function P in D(0, r2). For Γ e J?θ,

let wt (0 <t <\Γ\) denote the arc-length representation of Γ such that

wQ = 0. We put Λt = [- 1, 0] ΌΓt (0<t< \Γ\). Here are some lemmas

necessary for the proof of the cases II-IV.

LEMMA 9. Let Γ be α closed analytic arc and let A be an arc in ,9/

with an endpoint w0 such that A Γ) Γ = {wo} Let h be the conformal

mapping from Ac onto [— 1, 0]c such that h(oo) = 00 and h(0) = 0. Then

h'(0) exists, hr(wt) is continuous on te[0, \Γ\] and h(Γ)e^θ for some

-π<θ<π.

To see this lemma, we may assume that wQ — 0 and A belongs to ££π

in a neighborhood of 0. Then Γ e «£?θ for some — π < θ < π. Take an

analytic arc γ passing through 0 such that f c A, Then ζ2 is a conformal

mapping from a domain U bounded by γ and a small circle S(0, r) onto

Z)(0, r2) — A. Form an analytic function

Λ*(ζ) =
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in U. Since h*(γ) is an arc on S(0, 1), the reflection principle shows that

Λ* is analytic in a small disk D(0, r') (0 < r' < r). Since A e Jδfo, Λ*(0) = 1

and Λ* is one-to-one, we can write /ι*(ζ) = 1 + aζh(ζ) with α e R , α =£ 0

and an analytic function h in Z)(0, r') such that Λ(0) = 1. This shows

that

1 - 2}

and hence we can write

h(z) = 4-la2zh(j~z)2{1 + α V ^ V ^ ) } - 1 (2 6 D(0, r'))

with a suitable branch of */ . Thus h'(O) exists and equals α2/4. Since

h'(z) = α2/4 + o(ϊ) (z->0), hf(wt) is continuous at t = 0, which yields that

h'(wt) is continuous on [0, \Γ\], Since Γ e ^ and Γ is analytic, there

exists an analytic function g in a small disk D(0, r") (0 < r" < r') such

that g(0) = 0, g'(0) = eίθ and g([0, r"]) c Γ i n a neighborhood of 0. Then

h(Γ) is expressed as

+ αV^Λ(VgOO)}-1] , 0 < x < r

in a neighborhood of 0. Substituting the variable x by 4"1α2xJ we obtain

h(Γ) e JSPβ.

LEMMA 10. Let Γ be a closed analytic arc and let kt be the conformal

mapping from Γ\ onto D(0,rt)
c such that &t(oo) = oo, |^(oo)j = 1 and

kt(wt) = rt (0<t<\Γ\). Then the limit limult{kt(wu) - rt}\k't(wu)\ ( = α £ ,

say) exists, at is continuous in (0, |Γ|], at > 0 and lim^ιQat/rt = 1/2.

In the same manner as above, we see that at exists, at is continuous

in (0, \Γ\] and at > 0. There remains to prove limt iOat/rt = 1/2. We can

write

kt(wu) = kt(wt) + btjwu - wt + O(u - t),

k&wj = ±bt(wu - wt)-1/2 + 0(1) (u i t)

with b^dwjdty 0. Then at = \btfj2. Thus it is sufficient to show that
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limt i0\bt\l\/rt = 1. To do this, we may assume that w0 = 0. Then Γ e J£?Q

for some — π < θ < π. Let g be the conformal mapping in the proof of

Lemma 9 and, for a small number t > 0, let s = so(t) be the number

defined by g(s) = wt. Form a conformal mapping

in a small ring D(0, r*) - Z>(0, s/4) such that &*(s/4) = rt and k?(S(0, s/4))

= S(0, rt) r* is a small number independent of t. The reflection principle

shows that kf is analytic in a ring D(0, r*) — D(0, s2/(16r*)) with the

identity k*(z) = riikfWilβz)))-1 in D(0, s/4) - £>(0, s2/(16r*)). Since

uniformly converges to ζ on S(0, r*), we have

kf'(8l4) = J^ ί
27Γί j3{£>(0,r*)-Z)(0,s2/(16r*))

= — Γ 1

2π Jo {r*e*+ - (s/4)}2

- —
2π Jo

kfjie)
2π Jo {(s2/(16r*))e4ψ - (s/4)}2 16r*

o(l) = 1 + o(l) (t i 0).
2πr

Since

|A?'(β/4)| = lim —\ktog{a + 4ε2/s + o(ε2)} - kt<>g(s)\

= 16(| lim I IMs + 4e2/s + o(ε2)} - g(s)|>/2 =

we have

Since |^(0)| = 1, So(O) = 1 and limu0£/r, = 4, this shows that limtιo\bt\l\/Ί\

= 1. Consequently, lim ί j 0 atjrt = 1/2.

LEMMA 11. Let Γ e &0. Then γ(Λt) = (1 + t)/4 + o(t) (t j 0).

Since Γ e c£fo> the diameter of J 4 is larger than or equal to 1 + 1 + o(t),

and hence jΌ^) > {1 + t + o(ί)}/4 [11, p. 9]. There exists a constant C

such that Λt is contained in a rectangle {x + iy\ — 1 < x < t, \y\< Ct3/2}

( 0 < £ < |Γ|). A simple calculation yields that
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r({x + ίy;-i<χ<t,\y\< λ±L
0(t),

which gives that γ(Λt) < (1 + 0/4 + o(t). Thus the required equality holds.

LEMMA 12. Let Γ e &,, - π < θ < π. For 0 < s < 4γ([- 1, 0] UΓ) - 1,

let t = t*(s) be the number defined by γ(Λt) = (1 + s)/4. Then, for any

compact set F in ( [ - 1, 0] UΓ)C,

(23) ; Λc

tHs)) - q(z; [- 1, s]c)\ (s | 0 ) .

To see this, we write simply qf(z) = g(^; ^?*(s)), q%z) = q(z; [— 1, s]c).

Note that

s +
s - 1

ds s + 1 1 — q°s(z)

Substituting the parameter of Lόwner's D. E. by a suitable one, we obtain

as s + 1 1 - κ,q*(z)

(See (56).) There exists 0 < ε0 < 1 such that \q%z)\ > 1 + ε0,

(zeF, 0 < s < 4r([- 1, 0] U Γ) - 1). Then

3 i .

| > 1 + ε0

as
- g%z)\ - ( * ) -

ds

8 + 1
1

8 + 1

+ «,< 1 + g

- q\(z)\

Since qf = gg, we have

\q*(z) - 92(2) - q%z)\ - l\}dx
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where P(x) = aupgeF\q*(z) - q°x(z)\. Thus

(24) p(s) < llε0-
2 Γ {p(x) + K - l\}dx .

Jo

Let C = max{p(x) + \κx - 1|; 0 < x < 4γ([- 1, 0] UΓ) - 1}. Then (24) shows

that ρ(s) < 11 CSQ2S. Using (24) again, we have

< 121Cεo-4s2 + 11 εo~
2 Γ \*cx - l\dx .

Jo

Since limsi0/cs = 1, this inequality gives (23).

Now we deduce the case II from the case I. Let fle^ and let Γ

be a closed analytic arc such that flcίlΓ is at most a singleton. If

flcΠΓ = {w0}, we denote by A the component of Ωc such that ΛΓϊΓ = {wQ}.

The condition Ω - Γ e ̂  shows that ΛΌΓes/. If β c Π Γ = 0, we put

A = 0. We divide the proof into several steps.

First step. There exists a conformal mapping h from i3Ui onto a

domain bounded by a finite number of analytic Jordan curves. Then

h(A\JΓ)es/ and h(Γ) is a closed analytic arc. Let w* (0<s<\h(Γ)\)

be the arc-length representation of h(Γ) such that w$ = w0, and let s = s(t)

be the function defined by wf = h(wt). Then ds/dt = \h'(wt)\ and ds/cfa

is continuous in (0, \Γ\]. If the required properties are established for a

domain h(Ω), an arc h(Γ) and 0 < s < j / ι ( Γ ) | , then we have, with Ωf =

h(Ω) - {w*;0<x<s},

-^-(z, ζ; Ω) =
dtdt ds dt

DK(wt, z, ζ; Ωt) = DK(w*, h(z), h(ζ); Ωf)\hf

which yields the required properties for Ω, Γ and 0 < £ < | Γ | . Thus,

from the beginning, we may assume that Ω — A is bounded by a finite

number of analytic Jordan curves.

Second step. We show that the right-derivative d+K(z, ζ; Ωt)/dt at t = 0

exists if A = [-1,0] and Γ e Jδf0-

Here is an equality necessary for the proof:

(25) K(z,ζ;Ωt) = K(z,ζ;Ω-[0,t]) + o(t) (t | 0).

To see this, we form a conformal mapping ι*(z) = (^"'oqfOε) from
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ΩιHs) onto a domain Ωf whose boundary consists of [— 1, s] and dcf(Ω{JΛ),

where q*(z) = q(z; Λc

t*ω), q\(z) = q(z; [— 1, s]c) and t*(s) is the number

defined in Lemma 12 for Γ e «Sf0. Then

Qt(z)

4

4 \ qf(z)q%z)/

and hence (23) shows that

<*(*) = z + o(s), ί*;(«) = 1 + o(s) (s I 0)

locally uniformly with respect to z. Thus

and

β - [0, s]) = J - f A'(«;, ζ fl - [0, s])/ίΓ(u;, z\ Ω*)\dw\

- - L f #(<?(?), β - [0, s])K(ef(ξ), z; Ωf)Icf'(S)\\dξ\

+ - L f K( w, ζ Ω - [0, s])K(w, z; Ωf) \ dw j

= J L f ίΠ>, ζ; β - [0, s\)KXw\z;Ωf)\dw\ + o(s)
2π Jβ(β-[o,!])

which shows that

K(z, ζ; β^(s)) - K(z, ζ; β - [0, s]) + o(s) (s j 0).

Let s = s*(t) denote the inverse function of t*(s). Then this equality is

rewritten as

(26) K(z, ζ Ωt) = K(z, ζ Ω - [0, s*(ί)]) + o(β*(ί)) (ί 4 0).

By Lemma 11, we have
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l + s*(t)
γ(A) = ι±L + o(t)

8*(t) = t + 0(t) (ί 4 0) .

Using this equality, we have, in the same manner as above,

K (z, ζ;Ω-[0, s*(t)]) = K(z, ζ;Ω-[O, t]) + o(t) ( ί | 0 ) .

Combined with (26), this equality yields (25). Consequently, the case I

and (25) show that the right-derivative d*K(z, ζ; Ω0)/dt exists and equals

J ( , ζ ; [ ,
dt

Third step. We show that the right-derivative 3+K(z, ζ; Ωt)/dt exists

in (0,|Γ|].

Take the conformal mapping ht from A\ onto [— 1,0]c such that

ht(wt) = 0 (0 < t <\Γ\). Then Lemma 9 shows that h[(w^ exists and

ht(Γ — Γt) e Jδf0. Since ht is conformal, we have h't(wt)(dwtjdf) > 0. Since

K(z, ζ;Ωu) = K(ht(z), ht(ζ); ht(Ωu)Wh't(z)Vh't(ζ) (0 < t < u),

the second step shows that 3+K(z,ζ; Ωt)/dt exists and equals

(27) ^-(ht(z)9 At(ζ); ht(Ωt) - [0, s\)

Fourth step. We show that DK(wt, z,ζ; Ωt) exists and is continuous

in(0,\Γ\}.

Let kt be the conformal mapping in Lemma 10. Then we have, with

4 = kt(Ωt),

DK(wu, z, ζ; Ωt) = DK(k,{wu), kt(z), kt(Q; Ωt)\K(wJk^z)k't(ζ)\

(0 < t < u).

Since J(ξ, Ωt) (J = K, L) are analytic in a neighborhood of rt with

respect to ξ, the right-hand side is rewritten as

(rt, kt(z); Ωt) + (kt(wu) - r ( ) | | ( r ( , kt(z); Ωt)

X {L(rt, kXO; 4 ) + (kt(wu) - rt)%r(rt, kt(ζ) Ωt)I dξ

- {K(rt, k,(z); Ωt) + (kt(wu) - rt)^r(rt, kt(z); Ωt) + oWu - t)\
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X ίκ(rt, kjζ)\ 4) + (kt(wu) - r t)-^-(r t, kjζ)\ A) + oWΊΓ=
I dξdξ

X \K(wu)k't(z)k't(Q\ (0<t<u),

in Lemma 10. Since

(J = K, L). Recall the quantity at

L(rt, kt(z); Ωt)L(rt, kt(ζ); Ωt) = K(rt, kt(z); Ωt)K(rt) kt(ζ); Ωt),

Lemma 10 shows that DK(wt, z, ζ; Ωt) exists and

(28) DK(wt, z, ζ; Ωt) = Γi(r t, kt(z); Ω^{rt, kt(ζ); Ωt)
L dξ

oξ
rt, kt(z); Ωt)L(rt,kt(ζ);Ωt)

of
rt,~kt(O; 4 )

dK (rt, kt(z); Ut)K(rt, kt(Q; Ω^at\k't(z)k>t(ζ)\.

Since at is continuous in (0, |Γ|], DK(wt, z, ζ; Ω,) is continuous in (0, \Γ\].

Fifth step. We show that d+K(z, ζ; Ωt)/dt = DK(wt, z, ζ; β()/4 (0 < ί

Let ht be the same as in the third step. Then we have

(29) DK(wu,z,ζ;Ωt)

= DK(ht(wu), ht(z)9 ht(ζ); ht(

In the same manner as in the fourth step,

lim DK(ht(wu), ht(z), ht(O; ht(Ωt)) = limDK(s, ht(z), ht(ζ); ht(Ωt)) •
s ί 0

The case I shows that this quantity is equal to

4-^-(Λ t(*), KAQ; ht(Ωt) - [0, s])
ds

Lemma 9 shows that limtt 11 h't(wu) = h't(wt). Thus, letting u tend to t in

(29), we see that DK(wt, z, ζ; Ωt)/4 exists and equals (27), which yields

the required equality.

Final step. There remains to prove that the left-derivative
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d-K(z9ζ;Ωt)ldt exists in (0, \Γ\] and equals 3+K(z, ζ; Ωt)/dt.

Fixing 0<tQ<\Γ\9 we form a function

p*(t) = K(z, ζ; Ωt) - K(zy ζ; ΩtQ) - f ^K(z, ζ; fl,)ώ
J ίo OS

on [£0, |Γ|]. Then p*(t0) = 0 and the right-derivative is identically 0, which

yields that p*(t) = 0. Thus d~K(z, ζ; β^/dέ exists and equals 3+K(z< ζ; Ωt)/dt

in (tQ,\Γ\], and hence the derivative exists in (to,\Γ\\. Since 0 <to<\Γ\

is arbitrary, dK(z,ζ; Ωt)/dt exists in (0, \Γ\]. This completes the proof of

Theorem 8 in the case II.

§ 6. Proof of Case HI by the operator Jf7

In this section, we prove Theorem 8 in the case III. This case

corresponds to the variation by cutting a hole [28] and the proof is easier

than that of the other cases. There are three methods of the proof.

The first method is as follows: For a small number t > 0, we define a

competing function of form K(z, ζ; Ω) + to(z, ζ, t)DK(w0, z, ζ; Ω) so that

the difference from K(z, ζ; Ωt) is negligible. The second method is as

follows: Taking a conformal mapping from Γ\ outside a small disk, we

use the reflection principle on the boundary of this disk in order to study

K(z, ζ; Ωt) — K(z, ζ; Ω). In this note, we use the third method, which is

an application of the singular integral operator j f and completely different

from the methods by conformal mappings. This method is not short,

however, this is a powerful tool to study γ(-). Evidently, DJ(w0, z, ζ; Ω)

(J = K, L) exist. We shall see that (17) is still valid in this case. For

E e ,$/, L\E) denotes the ZΛspace of functions μ on E with norm

|μ|2|dε|> . The operator #FE from L\E) to itself is defined by{f
= —p.V. f — £ — \dζ\

π JE ζ — z

= !limf —L-^Oidζi (zeE).
ft e l O jE,\ζ-z\>ε ζ — Z

We define 3rifE by tfEμ — $FEμ. The operator #FE is anti-symmetric, i.e.,

(^Eμ^)B = — (//, JFEv)E9 where ( , -)E is the inner product. The operator

ϊά — j4?EjfE is invertible and its inverse operator is denoted by ^ ,

where Id is the identity operator. Using TE, we can express K(z,ζ;Ec),

L(z, ζ; Ec) in the following forms.
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PROPOSITION 13.

(30) K(z,ζ;E<

(31) L ( * , ζ ; J S '

183

\
π J E w — z — ζ

z — ζ π JE w — z \ - — ζ

To see this proposition, we begin by showing

(32) c(*;£') = - f _ l _ ^ ( = i = ) ( ϊ ι ; ) | d I ι ; | (* e E< - {oo}).

\ ψ(oo) = o

) f ^ ( ) (
π J E w — z \ — z /

The dual extremum problem yields that

φ ; inf ί-L ί
I2τr J3^c

= -±-K(z, z; E*) [4, Chap. VII].

For ψ e H2(EC), ψ(oo) = 0, there exists μ e U(E) such that ψ(u ) =

i-f —^- |dζ | (w;e£; c ) . Then
7Γ J ^ ζ — If

\dw\
a.e. on

To each w e E — {endpoints of C3 (7 = 1 , . . . , n)}, there correspond two

points w± e 5 £ c so that dw+ = — dw~, where {C5}
n

j=1 are closed analytic

arcs such that E = (J5=i C r Since

- f
w — z

+ ψ (w)

2τr J ^ \ — +
w — z

w — z
iμ(w)

\dw\

dw~

dw+

2\

)\d

we have

+ +
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There exists μ0eL2(E) attaining c(z; Ec). Then a variational method
shows that

( + (μo, μ)E = 0
— Z

for all μeL2(E), and hence

(Id - JFEjeE)μ, = JFJ—-—j, i.e.,
— z ) I — z

Since Id + ^E^E^E — 3~E, we have

c(z; E<) = I f
— Z WE

~ υ)\dw\
- — z / E π J E w —

, ) f
— z - — z / E π J E w — z I — z

= - f —-—?A~Λ
π J E w — z I . —

Thus (32) holds.
We now deduce (30) from (32). Let K*(z, ζ)/π be the kernel in the

right-hand side of (30). For each ζ e £ c , K*( ,ζ) is analytic in Ec.
Evidently, ίΓ*(oo,ζ) = 0 and K*(z, ζ) = KHζJ). Equality (32) shows
that

(33) λκ(z,z;Ec) = c(z;Ec) = ±-K*(z,z) (zeEc).
π π

Let

K(z, ζ; £C) = Σ Σ an,mz-%-τ\ K*(z, ζ) = Σ Σ ^ ^ - ^
w = l m = l w = l m = l

be the expansions at oo. Then (33) yields that αn>m = bni7n (m, n = 1, 2, •)
(cf. [30]). Thus ϋΓ(2, ζ; Ec) = K*(z, ζ). We next prove (31). We have

(34) Uz, ζ; ^c) = _ ! _ + J ^ f ^ i
2: — ζ 2ττJ J ί ^ M -

+ ^ {L(̂ , ζ; £ ) =, ζ; £c) -

2 — ζ

Equality (30) shows that

K(w, ζ; Ec) = ΛĴ iC-—1—Vi£7) + ^ ( ^ L ^ V H ; ) J*4- a.e. on
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Replace K(w,ζ; Ec) in (34) by the right-hand side of this equality. Since

dw+ = —dw~ a.e. on E, we obtain (31). This completes the proof of

Propositon 13.

Using this proposition, we prove Theorem 8 in the case III. We

divide the proof into three steps.

First step. We show that dK(z, ζ; Ω0)/dt exists and equals

DK(w0, z, ζ; fl)/4. (dK(z9 ζ; Ω0)jdt means the right-derivative at t = 0.)

Let Ω e ̂  and Γ be a closed analytic arc in Ω. Considering a suit-

able conformal mapping if necessary, we may assume that fle.f and

w0 = 0. Let E = Ω\ Et = E U Γt (0 < t < \Γ\). Given a small number

£ > 0, we denote by M the multiplier operator μ -> Z£^ from L2(Et) to

itself, and denote by iV the multiplier operator μ —• ZΓί/i, where XF is the

characteristic function of F. We write simply

Then (30) shows that

K(Z, ζ; flί) = -(fμ,, μ,\ K(Z, ζ;Ω) = ±-(Sμt, μL) ,
π

where μξ(w) = l/(w - ξ) (ξ = ̂  ζ) and ( , .) = (., ) B t . To study ^ - S,

we rewrite the identity (Id — j f j?)^"" = Id as

{Id - jfMjfM - yfNJFN - 2/fM^N - jeN^M}3~ = Id.

Composing S from the left-hand side, we have

(35) M3~ = S + S^fN^N^r + SjfMJFNjr +

Composing i? from the left-hand side, we have

(36) iVjΓ = JS + RyfMJFMzr + R^M^N^T +

Replace ΛΓ^ in (35) by the right-hand side of (36). Adding the resulting

quantity and (36), we obtain

= S + SjfNJFR + Sj^N^RjfMjfMsr +

+ Sj^MjfR +

+ SjeM^Rj^NJFM^r +

+ R + R^M^M3Γ +

= S + # ! + . . . + JBL13, say.
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In the estimates of Kό (j — 1, , 13), the following inequality plays an

important role:

(37) KtfMμ, Nv) - jPMμ(0)(l9 Nv)\

< ^ | Λ | ί \μ\\dw\{ \v\\dw\ (μ,ve
π J K J rt

where C = (the distance between E and Γ)~2. In fact,

(jTMμ, NV) - JfMμ(0)(l, Nv) = 1 f v(z){[ Ί ?-^—μ(w)\dιv\}\dz\,
π J r, U E (w — z)w J

which gives (37). Since NJFR is anti-symmetric, we have (1, NjiFRl) = 0,

and hence

(Knμz, μζ) = -(tfMfμ,, N^Rμ,) = -JPAf^,(0)(l, NJFRμζ) + θ(ί)

~ffl o(t) = o(t).

Since

(1, Rl) = πγ{Γt) = - 1 + o(t) [18], jPMJFNfμM = o(l),

we have

(Knμt, μ,) = {^M^NSΓμz, Rμζ) = $eMΪ?NSΓμ<$i)(\, Rμζ) + o(t)

l, Rl) + o(t) = o(t).

Since j^MJFM^μt(0) = MΉJFSμz(0) + o(l), we have

(Knμ,, μζ) = (jrMjeMfμ,, Rμ,) = yfMjfMsrμχθ)μ,(0)(l, Rl) + o(t)

yμJΰ) + o(t) .

In the same manner, we have

»μ,, μζ) = μX0)μ~(Oj(Rl, 1) + θ{t) = jtμ,φ)μ^) + θ(t) ,

= -JfM^μM ^%(0)(l> Nϊ) + θ(t)

o(t),

z, μ.) = -J UrMJFSμM^M^Sμ\(0) + θ(t) ,

(Kφ,, μ,) = l-tμ,(0)&MjrSμ]@) + O(t) ,
4
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<μ., μζ) = -JPMrμM &SJύOXNJFRjrNl, 1) + o(t)

^ o(t),

(Kjμ,, μζ) = o(ί) (j = 1, 2, 3, 7, 8).

Proposition 13 shows that

(38) yfSμe(0) = K(0,ξ;Ω), μt(0) + jeMjeSμ((0) = L(0, ξ Ω) (ξ = z,ζ).

Thus

π{K(z,ζ;Ω,)-K(Σ,ζ;Ω)}

= (J-μ,, μζ) - (Sμ,, μ,) = £

= -J ί{j«.(0)ft(0)

= ^t{(L(Q, z; Ω)L(Q, ζ; Ω) - K(0, z; Ω)K(0, ζ; Ω) + o(ί)

4
4

which shows that 3iC(z, ζ W0)/9ί exists and equals DK(0, z, ζ .Q)/4.

Second step. We show that dL(z, ζ; βo)/9ί exisίs and equals

DLφ, z, ζ; β)/4.

We may assume that z Φ ζ. Equality (31) shows that

L(2, ζ; fl,) = --A.- + 1 ί^^ ft, /?,),
2 — ζ 7Γ

ζ; Ω) - — 1 — + 1 (MJFSft, βz).
2 — ζ 7Γ

To study ^ . T - MJFS, we rewrite the identity (Id - Jfje)jf^r = j? as

{Id - JfMyfM - 3fN^N - JfMjfN

Composing S from the left-hand side, we have

Composing i? from the left-hand side, we have

+ RjeMjeMj/ej' + R^M^eN^^ +
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Using these identities, we obtain, in the same manner as above,

Of i//3 I C' **//2 1\T /*/^ /•? *y0 i

+

+ Rjf + Rj^MjeMjf^ +

= Sά? + U + + L18, say.

In the same manner as above,

, μ2) = - ( f t , M^Έμz) - tμζ(0)jFSμ£0) + o(t)
, μz) - tμζ(0)jfSμM + θ(t) ,

(Vc, A) = ~(f -

(L5ft, A ) = ̂ t#Mφ)jPM*Sμa{ϋ) + o(t),

7Γ _ι ^/^

1

, ifl.) = j tJfMμ,(0)μX0) + 0(0 ,

nft, p,) = 4 ί^M^f MiPSμζ(0)μ.(0) + o(
4

Thus, by

π{L(z,

(L;ft, /J2) = o(t) (j

(38), we obtain

ζ;Ωt)-L(z,ζ;Ω)}

= (<^<Tμζ, μz) — (MJFi

4

= — ̂ {L(0, z;Ω)K(0, ζ;
4

= 2, 3, 7, 8, 12, 13).

S f t , A >.- W 0)« f t <0>.

•yP ]\/[ %p Q41 (Cγ\\~\ _j_ n(t\

Ω) - K(0, z; Ω)L(0, ζ Ω)} -

13

+ Σ

MJFi

ho(t)
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which shows that dL(z, ζ; Ω0)/dt exists and equals DL(0, z, ζ; Ω)/4.

Final step. We show that DJ(wt, z, ζ; Ωt)/dt (J == K, L) are right-con-

tinuous at t = 0.

We may assume that w0 = 0. Here is a lemma necessary for the

proof.

LEMMA 14. Let kt, rt (0 < t < \Γ\) be the same as in Lemma 10. Then

we have, with Ωt = kt(Ωt),

(39) lim K(rt, kt(z); Ωt) = K(0, z; Ω) - L(0, z; Ω),
t 10

(40) lim L(rt, kt(z) Ωt) = L(Q, z; Ω) - K(0, z; Ω),
t 10

(41) lim rc ^-(rt, Tφ) Ωt) = L(0, z; Ω),
no dξ

(42) lim rt ̂ -(rt, kt(z) Ωt) = K(0, z; Ω),
dξ

where 2L(rιt • Ω,) = ^-{ξ, • Ωt) (J = if, L).

Choose ε0 > 0 so that Z)(0, e0) c Ω and ^(z) e f l - β(0, ε0) (0 < t < \Γ\).

Then K(ξ,kt(z);Ωt), L(ξ, kt(z) Ωt) uniformly converge to K(ξ,z;Ω),

L(ξ, z; Ω), respectively, on ξ e /S(0, e0), when 11 0. Form

= fg(g,^);gt) (I e £(0, ε0) - D(0, rt))

-L(rVl kt(z); Ωt)rjξ (ξ e D(0, rt) - D(Q, r?

Since

K(ξ, kt(z) Ωt)ξ = - L(f, At(2) fl()r( ($ e S(0, r t)),

(f) is analytic in D(0, ε0) - D(0, r?/s0). This shows that

ίΓ(r,, ft^F) 4 ) = - ^ ί -r-^
2πi J d{D(o,ε0)-D(o>rysQ)} ξ — rt

2π

ψ, 2 ;

= K(0, z; Ω) - L(0, z; Ω) + o(l) (t j 0),
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which gives (39). Since

. dK (rt, Hz); Ωt) = 1 f r*
2TΓ^ Jδ{J5(0,βo)-D(0,r?/eo)} ( f — Γ

2π Jo (S oe ι* _ r,) 2

{(r2JεQ)ez* - r j 2

% , 2; β)dψ + o(l) = L(0, 2; Ω)
2ττ Jo

which gives (41). In the same manner, we obtain (40) and (42). This

completes the proof of Lemma 14.

Recall (28) and \\mt^atlrt — 1/2 in Lemma 10. Lemma 14 shows that

lim DK(wt, z, ζ; Ωt) - 1 [{L(0, z; Ω) - K(0, z; Ω~)}K(0} ζ; Ω)
MO 2

+ ϋΓ(O, 2; β){L(0, ζ; β) - X(0, ζ; Ω)} - {/Γ(0, g; β) - L(0, «; β)}L(0, ζ; Ω)

- L(0, z; Ω){K(0, ζ Ω)- L(0, ζ ; Ω)}]

= L(0, z; β)L(0, ζ; fl) - Kφ, z; Ω)Kφ, ζ; Ω) = Z>iί(0, «, ζ; Ω).

Thus DK(wt, z, ζ; ί?t) is continuous at t = 0, i.e., dK(z, ζ; Ωt)/dt is contin-

uous at ί = 0. In the same manner as in the proof of (28), we have

DUwt, z, ζ; Ωt) = [Urt, kt(z); Ω,

, dL (r,, Hz); ί3()Z(rT,lχθT4) - Kfr^Whβl)—^, HO; i\)

- ^-(rt, kt(z); Ωt)Urt, K(ζ); 4)kV^(
oξ J

and hence, using Lemma 14, we see that DL(wt, z, ζ; Ωt) is continuous at

t = 0, i.e., dL(2, ζ; Ωt)/dt is continuous at 2 = 0. This completes the proof

of Theorem 8 in the case III.

§ 7. Proof of Case IV

In this section, we prove Theorem 8 in the case IV. We work only

with K; the argument for L is analogous. Let Ω e & and let Γ be a closed

analytic arc with the arc-length representation wt (0 < t < | Γ |) such that

Ώ ~D Γ and 3Ω Π Γ = {wQ}. Without loss of generality, we may assume
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that w0 = 0. We show that dK(z, ζ; Ω0)ldt exists and dK(z, ζ; Ωt)jdt is con-

tinuous at t = 0. There exists a component A e J / of Ωc with an endpoint

0. Let h be the conformal mapping from Λc onto [— 1,0]c such that

h(oo) = oo and /ι(0) = 0. Then Lemma 9 shows that h(Γ) e ££e for some

— π<θ<π. If θ = 0, then the case II yields the required properties. Thus

we may assume that θ Φ 0. Let w* (0 < s < | /i(Γ) |) be the arc-length

representation of h(Γ) such that wf = 0, and let s = s(ί) be the number

defined by w* = h(wt). If the required properties are established for h(Ω)

and h(Γ), then

) , h(ζ); h{Ω) -{w*;0<x< s}){, ζ;t) ^
dt ds

x h\wt^(*^YJW)7m (o<t< \r\).
at \ as I

Lemma 9 shows that hf(wt)(dwtldt)(dwfjds)~ι is right-continuous at t = 0,

which yields that dK(z,ζ; ΩQ)/dt exists and 3K(z,ζ; Ωt)/3t is right-contin-

uous at t = 0. Thus, from the beginning, we may assume that A = [—1, 0]

and Γei?0, θ φ 0. We put Λ, = [-1, 0] U Λ (0 < t < \Γ\). Here are

some lemmas necessary for the proof.

LEMMA 15. For an analytic function P in D, we put

Us = {τ$(y); 0 < y < 1}, τ,(y) = ie^y +

Vs = U, U ϋ, (0 < s < 1).

Then

(43)

The sequence {Vs}0<s<1 converges to Vo as s | 0, however, (43) is not

obvious. Take, for example,

π μ f f i ^ i ) } 0.-1.2....).

This sequence converges to [0, 1] but r([0, 1]) > l im n _ γ(En). (See [18]).

In the proof of (43), the connectivity of Vs is important. Take the Green's

function Gs{z, oo) of Vc

s with pole at oo (0 < s < 1). Then we see that

lim s l 0G s(2, oo) — G0(z, oo). The Ahlfors function f(z; Vj) of Vs is expressed

as — exp{— Gs(z, oo) — ίGf(z, oo)}, where G*(z, oo) is the conjugate multi-

valued harmonic function of Gs(z, oo) such that Gf(oo, oo) = 0 (mod2τr).

Thus lim s i 0/(^; V$ = f(z; Vξ), which gives (43).
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LEMMA 16. Let Vs, τs (0 < s < 1) be the same as in Lemma 15. Let

as = lim {q(τs(y); Vj) - g(τ.(l); Vf)}lVy^Ί (0 < s < 1),
2 / 1 1

where q is the function defined in the beginning of §4. Then l im s l 0 α s = a0.

To prove this lemma, we write simply qs(z) = q(z; Vj) (0 < s < 1).

Lemma 15 shows that {qs}0<s<1 locally uniformly converges to g0 as s j 0,

and hence qs(S(0, 2)) c D(0, M) - D(0, ijM) (0 < s < 1) for some M > 1.

Since qs(Vs) = S(0, 1) and gs does not take 0 in Vc

s, we have gs(£)(0, 2) - Vβ)

C D(0, M) - D(0, 1/Λf). There exists ε0 > 0 such that the ranges of a

semi-disk D(0, ε0) Π {Re z > 0} by analytic functions τ s(l + ^2) (0 < s < 1)

are contained in D(0, 2). Form /s(z) = qs o r s(l + -ε2). Since /s(/[ — e0, ε0])

C S(0, 1) and the range of the semi-disk by qs is contained in a ring

D(0, M) — J9(0, 1/M), we may regard ls as an analytic function in D(0, ε0)

whose range is contained in the ring. Thus {/s}0<s<i is a normal family

of analytic functions in D(0, ε0). Lemma 15 shows that {qs}0<s<ί converges

to q0 in D(εJ2, εo/4), which yields that {/,}0<ί<i converges to Zo in D(0, ε0).

Thus lim, ι 0 φ) = φ). Since

) (3 | 0)

we have

/ ^ ) = Z,(0) + α f e+o( |2 | ) ( ^ ^ 0 ) ,

and hence <*s = Zί(0) (0 < s < 1). Thus

lim as = lim Z£(0) = Zί(0) = αo •
s I O s 10

LEMMA 17. Let

βt = lim {q(u;β; Λ?) - g(u;£; ^)}/V^ - t (0 < ί < \Γ\).

Then limuo/3 t exists and the value is common for all Γ eJ£θ, i.e., the value

depends only on θ. If θ = π, then lim ί i Oβ£ = 0.

To prove this lemma, we write simply qt(z) = q(z; Λf) (0 < t < \Γ\).

Since Γ e J^e, we can express Γ as eies + sB/2P(^/~s~), 0 < s < r in a small

disk β(0, Γ) with an analytic function P in Z)(0, r2). Dilating the coor-

dinate axes if necessary, we may assume that r — 1. Let ws = eίos +

s*βP(^/~s~) (0 < s < 1). This is a parametric representation of Γ Π D

different, in general, from wt. Define t = t(s) by wt = ίυs. Then dt/ds is
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right-continuous at s = 0 and Γ(0) = 1. We have βs — βt*J dt\ds with

βs = lim {qt(ίbs + ε) - qt(ws))U/T (t = t(s)).

Thus it is sufficient to show that {/3s}0<s<i converges to a quantity depend-
ing only on θ. Take a conformal mapping

Q(Z) = f ( ; [ i o ] ' ) i
q(z; [ - l , 0 ] 0 + l

from [-1, 0]c onto the upper halfplane C+. Then Q(0) = 0 and Q(oo) = i.
We can write Q(z) = i^~z + zP%

 {ΛJ~Z) with an analytic function P* in
D, and hence we can write

ί(ίυsy
/2 + w8 P*((ώ,)1 / 2) = ίeίθ/2j~s~ + sP(</~s)

with an analytic function P in D. Thus Q(Γ Π D) is expressed as ieiθβy
+ y*P(y), 0<y<l. Let C7S, V,, r,, αf, gs = g( Vs

c) (0 < 5 < 1) be the
same as in Lemmas 15 and 16. Then Q(Γt) = </TU8 (t = t(s\ (0 < s < 1).
Since ^(oo) > 0 and Vs is symmetric with respect to the real line R, qs

is a conformal mapping from C+ — Us onto C+ — {C+ (Ί D}, and hence

m,(z) = -ί{^(Q(2)/V^) + gXQ^/V^)"1}z

is a conformal mapping from Λc

t (t = ί(s)) onto C+. Thus

{m,(^) - ms(oo)}l{ms(z) - ms(oo)}

is a conformal mapping from A\ onto Dc, and hence

qt(z) = e^{ms(z) - ms(oo)}l{ms(z) - ms(oo)} (t =

for some 0 < ^s < 2π. Since Q(ws + ε)l^/Ύ = τ,(Vl + (ε/s)), we have

- ms(oo)}{ms(ws) - ms(oo)}

X {̂ s o τ,(Vl + (e/β)) - g s o r.(l)} (ί = t(s)).

Thus

(44)
- ms(°°)}2
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To study the right-hand side, we write

(45) $.(ζ) = r W Έ + Σ «..«C"" ( C - o o ) .
71 = 0

Then \aSιn\ < Mn (n = 0, 1, . 0 < s < 1) for some M > 1. Lemma 15

shows that

sjo 2

Since Q(z) = i - il(2z) + O(|z|-2) («-* oo), we have

Σ
o

(2 -• oo) ,

and hence

1
(46) qi(oo) = eίφ°{ms(oo) - τn,(oo)} lim

- ms(oo)}

= 2e*' m^°°^ ~~ m s ( o o ) lim
l ^ / V ) 2

1 2 ^ w=i 2

Since limt ιoήί(oo) = 4 and limg i 0 Λ/Tw s(oo) = ΪY(VO)"72, we have

lim s l 0 e ί ί i s = — 1. Consequently, Lemma 16 and (44) yield

The expression in the right-hand side shows that lims i0/3s depends only

on θ, i.e., lim^o/3; depends only on θ. If θ = TΓ, then Q Ό 0 ^ ! ) = — 1, which

gives lims i0/9s = 0, i.e., limίlOj8£ = 0.

LEMMA 18. Let nt be the conformal mapping from A\ onto [—l,δt]
c

(δt > 0) such that nt(oo) = oo, K(oo)| = 1 and nt(wt) = δt (0 < t < \Γ\).

Then
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(47) lim I ni(wt) | = lim δjt = (
no no \ ft- -f 0

Suppose that 0 < θ< π. We begin by showing that lim ί l0δ t/£ exists

and depends only on θ. Recall qt(z) = q(z; Λf) (0 < t < \Γ\). The function

Qt{wt)~λQt(z) + Qtiwt)Qt(zYι maps A\ onto [—2, 2]c so that the image of wt

is 2. Thus

^(s) - K ^ t X δ ί ί ^ ) " 1 ^ ) + QtiWtMz)-1 + 2} - 1,

which shows that δt = 4^/ίJ — 1. Since q't(oo) = ljγ{Λt), (46) shows that

2|m s(oo) — m s(oo)| 2^s Σ it = t(s)) ,

where qs, ms., t(s) are the functions in the proof of Lemma 17. Recall (45).

Since g'(oo) > 0 and Vs is symmetric with respect to R, aSt7l (n = 0, 1) are

real-valued, and hence

Λ/.s |mβ(oo) - mβ(oo)|

2

- γ(Vsy - {α,pl + γ(Vs)}s + o(s) (s | 0).

Thus

= j + -

Since {gs}0<s<i converges to g0, we have l im s l 0 α S i l — α0>1. Consequently,

lim 5ί/ί = lim
t jo no

t'(s)
α,,}.

The last expression shows that limtιQδJt depends only on θ. Next we

show that l i m u 0 | ^ ( ^ ί ) | exists and depends only on θ. Since

nt(wu) - nt(wt) = γ{Vt)qt(wu)-'qt(wt)-ι{qt{wu) - qt(wt)}2 (0 < t < u),

we have

at u — t at
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Thus

(48)
no

Lemma 17 shows that l\mt^\n[{wt)\ depends only on θ. Since both

lim u o 1^(^)1 a n ( ϊ Hm^o^ί/ί depend only on θ, it is sufficient to prove (47)

in the case Γ = eίθ[0, 1]. For 0 < e < 1, we take the Schwarz-Christoffel

transformation

p.(z) = λ(2 - e-tJ+Kz - euy~* (φ = θlπ)
z

from Dc onto a domain Fc

s of form

e** F, = [_fff> 0] U (e"[0, ,,])

for some triple (ψεJ σg5 5̂ s) of non-negative numbers. Let a be the number

in (-e,e) such that -°-\pΛ(eix)\
doc

= 0. Then
dx

(1 + φ) tan £ ~" α = (1 — φ) tan ε ' α ,

and hence a is analytic in a neighborhood of 0 with respect to ε and

α = φε + 0(ε3) (ε j 0). Since ^(e± i e) = 0, we have

v, = \pXeίa)\ = 4 sin 1 + ^ ε + α sin1-** ε ~ α

2 2 '

and hence ηε is analytic in a neighborhood of 0 with respect to ε and

ηt = (l + φY + *(l - φY-*ε2 + O(ε4) (ε | 0) .

Let b be the number in (—ε, ε) such that -^—\pε(—eίx)\
dx

= 0. Then

and hence 6 is analytic in a neighborhood of 0 with respect to ε and

B = -φ£ + O(ε3) (ε | 0). We have

2 2

and hence σε is analytic in a neighborhood of 0 with respect to ε and
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aε = 4 - (1 + φ)(l - φ)i + O(ε4) (ε | 0) .

Considering a conformal mapping ei*'σ71pi(z) from D c onto

{[-1,0] U (eίθ[0, r]εσ:'])}c, we obtain

Given a small number ί > 0, we define ε = ε(t) by

4

Since

,_ 1 (l + fl(lfl
4 16

4 4

we have

lim djt = 4 lim !{ r (Λ) - Kt-1, 0])} = (\
ί ιo no ί \ 1 + φ

which shows the second equality in (47). Since δt is analytic in a neigh-

borhood of 0 with respect to t, we have

(49) lim - * L . = 4 lim J*L(Λt) = ( 1 ~ φ V .

We can write

Λ,(if.) = «( + nKwiXw- - «>,) + O(\wu - wt\
3'*)

*£ -t) + O((u - ί)3/2) (u 4 t)δt + nt(wt)£(u
at

with n[(wt)dwtjdt > 0. Since | ^ ( o o ) | — 1, Lemma 11 shows that

γ(Au) - γ(Λt) = r ( ^ U J ) - r ( [ - l , 3J)

= ±-\n't(wt)\{u - ί) + O(M - ί) (M I ί ) ,
4

which gives that dδjdt = \n't(wt)\. Combined with (49), the first equality

in (47) follows. In the same manner as above, we obtain (47) in the

case where — π < Θ < 0. Suppose that θ = π. Since Γ e &x9 we have
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At c {x + iy; - 1 < x < 0, |j>| < Cϊ3/2} (£ J, 0) for some constant C. Since

γ({x +ίy; - 1 < x < 0, |j>| < Cf'2}) = 1/4 + o(£) (t | 0), we have lim t l 03 t/ί

= 0. Since ]imίlOj8ί = 0, (48) yields that l im u 0 1^(^)1 = 0. This completes

the proof of Lemma 18.

Now we return to the proof of the existence of 3K(z, ζ Ω0)/dt and

the continuity of dK(z, ζ; Ωt)jdt at t — 0 (in the case where A = [—1, 0]

and Γ e ££9, θ Φ 0.) Let nt be the conformal mapping in Lemma 18

( 0 < * < | Γ | ) . Then

dK (z, ζ; Ωt) = ^-(nt(z), nXζ); nt(Ωt + ε
dt 3ε

-(nt(z),nt(ζ);nL(Ωt)- [0, ε]) \n't(wt)W~n't(z)Jn't(ζ)

(Q<t<\Γ\).

The argument in the case I shows that

lim JUL(nt{z), 7ιjζ); n,(βt) - [0, ε])
no dε

and hence Lemma 18 yields that

dK_

lim
t i o

, ζ;Ωt)= ( j
π + θ

(z,ζ;Ω-[0,e])

- [0, ε])

Let nf be the conformal mapping from A\ onto [—1, §t]
c such that π f(oo)

= co and nf'(oo) = 1 (0 < t < \Γ\). (Note that nf(wt) Φ δt.) Lemma 12

shows that nf'(z) = o(t) (t | 0, z e Ω - Γ). Thus

K(z, ζ;Ωt) = K(nf(z), nf(ζ); nf(Ωt

= K(z,ζ;Ω-[0,δt])

- K(z, ζ ; Ω) + 3 , - ^ - ( 2 , ζ Ω- [0, ε])

By L e m m a 18, w e h a v e

dK

o(ί)

dt
-(z,ζ; fl,) = ) ^ L ( 2 , ζ; Q _ [0, ε])

π + θ / dε

Consequently, 3K(z, ζ; βo)/3ί exists and dK(z, ζ; Ωt)/dt is continuous at

£ = 0. This completes the proof of Theorem 8 in the case IV.

Remark 19. We easily see that limtiQDc(wLi <χ>; ΩQ) ( = Dc(w^ oo; β0),
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say) exists even if woedΩ. We here note that the right-derivative

dc(oo; ΩQ)ldt at t = 0 is not, in general, equal to Dc(w0, oo; βo)/4. Take

β = [_ 1, 0]c and Γ = eί0[0, 1] (0 < θ < π), for example. Then the second

equality in (47) shows that

dc «*

We have

Dc(wl9 cχ>; β0) = cosfilm Γ _ * L _ ) =
12 J-i x - ί ί / J

where ψ(wt) is the angle at wt of the triangle with vertexes — 1, 0, αv

(See Proposition 24.) Letting ί tend to 0, we obtain

n

Dc(w0, oo; ΩQ) = c o s — .

Since {(π - 0)/(π + 0)}β/JC Φ cos(β/2), we have dc(oo;Ω0)/dt Φ Dc(w0, oo; βo)/4.

§ 8. Application to simply-connected domains

In this section, we mainly study D2c(w, z, ζ; Ω) for simply-connected

domains Ω. Prior to the study, we give some remarks to Dc(z, oo; Ω)

and D2c(z, ζ, oo β) for general multiply-connected domains β. Let h be

a conformal mapping from a domain β containing oo onto a radial slit

domain [21, p. 335] Ω* such that h(oo) = oo, l/i^oo)! = 1. Then Dc(z0, oo; β)

< Dc(0, oo; β*), where z0 is the point in β such that h(zQ) = 0. In fact,

RengeΓs inequality [33, p. 393] shows that |Λ'(zo)l<l. Since Dc(z,ζ;Ω)

X |cfe||dζ| is conformally invariant, we obtain the required inequality. If

β* is a circular slit domain [21, p. 335], we have Dc(z0, oo β) > Dc(0, oo £?*).

Thus radial slit domains and circular slit domains are very important to

estimate Dc(z, oo; β). A simple calculation shows that JDc(£, oo β) is

superharmonic in β and, if β is bounded by analytic Jordan curves, then

Dc(z, oo; β) = 0 on 9β. The behaviour of ΰ 2cfe ζ, oo; β) near 2 = ζ is

as follows. Recall the definition of D2c(z, ζ, oo; β). We can rewrite this

quantity as

, ζ, oo; β) = 2Re[{- 0(*; β)^(ζ; β) + ^(^ β)^(ζ; Ω)}L(z, ζ; β)

Since the Ahlfors function f(z; Ω) of β c equals ^(,ε; Ω)/φ(z; β), we have
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limD2c(ζ + εe™, ζ, oo; β) = 2ReΓl im{- φ(ζ + εeίθ; Ω)g(ζ; Ω)
ε 10 L 8 | 0

+ g(ζ + ee4*; β)0(ζ; £ ) } — - {|0(ζ; β)|2 - |g(ζ;

ε

= 2Re[e2 ί '{- φ'(Z; Ω)g(ζ; Ω) + g'(ζ; Ω)φ(ζ; Ω)}

-\φ(ζ;Ω)?{l-\f(ζ;Ω)f}K(ζ,ζ;Ω)]

= 2\φ(ζ; Ω)f{l - \f(ζ; Ω)f}

X ΈLeί^MίB r(ζ;Ω) - Kit

( = D2,c(ζ, ζ, oo 0), say) (0 < β < 2π).

Note that iί(ζ, ζ; β) is the supremum of | f(ζ) | over all /e H°°(β), ||/Ί|̂ oo < 1.

The function {f(z; Ω) - /(ζ; β)}/{l - f(z; β)/(ζ; β)} belongs to ff°°(β), the

norm is equal to 1 and the derivative at z = ζ is equal to /'(ζ; β)

X {1 - |/(ζ; β)!2}-1. Thus D2

θc(ζ, ζ, oo; β) < 0. Since D2,c(ζ, ζ, oo; β) is not

a constant with respect to θ, D2c(z, ζ, oo; β) cannot be extended as a

function in (z, ζ) e Ω X β. If β is simply-connected, then there uniquely

exists 0 < θ < 2/r such that D2

θc(ζ, ζ, oo; β) = 0. In the case where β is

simply-connected, it is easy to study D2c(w, z, ζ; β). We have

PROPOSITION 20. // β is simply-connected, then D2c(w, z, ζ; β) < 0.

Ira particular,

(50) £ 2 c ( 0 , z , ζ ; D ) = —
- | z | 2 ) ( l - | ζ | 2 ) | z ζ | 2 | * - ζ | 2

X "*"

T/ie equality D2c(0, z, ζ; D) = 0 holds if and only if zζ is real.

The hyperbolic distance in D is defined by

z, ζ) = arctanh z, ζ e D).

We have

d(2, 0) + rf(0, ζ) = arctanh-

Thus the expression in the right-hand side of (50) shows that Dιc is

closely related to the triangle inequality with respect to the hyperbolic

distance. The proof of this proposition is as follows. By Proposition 2,
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we may assume that Ω = D and w = 0. Since

201

1 - zζ z-
[21, p. 391],

we have

D*c(w, z, ζ; D) = 2ReΓ(— * * — ) — —
L l w - z l - w ζ 1 - W z w - ζ i z - ζ

J__ ^1 1_ 1 \ 1 1 f
— zw — ζ 1 — u z l — wζil — zζ\'

and hence

Z>2c(0, a;, ζ; D) = 2Re((
Uζ(g-ζ) zζ(l-zζ)

\zζf\z-ζf

1 -{(1 -

- Id 2 ))

(\zf - |ζf)2

(
7-(i-\zζ\f

_ (|z|2 - | ζ | 2 ) 2 ί 1

|zζ | 2 i | z - ζf (\z\ - \ζ\γ

(l- |zζl 2 ) 2 / 1 1 I

(|z| + |ζ|)2(2|zζ| - zζ - zζ) , (1 + |zζ|)2(2|zζ| - zζ - zζ)
\zζf\z-ζf

= _ (2jzζ[ - zζ - zQ(l
\zζf\z-ζf

A calculation shows that

l«ζ|

zζ f | l - zζ|2

2 - C

kCI
ζ 2

 = ( 2 | z ζ l - z ζ - zζ){\ - \ z f ) ( l - \ζf) ^ i β t

(1 _ | 2 p)(i _ | ζp) IV i + | 2 ζ | ^ c
Replacing 2|zζ| — zζ — zζ by the expression in the right-hand side, we
obtain (50). Equality (50) shows that D2c(0, z, ζ; D) = 0 if and only if
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'either 1*1 + I d
l |CI or

Thus Z)2c(0, 2:, ζ; D) = 0 if and only if zζ is real. This completes the

proof of Proposition 20.

COROLLARY 21. Lei Cap( ) denote the logarithmic capacity [35, p. 132].

Then for any two bounded contίnua A and B such that A Π B Φ 0,

Cap(A \JB) < Cap(A) + Cap(β).

Note that Cap( ) is not subadditive. If E is connected, then Cap(JS)

= γ(E) [35, p. 132]. Hence it is sufficient to show that γ(A\jB) < γ(A) +

γ(B). Without loss of generality, we may assume that A, B are bounded

by Jordan curves, Ac, Bc e & and dA (Ί dB consists of finite points. Let

wQ e (dΩA{jB)Π (dA Π dB), where ΩA{jB is the component of (A \jB)c containing

00. For 0 < ε < \dA\, Aε denotes an arc with an endpoint w0 such that

Aε c dA and |Aβ | = |3Λ| — ε. We define B£ in the same manner. If

γ(Aε UBε) < γ(Aε) + γ(Bε) for all sufficiently small numbers e > 0, then the

required inequality is immediately deduced. Thus, from the beginning, we

may assume that A, B are arcs in ^ with a common endpoint w0 con-

tained in dΩAϋB and Af]B consists of finite points. We define an arc-

length representation ζt (0<t<\B\) of B so that ζ0 = w0. Let Bt =

{Cβ; 0 < s < t] (0<t< \B\) and

1= {0<t<\B\;ζLeAΠB or ζt£dΩAΌϋι}.

We define a function on [0, |B|] by

ζ £ , 0 0 ; ^ U B i ) ( ί 6 [

Then DQc(ζt, ™\ΩA[jB) is bounded on [0, |J3|]. Since γ(A ΌBt)

we have

/ / /ί I I ΐ< i Γ\ T~J ζ* (f* ryQ * Cj ) ( f* Ct ίί /5

and hence

r(AUS) =
 r
(A) + 1 Γ' Ac(Cί, oo; Ω

ΛΌBt
)dt.

4 Jo

We show that
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(51) D0c(ζt,oo;ΩAUBt)<Dc(ζt,oo;Bΐ) (ίe[0,|fl |]).

If tel, (51) evidently holds. Suppose that tg I. Given ε > 0, we can

choose ζf 6 ΩAΌBt so that

\Dc(ζt, αo; ΩA{JBt) - Dc(ζ*, oo;ΩAΌBt)\ < ε ,

\Dc(ζt, oo; Bt) - Dc(ζ*, oo; J3?)| < ε .

We define an arc-length representation zs (0 < s < \ A |) of A so that

zQ = ζ0. Let As == {zx; 0 < x < s } ( 0 < s < \A\) and

J= {0 < s < \A\; zseAf]B or z8edΩΛtϋBt}.

We define a function on [0, \A\] by

Π 3 / Γ* . o x p c ( ^ ' Cf' °° 5 β*u*) (s e [0,1A|] - J )
IU (S 6 d ) .

Since

-A-Z3c(ζf, oo; β ^ ) = 0 (2, β dΩAsΌΰί),

we have
1 Γ \A\

Γ)r(Γ* no O \ — Πr(Γ* oo * Rcλ -4- I D2c(z f* oo * O W ς
4 Jo

Since ΩAtUBt is simply-connected, Proposition 20 shows that

D2

oc(zs, ζf, oo ΩΛs[JBt) < 0, and hence Dc(ζf, oo ΩAUB) < Dc(ζf, αo Bf).

Thus

JDc(ζt, oo ΩAΌBt) < Dc(ζt, oo Bf) + 2ε.

Since ε > 0 is arbitrary, we obtain (51). Inequality (51) shows that

r(AΌB) < γ(A) + 1 ίlβ' Dcίζe, *>;Bΐ)dt = r(A) + r(J3).
4 Jo

This completes the proof.

Here is another expression of D2c from the point of view of Lowner's

D. E. for simply-connected domains [33, p. 387].

PROPOSITION 22. Let Γ be an arc in stf with the arc-length represen-

tation wt (0 < t < \Γ\) and let pt be the conformal mapping from E\ onto

Dc such that pt(oo) = oo and pt(wt) = 1. Then

(52) D*c(wt, z, oo Γj) - - -Λ^^(Γt)λt(z)Dc(z9 oo Γj) (0 < t < \Γ\),
(Λ) dt
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where λt(z) = {ImPt(z)γi\ 1 - pt(z) \\

COROLLARY 23. Let Γ and λt (0 <t<\Γ\) be the same as above. Then

(53) γ(Γ) = 1 Γ expf- f ^ v f ^ ' W ψ4 Jo I Jo γ(l s) ds J

Since Dc(z, oo;Γf)> 0, (52) also shows that D2c(wt, z, oo; Γ?) < 0.

Let gXz) = q(z; Π) (0<t<\Γ\). Then ^(oo) = llγ(Γt). Since

= - r(Λ)d arg q\(z) > 0 on dΓc

t,

we have

(54) g(s; Γί) = - MΓM'teWA*)* Φ(z; Γf) =

where a branch of ^ is chosen so that *Jql'(oo) = lj\/γ(Γt). Thus

(55) Dcfe oo; Γf) = r(Λ)|9Γ(«)l{l - \q\(*)V%}

Choosing a suitable parametric representation of Lowner's D. E., we obtain

(56) 4?!
tc\q\{z)

In fact, for a pair t<u, there exists a conformal mapping Φ ί j α from D c

onto a subdomain of Dc such that ΦtiU{oo) = oo, Φ£,α(co) > 0 and q\ =

Φt,u°ql- Poisson's formula shows that

where (ψ ί > B, ψ;,tt) = {0 < ψ < 2τr; |Φ / ( β (e t ψ ) | > 1}. Analogously,

log Jfflf = log ^ 4 = 1 f«- log HU

Note that l i m w l ί i|ri>% = limM Uψ£> M = Q^K ί̂)- Letting w tend to ί, we obtain

(56). Equality (55) shows that

DC( , OO Γ?) = 4 ^
ot at

^p{ | ς | } + r(Γt)\qr\\Qί\ψ
at dt
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Equality (56) yields that

% I I _ 1 d γ ( Γ y n l-\Qlf

IT ~ WΪΊF{1 l ) m \i - Ml? '
d\qY\ _ 1 d

and hence

(1 — /el?;)

r ( Γ t ) d t K

= __±_dL(Γ)Dc( ;Γf)

r(Γ.) 3ί |1 - 49Π4

Since pt = κ\q\ and 9Dc(a:, oo; Γt)jdt = Ίy-c{wt, z, oo; Γ0/4, we obtain (52).

Combined with Theorem 1, (52) immediately yields (53).

It is interesting to compare our variational formula with Lowner's

D. E.. We here point out that (56) is deduced from Theorem 8. Recall

(54). Since q\(z)-1 = - g{z; ΓΌφ(z; Γ?)Λ Theorem 8 shows that

; Γί)}φ(z; Γ?)-'() (; Γf) + qX)
at I at at

= - ±-{DK(wt, z, oo; Γf) + q\{z)-'DL(wt, z, oo; Γf]]φ(z; Γ?)"1.
4

Since

K(w, z;Π) =
1 - q](w)ql(z)

L(w, z; Γi) = 1 ,Vgf
ί ( ) ^ )

we have
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- λ{DK(w, z, co Γf) + q\{z)-'DL{w, z, oo Π)}φ(z; Γ?)'1

4

1= — (L(w, z; Γf)φ(w; Γf) - K(w, z; Γf)g(w; Γf)
4

, z; Γf)g(w; Γf) - K(w, z; Γf)φ(w; Γf)})φ(z; Π)'1

q\(wjq\(z){q\(w) - q\(z)} q\(z){l - q\(w)q\(z)}

Ϊ U ) + ql(w) - ql(

q](w)q](z){q\(w) - q]{z)} ^ q\(w)q\{z){l - q\{w)q\{Z)}

\q]'(w)\
A\ql(w)fql(z){ql(w) - q\(z)}{l - q\{w)q\{z)}

X ( - Ql(

Aq\{w)\q](w)fql(z){q\{w) - q\{z)}{l - q\{w)q\{z)} '

Put ^ = wu (0 < ί < w). Letting ^ tend to ί, we have

3ί 1 - Q\(u)t)q]{z)

with rJ = limM ιt \ql'(wu)\{\q%wu)\* - l}/4. Since q]'(oo) - l/r(Γ£), this equality

shows that

Thus we obtain (56).

§ 9. Application to doubly-connected domains

In this section, we study D2c(w, z,ζ;Ω) for doubly-connected domains

Ω. We begin by showing some examples of the computation of D'ίc. Let

Rp = {P<\z\< 1} ( 0 < ,o< 1). Then

K(z,ζ;RΛ= Σ . (zζ)* ,

Thus, in the case of Rp, we can write D2c, explicitly. Using Jacobian
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elliptic functions [12], we can rewrite D2c as follows. Define a modulus

0 < k < 1 of elliptic functions by p — e~πK'/κ, where K = K(k) is the com-

plete elliptic integral of the first kind and K1 = K(Λ/1 — k2). Let sn and

dn denote the Jacobian elliptic functions with modulus k. Thus

(57) D*c(w, z, ζ; Rp) =

X I

π*\wzζ\

—^) dn(ξ — v) _ dn(ξ — u) dn{ξ — υ) \ dn(ΰ — v)
sn(ξ—u) sn(ξ — v) sn(ξ — u) sn(ξ—v)/sn(ΰ —

— ( dn(ξ-u) dn(ξ — ϋ) _ dn(ξ — u) dn(ξ-v) \ dn(U — v) 1
\ sn(ζ — u) sn(ξ — v) sn(ξ — u) sn(ξ-v) / sn(ΰ — v) J '

K K K
ξ = _ _ log w, u = -τ— log z, v = ^ — log ζ ,

iπ iπ iπ

where a branch of log is chosen so that logx > 0 (x > 1). In fact, put

iπ sn(u — v) ^ z V ζ

JiH rΛ K dn(u - υ) 1

iπ sn(u — v) V z V ζ

Since sft(ι/ + 2iί) = — sn u, dn(u + 2iί) = dn u and Ve2ffi = — 1, these

functions are single-valued in Rp as functions of z. Since sn u = u + o(u),

dn u = 1 + O(M) (M->0), we have L*(z, ζ) = \\{z - ζ) + 0(1) (^->ζ). If

\z\ = 1, then ^ is real-valued, and hence L*(z, C)V^ — ^*fe OV ^ Since

(l/i)(|2|/2)efe = |d^| on |2| = 1, we have (lβ)L*(z9 ζ)dz = ίΓ*(2,ζ)'|^l on |^|

= 1. If Iz\ = ô, then u = iiί7 + (i£/τr) arg 3. Since sn(u + iif 0 = S7i(^ — ίK'),

dn(u + iZO = - dn(u - iKf)y we have L*(z, ζ)V^" = - F ^ ζ y T on

12;I = p. Since (l/ΐ)(|2|/z)d2 = - \dz\ on |2;| = ^, we have (llϊ)L*(z, ζ)dz =

on |*| = p. Thus if *(z9 ζ) - iffe ζ; β,) and L*fe ζ) = Lfe ζ; 12,),

which gives (57). Let Ωp be a radial slit domain which is conformally

equivalent to Rp. Then

QP,z,ζ(w) = exp{Jfp(w, ζ) - ^ ( ^ , z)}

J-. Y Xn(W) + Yn(w)p2n \
\ - i n i l - p2n) )

w ~z- expf
u; - ζ \ ίri n(l -

Xn(w) = (zw)n - (ζw)n ,

γn(w) = (w/zy - (wiζγ - (z/w)* +

is a conformal mapping from Rp onto β p such that QPftiζ(z) = 0 and

QPtgtζ(ζ) = oo, where Λ^w, f) is a multi-valued analytic function in
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Rp — {?} whose real part is the Neumann function with pole at ξ [21,

p. 377]. Hence, in the case of Ωp also, we can write D2c explicitly. Here

is an example of D2c which is expressed by elementary functions.

PROPOSITION 24. Let Ω = {U/Ul>*, bk\Y {ax < bx < < an < bn). Then

(58)
4\M(w)M(z)M(ζ)\

X Re\(M(w) + M ( z ) M ( w ) - M ( 0

L\ w — z ΐϋ — ζ

M(w) - M(z) M(w) + M(ζ) \ M{z) + M(ζ)

ϊΰ — z w — ζ / z — ζ

M(z) M(w)
w — z w — ζ

Af(ιι;) - M(g) JkΓ(ιι;) - M(ζ) \ M(z) - Af(ζ) 1

ΰ; — z w — ζ / ^ — ζ J 5

f) (f = w, z, ζ ) .

Note that Λ/M(Z) is single-valued. Since

K(z, ζ;Ω) = — l ^ s i n h ( / ι 2 - Λc), Lfe ζ; fl) =

4 Λ =

we have

ζ

([3], [20]),

= 2 Re ί- — — cosh (Λω - hz) sinh (Λω - Λζ) cosh (ht - h:)
l(w-z)(w~ζ)(z-ζ)

1 — — —
~ -, 7̂ ^7 ^ s i n h V 1 ™ ~ h z ) c o s h ( h v , -hdcosh(Λ, - hζ)

(w-z)(w-ζ)(z-ζ)
- -( w __ 1 - w _ r < cosh (hw -hz) cosh (hw - hζ) sinh {hz - hζ)

(w-z)(w-ζ)(z-ζ)
1 — — — 1

+ -, r? ^Ί~—-Γ-sinh (Λw - Λ,) sinh (/ιw-Λζ) sinh (Λ2-/ιζ)
(w-z)(w-ζ)(z-ζ) J

= l R e [ !
4 l(w-z)(w-ζ)(z-ζ)NM(w) ^M(z) \(WWJV)) _ VM(ζ) \((^/M(zJl

\JM() /M())\ VM(ζ) (VM())A(VM(0) (
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1

(w-z)(w-ζ)(z~ζ)

\NWw) VMζz) Wggjg) WM(ζ))fWMjw)) _ VM )̂ \NWw) VMζz) Wggjg)
\ /M() WM()))\^M(ζ) + /M() )\WM(O)

(w-z)(w-ζ)(z-ζ)

\VM() + VM()Λ(VM(0)

(w-z)(w-ζ)(z-ζ)

A (VM(0) VM(κ ) A VM(ζ) (VM(^)) /J

which yields (58).

Note that any triply-connected domain is conformally equivalent to a

radial slit ring [33, p. 413] which is equivalent to a domain of form in

this proposition. Thus (58) is applicable to simply, doubly, and triply

connected domains.

There remains to prove Theorem 3 in the case where Ω is doubly-

connected. There are two methods of the proof of this theorem; a geo-

metric method by (58) and an analytic method by theta functions [12]

and (57). In this note, we use the first method. We shall see that the

required inequality is deduced from an inequality of Mδbius type in

elementary geometry. It is sufficient to show that

(59) D2c(x, is, - it; Ec) < 0

for all s > 0, t > 0, x e R — E and closed sets E of form:

E = [a, b] U [a', V] (a < b < af < V),

E = (-oo, b'} U [α, b] U [a', oo] (b' < a < b < a').

In fact , once (59) has been shown, the required inequality is deduced

as follows. By Proposition 2, we may assume that Ω is a ring Rp. Since

D2c(w, z, ζ; Rp) is continuous in Rp X Rp X Rp — {w ψ z, w Φ ζ, z Φ ζ}, we

may assume that any straight line passing through 0 contains at most

one point in {w, z, ζ}. Rotating the coordinate axes if necessary, we may

assume that w e R. We may also assume that Im z > 0 and Im ζ < 0; this
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is possible because D2c(w, z, ζ; Rp) is invariant for any permutation of a

triple (w, z9 ζ). Using elliptic functions, we can define a conformal map-

ping / from Rp onto a domain Fc of form F - [α", &"] U [α*, 6*]cR so that

/(w;) e R, Im f(z) > 0 and Im/(ζ) < 0. Take a linear transformation g such

that gof(z)li > 0, gofiOli < 0 and g(R U {oo}) = R U {oo}. Then g(F) is

a union of two continua on R U {oo}. Thus we obtain a conformal mapp-

ing gof from Rp onto Ec = #(F)C of type (59). We have £o/(w) e R U {oo}.

Choosing a point in Rp sufficiently near to w if necessary, we may assume

that g°f(w) Φ oo. Applying (59) to x = gof(w), s = gof(z)/ί and t =

—g°f(QIU w e obtain D2c(w, z, ζ; Rp) < 0, by Proposition 2.

To prove (59), we assume, for a while, that E = [a, b] U [α', δ7] (α <

6 < 0 < α' < 6') Applying (58) to β = Ec and ^ = x e R - £ , we have

Reτ 2 C £J) Re

X {(M(x) + M(^))(M(x) - M(0) - (M{x) - M(z))(M(x) + M(Q)}

M{z) -

X {(M(x) + M(z))(M(x) + M(ζ)) - (M(x) - M(z))(M(x) -

1

X Re
- ζ

z - ζ
Ax2 + £x + C

2\M(z)M(0\\(x - z)(x-

with

1
A = Re l—L-^(M(z) + M(Q)(M(z) - M(ζ))

z -

Re { - 1 ± 1 (M(5) + Mζ))(M(z) - M(ζ))
I z — ζ

z - ζ
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C - Re {^— (M(z) + M(ζ))(M(z) - M(ζ))

- _£?_<Λί(5) - M(ζ))(M(z) -

(Here we used M(x) > 0 (x e R — E).) Since A#2 + Bx + C is quadratic,

it is sufficient to show that

(60) B2-4AC<0, A<0.

First we show JB2 — 4AC < 0. To express B2 — 4AC in terms of geometry,

we write

(re>O,\θt\<τc,ξ = z,Q.

Then, putting z = is, ζ = — it, we have

A = - 2 V ^ ί - J ~ sin * ' - * ' + ^ ^ sinc ls + < 2 s - ί

B=- ±=±(rt - rc) ^ + 4
s + t
8 + t S -t

Ast I r I—i—

(S + t)(S - t)

s + t 2 s - t

and hence

16rβrc I (s + 0(« - ί) J

+ ί 2 s - ί 2

X {——— sin
ts + ί 2

st

sin 2 '—?->
2 J

—-} V.T1 + r,-1^ - 2}
(s + ί)(s - ί)

- -—— — {1 — COS(^ — θr)} + {1 — COS (θz + θr)}

7 ^ x(s + Q(s — t)
lrc - 2 c°s ^3 cos ̂ ζ + ί l ± J - sin ̂ 2 sin β

t)(s-t)
YD, say.
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Note that 0 < θa < π, -π < θ: < 0. Let #, Q, R\ Q'f r, qy r', q', α, α', β, β'

be the positive numbers in the figure in § 1. Then

st

A calculation yields that

1

sin (a + a') sin (β + β').

' {b ~ ° ) (6' ~ α')(b' ~ α)(α> ~

Thus B2 — 4 AC < 0. For the sake of completeness, we show our compu-

tation of D. We have

QQ'rr' RR'qq' __ Q2Q'2r2r'2 + R2Rnq2q'2

RR'qq' QQ'rr' RQR'Q'rqr'q'

α2)(s2 + α'2)(ί2

+ c,βV + c4(β
J + t2) + 2α2bWΨ2}

with

c, = c2 + 62 + α'2 + ί>/2, c2 = αV2 + 62ό/2,

c3 = 2(α2 + α'2)(ό2 + bn), c4 - α2α/2(62 + bn) + (α2 + α'2)626'2.

We have

2 cos (or + oc') cos (0 + β') + _ ί - ± ϋ - sin (α + α') sin (/9 + β')
St

= 2 {cos α cos α' — sin α sin α^jcos /3 cos βf — sin /3 sin β'}

S2 4- ί2

T { s i n <Ύ cos αf + cos α sin a;}{sin β cos ̂  + cos β sin /3'}st

= 2/

I
X f (t + αb)(t* + α'b') _ t\b - α)(V - α')(V - α')λ

'q' ίrqr'q
s2 + t2 fs(b - a)(s2 + a'b') (s2 + ab)s(b' - a') \

st I RQR'Q' RQR'Q' i
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f Kb - a)(t2 + a'bf) + (f + ab)t(b> - α') \

213

I rqr'q' rqr'q'

- a)(b> - α 0 }

X {(ί2 + ab)(f + a'b') - f(b - a)(bf - a')}

+ (s2 + f){(b - aXs* + a'b') + (s2 + ab)(b' - a')}

X {(b - a)(f + a'b') + (f + α6)(6' - α')}]

2α262α/2ό'2}

with

d, = 2{ab + a'b' - (b - α)(6' - α')} + (b - a + b' - a')2,

dt = 2aba'b' + (b - a + b' - a'){(b - α)α'6' + ab(b' - o')},

d3 = 2{α6 + o'δ' - (6 - α)(6' - α')}2

+ 2(6 - α + 6' - a'){(b - σ)o'6' + ab(b' - a')},

d< = 2aba'b'{ab + a'b' - (b - a)(b' - a')} + {(b - a)a'b' + ab(b' - α')}2.

Since

dt = Cl, d4 = c«, d2 - c2 = (6 - α)(6' - α')(ό' - o)(σ' - 6),

rf3 _ c3 = -2(6 - σ)(6' - a')(b' - a)(a' - b),

we have (61). Next we show A < 0. Since

0 < S2 < 4AC -

we have

sin2

( s - ί ) 2
sin2

s - t

and hence

A =

-sin-

+

sin

r ) ,

1 sin g» + gc \ < 0

- ί 2J

Thus (60) holds, which yields (59) (a < b < 0 < α' < 60- In the above

argument, the signs of a, 6, a', bf are not essential. We have (59) as long

as a < b < ar < b'. In the case where E = (-oo, b'] U [a, b] U [α', oo]

(bf < a < b < a'\ we apply (58) to Ω = {[-y, 6'] U [o, 6] U [a',y]}c (y >
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\af\ + |b'|). Letting y tend to oo, we obtain

A'x1 + B'x + C"
, z, ζ; Ec) = _

where M(£) (f = 2, ζ), A7, S', C are defined, in the same manner as above,

by

V 7 2

(α - £)(α' - £)

Note that Bn — 4A'C" is equal to the discriminant with respect to

[_α'? __&] u [-α, -&'], 2; - is, ζ = -ί*. Thus β / 2 - 4A/C/ < 0. Since

AΌ > 0 and 0 < (θz — #ζ)/2 < π, we have, in the same manner as above,

A' < 0. Thus (59) holds for V < a < b < a'. This completes the proof

of D2c( , , Ω) < 0 for doubly-connected domains Ω. Combined with

Proposition 20, Theorem 3 follows.

Using Theorem 3, we can study γ(A) + γ(B) — γ(A U B) for two con-

tinua A, B with a quantitative estimate. Moreover, let A be a union of

two continua and let B a continuum such that A Π B Φ 0. Then, in the

same manner as in § 8, we have γ(A U B) < γ(A) + γ(B), by Theorem 3.

Remark 25. The function c(oo Ωt) is not, in general, concave. Take

Ω = [—1, 0] and Γ = iy + [0,1] (3/ > 0), for example. Then Proposition

24 shows that

Choose y > 0 sufficienty small so that c(oo; βj) > 0.49 and Dc(w0, 00; fl0)

< 0.7. Then, if Dc(wt, 00; β,) < Z)c(w;0, 00; β0) (0 < ί < 1), we have

0.49 < c(oo; β j < c(oo; β0) + —Dc(w0, 00; β0) < — < 0.43 ,
4 4

which is a contradiction. Thus dc(oo; Ωt)jdt = Dc(wt, oo β^/4 is not de-

creasing.
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