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THE ARC-LENGTH VARIATION OF ANALYTIC CAPACITY
AND A CONFORMAL GEOMETRY

TAKAFUMI MURAI

§1. Introduction

For a domain £ in the extended complex plane CU{co}, H=(2)
denotes the Banach space of bounded analytic functions in £ with
supremum norm |- |z-. For {e 2, we put

c(&; Q) = sup{f'Q; fe H(D), |flla= < 1},

where f'(c0) = lim, ... 2{f(0) — f(2)} if { = . The analytic capacity of
a compact set E in C is defined by

7(E) = c(o0; 5)

where Q; is the component of E¢ = CU{cc} — E containing oo. Ahlfors
[1] shows that, for a domain 2 and a compact set E C 2, the equality
7(E) = 0 holds if and only if any function in H=(2N 2;) has an analytic
extension to 2. Thus a compact set E satisfying Riemann’s theorem of
removable singularities is characterized by 7(F) = 0. Garabedian [8]
studies analytic capacity from the point of view of the dual extremum
problem. The quantitative properties of analytic capacity are important in
the study of conformal mappings, the 2-dimensional fluid dynamics and
singular integrals ([16], [17], [23]). Vitushkin [34], Gamelin [7], Garnett
[11], Zalcman [35] show that 7(.) is applicable to study approximation
problems, and Ahlfors-Beurling [2], Pommerenke [22], Suita [30], [31], [32]
study 7(-) from the point of view of a conformal invariant. The author
studied 7(-) in terms of integral geometry [17], [18] and fluid dynamics [19].

In this paper, we are concerned with the variation of 7(E) for a
small change of E. The approach in this direction is given by Havinson
[18], Garabedian-Schiffer [10], Schiffer-Hawley [27], Schiffer-Spencer [28],
Smith [29]. We shall discuss, in this paper, a variation of 7(E) for a
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finite union E of arcs. Here are two motivations to deal with such a set.
Given a compact set F' < C with a smooth boundary, we can study the
Hadamard variation and the Schiffer variation [25]. Then we obtain a
finite union E of arcs such that 7(F) is expressed as a perturbation from
7(E) and the number of components of E is less than or equal to that
of F. Thus, in order to get global properties, it is necessary to study a
variation of 7(E). Another motivation is as follows. Given a compact
set F, we can find a finite union G of closed disks so that [r(F) — 1(G)|
is arbitrarily small. Removing some arcs from G, we obtain a finite union
E of arcs such that |7(G) — 7(F)| is arbitrarily small and the number of
components of E is less than or equal to that of F. Thus a variation of
7(E) is necessary. As is seen in the second motivation, for our variation,
we may restrict our attention to compact sets E such that E consists of a
finite number of mutually disjoint arcs {C,}%., and each arc C, is expressed
as a finite union of closed analytic arcs, where a closed arc is analytic
if it is contained in an open analytic arc. Let .« denote the totality of
such compact sets and let % denote the totality of domains 2 such that
Q°es/. For Ee .o, it is natural to study 7(E) in terms of the arc-length
|dz|. From this point of view, we shall focus on the variation of 7(E)
with respect to |dz|, and, as application of our results, we shall study the
structure of 7(A UB) for two bounded continua A and B. For fe H*(Q,),
— f(0) is the 1/z-coefficient of f at co and, in the case where E is con-
nected, the Ahlfors function (i.e., the function attaining 7(E)) is nothing
but Riemann’s mapping from 2, onto the unit disk D. Thus our principle
is related to Lowner’s differential equation for multiply-connected domains
(cf. [15, p. 116]). In fact, we shall deduce, in § 9, Léwner’s D. E. for simply-
connected domains [33, p. 387] from our formula in §3. For Q¢ %, 902
denotes the boundary of £ having two sides; to each ze F (F = 2° —
{endpoints}), there correspond two points z.e€9Q. Let H*Q) denote the
H*-space of analytic functions in Q such that

(1) lim.f | f(®)|dz| = 0 ({ € {endpoints of F}),
810 S8
(2) [l = (j 1 E)E + lf(z-nmdzn)m <o,

where f(z.) is the non-tangential limit of f at 2,€9Q (¢ = *) and S(, 4)
is the circle of center ¢ and radius 6. For Qe %, there uniquely exists
a pair (g(-; 2),¢(-;2)) of functions in H*2) such that g(co; Q) =0,
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#(c0; 2) =1 and

(3) -1.—¢(z; Q) dz = g(z; Q)|dz| almost everywhere (a.e.) on 32,
i

where the orientation of dz is chosen so that Q lies to the left [8]. For any
£ e — {oo}, there exists uniquely a pair (K(-,; Q), L(-, ¢; 2)) of functions
such that K(-,; 2), (- — OL(-, ¢ 2) € H(Q), K(c0,; 2) = L(c0,{; 2) =0,
lim, . (z — QL(2,¢;2) =1 and

(4) L6 0de = K@ 5 0)ldz] ae. on 92 [41.

The kernel K(z,Z; 2) is called the Szegd kernel and L(z, £; 2) is called
the L-kernel [4]. (The Szegd kernel is written by K in [4]. In this note,
we use the notation K.) For z,{e Q — {0}, 2+ {, we define

Dc(z, 05 Q) = |¢(2; DF — |g(z; DF,
De(z, ¢, 005 Q) = 2Re[{L(z, ¢; Dg(z; 2) — K(2,T; Do(z; DYg(C; D)
—{L(2,¢; Q¢(z; Q) — K(2,C; Qg(z; DigC; D,

where Re denotes the real part. For a closed analytic arc I”, a continuous
function w, € I' on an interval [0, |I']] (I'| is the length of I') is called the
arc-length representation of I, if w,, w, are endpoints of [" and |[',| = ¢
O <t |I), where I', = {w,; 0<s<t}. For Qe % such that Q — I'e &#
and 2°N I is at most a singleton, we write 2, = Q — I', (0 < t < |I')); we
assume that Q°N I = {wy} if Q°NT # 0. We shall show

THEOREM 1.

(56) For any 0<t<|I'l, the derivative dc(oo; Q,)/0t, the limit
lim, ,, Dc(w,, 0; 2,) (= Dc(w,, o; 2,), say) exist and dc(oo; 2,)/0t
= Dc(w,, 00; 2,)/4. The right-derivative dc(oo; £,)[9t at t = 0 exists
and dc(oo; 2,)/3t is continuous on [0, |I]].

(6) For any 0<t<|I'| and any ze 2 — (I'"U{x}), the derivative
0Dc(z, o0; 2,)/0t, the limit lim,, ,, D% (w,, 2, o0; 2,) (=D (w,, 2, 0; 2,),
say) exist and 3Dc(z, oo; 0,)/0t = D*c(w,, 2, o0; 2,)/4. For any ze
— (I"U{o0}), the right-derivative 9D(z, oo; £,)[dt at t = 0 exists and
0Dc(z, oo; 2,)[3t is continuous on [0, |I'].

In this theorem, the derivative and the limit at ¢t = |I"| are defined by
the arc-length representation of an open analytic arc containing I". The
right-derivative dc(oo; £2,)/0t is not, in general, equal to Dc(w,, oo; 2,)/4.
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(See Remark 19.) To study Dc(z, oo; 2) and Dc(z, {, oo; 2), we introduce
a wider class of domains. Let % denote the totality of domains £ with
the following property: £ is expressed as @ = Q* — E with Fe.«/ and a
domain 0%, Q* D E bounded by a finite number of Jordan curves {C;}7_,
such that each C; is a finite union of closed analytic arcs. For Q¢ ¥,
the Szegd kernel and the L-kernel exist; the condition at oo is removed
if 22 co. For three distinct numbers w, z, { € 2, we define

Dc(z,¢; Q) = |L(z,§ QF — |[K(z, ¢ DF,
Dic(w, 2,¢; Q) = 2Re{DL(w, 2, ¢; Q) L(z,¢; Q)
- DK(w7 Z) C; .Q)K(Z, Z; 'Q)} 9

where

DL(w, 2, ¢; 2) = L(w, z2; Q)K(w, {; Q) — K(w, z; Q)L(w, ; 2) .

In the above definition, we replace K(-, ; 2) = K(oo, -3 2) by — g(-; 2),
and replace L(-, 00;2) = — L(oo, -; Q) by —¢(-; 2) if 22 c and one of
w, 2, { is oo. The following proposition plays an important role in our
conformal geometry.

ProrosiTiON 2. The differential forms Dc(z, {; 2)|dz||dg] and
Dc(w, z, ¢; Q)|dw||dz||d| are conformally invariant, Dc(z, {; 2)=Dc((, z; Q)
and Dc(w, z, £; Q) is invariant for any permutation of a triple (w, z, ).

In this proposition, Dc(z, £; 2)|dz||d{]| is conformally invariant in the
following sense: Dc(z, &; 2) = De(h(2), h(Q); h(D)| W () ()], if h is con-

formal, where

lim,_,, £{h(Q) — h(o0)} if 2z = oo, h(o0) # oo
W(z) = {lim._, h(0)J¢ if 2= o0, h(o0) = o0
lim,_,(z — Qh@) if 2+ o0, h(2) = 0.

The meaning of the conformal invariance of Dic(w, z, {; Q)|dw||dz||d{] is
analogous. Our results are applied as follows. Given Ec ./, we can
write £ = C/U..-UC, with mutually disjoint arcs {C}:.,. Using the
arc-length representations of C, (1 <j < n), we define a right-continuous
arc-length representation W, (0 <t < |E) of E. Let 2, = {(W;0<s<¢°
(0 <t<|E]). Then c(oo; £2,) is continuous on [0, |E|]. Theorem 1 shows
that
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1 (1&1
(7) 7(E) = c(oo; E) = Zj De(W,, 0o; Q,)dt .
0

The quantity Dc(W,, oo; 2,) is defined by the limit lim,,, Dc(W,, co; Q,).
Thus, to study Dc(W,, oo; 2,), it is sufficient to investigate De(W,, oo; 2,)
for u > ¢ sufficiently near to t. Given 0 <t < |E| and ze 2, — {0}, we
take a right-continuous arc-length representation W* (0 < s < t) of Q¢; W*
may not be equal to W, in general. Since Dc(z, oo; QF) (2F = {W};
0 < u < s}) is continuous on [0, {], we have

(8) De(z, o0 2,) = De(z, o0} 2F) + i— j De(WE, 2, 003 %) du
0<s<i).

Using Proposition 2, we can study D (w, 2z, oo; 2) by taking conformal
mappings from 2 onto canonical domains. We shall show

THEOREM 3. If 2 is simply or doubly connected, then D*c(w, z,¢; Q) <O0.

As application of this theorem, we here deduce Suita’s subadditivity
[32]: r(AUB) <7(A) + r(B), if A and B are disjoint two continua. For
the sake of simplicity, we work only with A, Be .«/. Using (7) with E=
A UB and a right-continuous arc-length representation W, (0 <t <|AUB))
such that W,e A, we have

1 AU B}
(AUB) = 1(4) + ZI De(W,, o0 2,)dt .
1A

For |A| <t <|AUB]| we take an arc-length representation W* (0 < s < ¢)
of {(W,;0<s <t} so that Wi = W,,(e B). Then W} , = W,. Using (8),
we have, with QF = {W#;0 < u <s}°,

Dc(z, 03 2,) = De(z, 005 QF4) + %r Dc(W¥, 2z, 00; R¥)ds

t~14]

< De(z, 005 QF 14) (e, — {o0}).

Letting z tend to Wk, = W, along B, we obtain Dc(W,, o0; 2,) <
De(WE |, 003 QF,4). Since
AU B|

1 (ravs 1 « .
ZJ DC(WM o, ,Q,)dt < Xj DC(Wj—|A|7 0, Q;‘-m[)dt = T(B) ’

141 141
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we obtain y(AUB) < y(A) + y(B). Suita’s method is based on Rengel’s
inequality [33, p. 393] which is an application of Bieberbach’s area method.
On the other hand, our method is based on a differential equation for
arcs and yields a quantitative estimate of y(A) + y(B) — y(AUB). The
inequality D% < 0 for simply-connected domains is closely related to the
triangle inequality with respect to the hyperbolic distance. The study of
D¢ for doubly-connected domains is related to the theory of elliptic
functions [12] and the proof of D% < 0 consequently reduces to an in-
equality of Mo6bius type in elementary geometry:

gg/;; ggg_z: < 2cos(x + a')cos(B + B)

st 4 ¢t

+ sin(a + «)sin(g + g) .

st

(R, Q, R,Q,r,q,1,¢,
a, o, B, f, 8,1t are
positive, a<b<<0<a'<b")

In §§8-9, we shall study the structure of D% for simply and doubly
connected domains. For general multiply-connected domains, the behav-
iour of DPc is very complicated, and we do not refer to the general case
in this paper. In §2, we shall prepare some elementary properties which
will be used later. In §3, we shall show a formula for Szegt kernels
and shall deduce Theorem 1 from this formula. The proof of the formula
will be given in §§4-7. The proof of Theorem 3 will be given in §§8-9.
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§2. Elementary properties

In this section, we show some elementary properties which are used
later. For p>1 and Q¢ %, H?() denotes the H?-space of functions in
Q defined by (1) and (2) with the power 2 replaced by p; 92 has two sides
on the components of Q° corresponding to arcs, 9£ is single on the
components of Q¢ corresponding to Jordan curves, and the integral is
taken over all 92 with respect to |dz|. We put

e Q) = inf{% J 3

c*(oo; 0) = m%—wmwemm¢wrd}wa@.

w@—q €+ o),

Then ¢*(¢; Q) = ¢(€; Q) (e ) [8]. The pair (K(z,C; 2), L(z, ¢; 2)) of the
Szeg6 kernel and the L-kernel is unique and satisfies
K(Z,&Q): K(C’ 2;-?23’ L(Z’ C;'Q): - L(C,z; “Q)'

The Szeg6 kernel K(z, {; Q) is a reproducing kernel in the following sense:
1@ = o=, K@TDI@Idz| (fe H(),f(eo) = 0) [4].

Making a double of 2, we can treat the pair as a kernel on the Riemann
surface. When no confusion can arise, we write simply K(z, £) and L(z, ©).
Let D(z, r) denote the open disk of center z and radius r, and let D =
D(,1). We remark

LEMMmA 4. Let Q3 c0. Then ¢(z; Q) is the function attaining c*(co; Q)

and

gz Q) = L $(w; D|duw|.

2r Joaa w — 2

Let £+ co. Then

«[fc(w) ‘ dw[ s

w1 1
w>K@Q_Eme_@m_Q
Lz 0 = w(lz — 0,

where . is the function attaining c*((; Q).

This lemma is essentially known in [4], [8]. Only (9) is not evident
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in the case of 02 00. Let {e @ — {co0}. Since v, is the solution of the
minimum problem ¢*({; 2), a measure |w — {|*y(w)|dw| on 32 annihilates
all ge H*(Q), g(¢) = 0. Thus

c . 1
m wmwwl—7@:6va—f| S

annihilates all ge H¥(Q), g(cc) = 0. By Riesz’s theorem, we can write

V() duw)

Ty dw| = { Hw) + m}dw

_1
lw — ¢
on 92 with some v} € H'(Q), ¥¥(c0)==0 [11, p. 15]. Note that c__J Fw)dw.
22
Let K*(z,0) denote the kernel in the right-hand side of (9). Then, for
almost all z on 9%,

= 1 w— ¢
K*(z,0) = o Jao @—_?T—Tvﬂfc(w)ldwl

= o | BTy + S dw

T or Joow — 2 2ri(w — )

1 {Z ¢+1}1;f (w)dw

T oz e lw — 2

J— —— I c
=i = (@ + )

which shows that

K*(z,0)dz = iv(2)/(z — ©)|dz| a.e. on 32, i.e.,

—-.—\I/'C(Z)/(Z — Qdz = K*(z,0)|dz| a.e. on 302 .

i
Thus the pair (K*(z, ©), ¥(2)/(z — {)) satisfies (4). From the form of the
integrand in (9), we see that K*(z,£) has no inner function, and hence

this pair satisfies all the conditions of the Szeg6é kernel and the L-kernel.
Since (K, L) is unique, we have K(z,{) = K*(z, ) and L(z, £) = y.(2)/(z — 0).

Lemma 5. Let 2230 and ze Q — {oo}. Then

ﬂmg@ﬁﬁw—IL&@WQ 1_[K@aa,
a) @ =1- L | KCad=1- [ L@ 2.

In fact, (4) shows that
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g(z; Q) = 21. —g(C; 9>dc-'f j L, 28(; Q)de
ml Jao C —

j K@ 2g; 9ldg) = éj K, 2)$(; 0)de

ade= [ L@ 2dL.

Since

1 .. 1 TF S (e
s [ L@@ @de = [ K@D lde

= oL [ K@ e 0dc =0,
we have
bz 0) =1+ -wf —~-—{¢(c ) — 1}dg
— 14 | L@ 2E 9 — B
—1-— ‘j L ade=1- L[ KCBldel.
This lemma plays an important role to study ¢(z; 2); 4(z; 2)? is called
the Garabedian function of £¢ [11, p.19]. The Ahlfors function f(z; )

of Q° (e, f(-; 2 e H(D), |f(-; Dllw= = 1, f'(00; ) = y(2°)) is expressed
as g(z; D/é(z; Q) [11, pp. 18-24]. Thus (10) gives that

65 0) = 1 0 L K( 2de
Tl

an(0,r)e

for r > 0 satisfying D(0, r)* € Q. Using this expression, we can define
the Garabedian function of any domain (cf. [29], [30]).

LEmMMA 6. Let 250, oo and ze Q — {0, oo}. Then
(12) g(z;0) = — K(3,0;9)2, ¢(z;0) =L 0; D)z,
(13) 2(0;2) =20;2), ¢0;9) = ¢(0;2),

where @ = {£ = 1/¢; Ce 0}.
To see (12), we put

8@ =—8/z9z, 33 =461/39zEc).
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Then g, ¢z H(D), g(c0) = 0, lim,_,$(3)2 = 1 and
Lo@az = - %qi(z; 0)z dzf2*
= — g(z; Q)|dz|lz = g(3)|d3| a.e. on 32

Thus the unicity yields that g(3) = K(3,0; 0) and $(3) = L(3,0; D), i.e.,
(12). Combined with (10) and (11), it follows that

g(0;0) = —1im K¢, 0; 9 = g(0; 2),
[

$(0; ) = lim L 0; 9% = ¢(0; Q).

Thus (13) holds.
As application of (13), we have Dc(0, oo; @) = Dc(0, 0; 2). If Q = 0,
then g(0; Q) is real.

LemmA 7. Let 230, co. Then
7(92°) = c(o0; Q) = K(0,0; D)

. 1 . —
- 17152 —(-2757 Jap(n,r)c jab(o,r)c K(Z’ & Q) dz dC )

In fact, (10) shows that, for r > 0 satisfying D(0, r)c C 2,

(003 @) = ¥(o03 ) = [ 16(w; Q)P|dul

— L g @pdw] = L
2r Jaa

2r Jan

1 f K(z, m) dzﬁdw]
2 Jabo,re

- (—2171'-)2_j3D(0,r)° .[ap(o,nc {_217; a9 Kz mKE, w)ldw‘} dzdg

1 = .
- W Jap(o,r)c fﬁD(O,T)c K(Z, C) dz dc .

It is known that g'(co; 2) = c(oo0; 2) [11, pp. 18-24]. Thus the first equality
in (12) shows that c¢(oo; 2) = K(0, 0; 9).

Here is a version of the Hadamard variation to Szeg6é kernels. For
a domain £ 5 co whose boundary consists of a finite number of analytic
Jordan curves, we take a non-negative smooth function p on 32. For a
sufficiently small number ¢ > 0, let Q, denote a domain bounded by &, =
&+ iep(8)dg/|dE|, £€0Q containing oco. The variations of the Szego
kernel and the L-kernel with respect to p are defined by
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D,d(z ;0 =lim L{J(z, 5 0) = Jz Q) T =KL).
el0 g
Then

a4 DI 9=

z, - Qp®)lde| J=K,L),

2 9n,

where 9/dn, is the inner normal derivative at &€ 4.
This equality plays an important role in the study of the capacity
K(z, z; Q). Since

DK(§,2,2;0Q) = Dc(g,2;29) >0 (e Q)

and =0 (£€df), we have 0DK(§, z,2;0Q)/on, >0 (§€df), and hence
D,K(z,z; 2) >0, by (14). Thus K(z, z; £) is monotone with respect to 2.
This is a typical example how to use (14). In the following section, we
shall show a version of (14) to the arc-length variation. The outline of
the proof of (14) is as follows. Functions J(z, ) = J(z, -; 9), J.(z, ) =
J(z, -;2,) (J=K,L;e>0) are analytic in a neighborhood of 5 with
respect to z. The reproducing property yields that

K(2,0) = wj K& OKGE, 2)|de],
K@D = j K.(¢ DK, 2)|dé)|.
T Jade
Studying the difference, we obtain

19 DKeD = 2% 0KE Do(erde

-5 |, K C)*(e, 2)p(§)dE
o |, K OKE Do darg(@s).
Using (4), we have
K0 = | LEDLE2del,
K(2,0) = - j L DL, 2)\dg|.

Studying the difference, we obtain
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(16 DKED=— | L&D o0

n 2L QL_(g, OL(E, 2)p(6) 3¢

- o | TEOLE Do darg(@e) .
r Jao

Note that L(g (L(¢ 2) = K(§, 0)K(E,2) (6€d2). Thus, adding (15), (16),
and dividing by 2, we obtain (14) (J = K). Using

Lz 0 — L(z, c>——— j L& OK(E, 2)|d¢|

o | K& 0L 2del,

we obtain (14) (J = L).
Finally we remark that, for ze 2 — {oo},

16L

SCELEE —I§<e, 2)dé|de| — iK(E, D) d¢|d arg(de) on &eaQ .
In fact, let &€ = £(¢) (0 <t<{,) be an arc-length representation of 3@ in
a neighborhood of &(0) €92, and let &(f) = e*®. Then

16L
i

18L

(E(t) 2)&() = (E(t) 2) = —{K({?(t) Ze-10w)

= We-iw) — il_{me‘”“)ﬁ’(t)
= %&i ;E;Et)z LW arg oy

Multiplying this quantity by &(f), we obtain the required equality. As
application, we have, for z, { e Q — {0}, 2 # ¢,

1 aL 19K, ;

+ 3ol = 100 DK, 2)dE
— K(e, DK (¢, 2)darg(de) on €0,
%3—@(5, OK(E, 2de = l%(s, OL(E, 2)de

— K(E, K(&,Q)L(& z)d arg(dé) on £€dQ.

Using these identities, we can rewrite (14) (J = K, L) according as our
purpose.
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§3. A formula and deduction of Theorem 1

To prove Theorem 1, it is necessary to study the Szegté kernels and
the L-kernels. For Q¢ & and a closed analytic arc I" such that Q — I’
€% and Q°N I is at most a singleton, we take the arc-length represen-
tation w, (0 <t <|I') of I'; we assume that Q°NT = {wy} if QNI +0.
We write I', = (w;0<s<t}, 2, =201, 0<t<|I') and X = {(2,0);
z,0e Q — (I'U{co})}. Recall the definition of DJ (J = K, L). We see that
DJ(w,, 2,¢; ) (J =K, L) are defined for 0<t<u<|I'], (2,0)ecX. We
shall show

TaroreM 8. For any 0<t<|I'| and any (2,0)e X, the derivative
0K(z, Z; 2)/ot, the limit lim, |, DK(w,, 2,{; 2,) (= DK(w,, 2,¢; 2,), say) exist
and

(17 %’(z, £ 0) = i-DK(w,, 2,0 0).

For any (2,8 ¢ X, the right-derivative 9K(z,Z; 2,)/0t at t = 0 exists and
oK (z,C; 2)[ot is continuous on [0,|I'l. These properties hold with K
replaced by L.

In this theorem, we put oL(z, z; 2,)/0t = 0. From the definition of DL,
we have DL(w, z, z; 2,) = 0, and hence, in the case of z = ¢, (17) holds
with K replaced by L. Recall that w, is an endpoint of I", (0 <t < |I")).
Thus this theorem is near to Lowner’s D. E. than Schiffer’s variational
formula. In §8, we shall deduce Léwner’s D.E. for simply-connected
domains from this theorem.

Once this theorem is established, Theorem 1 is deduced as follows.
Note that, for Re %, R>30, oo and w,2€ R — {0, 0}, w + 2,

(18) Dc(w, o; R) = DK(w, 0, 0; R)|w},

(19) Dc(w, 2, oo; R) = De(i, 3, 0; R)|w3},
where £ = 1/ (¢ = w, 2) and R = {E=1/¢;6e R). In fact, Lemma 7 and
(12) yield (18). The unicity of (K, L) shows that K(w, z; R) = K(, 3; R) w3
and L(w, z; R) = — L(0, z; E)wz, and hence (12) gives that

Dc(w, z, o; R) = 2Re[{L(w, z; R)g(w; R) — K(w, Z; R)¢(w; R)}¢(z; R)
— {L(w, z; R)¢(w; R) — K(w, z; R)g(w, R)}g(z; R)]
= 2Re[{L(w, 3; R)K(w,0; R) — K(w, 3; R)\L(w, 0; R)}L(3, 0; R)
— {L(b, 2; R)L(w, 0; R) — K(w, 2; RK(iw, 0; R}K(2,0; R)]|wz]
= D%(w, 3, 0; B)|wz],




164 TAKAFUMI MURAI

which implies (19).

Without loss of generality, we may assume that £ — I'50. Let w}
(0 <s<|I') be the arc-length representation of = {; €€ I'} such that
w¥ = w,, and let s = s(¢f) be the function on [0, |I'|] defined by w# = ,.
Then ds/dt = |w¥[Z. Using (18) with R = 2,, w = w, (u>1t), we see, by
Theorem 8, that lim,,, Dc(w,, oo; 2,) (= De(w,, o; 2,)) exists and

(200 Dec(w, oo; 2,) = DE(w¥*, 0, 0; 2¥)|wp (2% = 3,).

Since s = s(f) is continuous on [0, |I']], Dc(w,, oo; 2,) is also continuous
on [0,|']]. By Lemma 7, Theorem 8 and (20), we have

ac oK
= Q)_T( )

DK(w 0,0; Q¥)|wip = L L De(w, 003 2).

Thus (5) holds. Using (19) with R = 2,, w = w, (u > t), we have
D c(wt’ Z 0 ‘Ql) - ch(ws ’ Z9 0; ‘Q;k)lw;kélz *
By Theorem 8 and (19), we obtain

a—:(z,oo;.Qt) DK( 0, 0; Q*)_| i
= (—~ IL(z, 0; 2DF — [K(3,0; @)1} 2P
~ D2c(ws ,3,0; OF)|wrsp = —411—D2c(w,, 2, 00;0).

Thus (6) holds. This completes the deduction of Theorem 1.
Our method of the proof of Theorem 8 requires us to distinguish the
following four cases:

Case 1. 2 is bounded by a finite number of analytic Jordan curves,
I'=100,1], 2> and ¢ = 1.

Case II. 0 <t < |T'|

Case III. @ D and t = 0.

Case IV. w,€90 and ¢t = 0.

The proof will be given in §§4-7. Finally we give the proof of
Proposition 2. A simple calculation shows that Dc(z, {; Q) = Dc(¢, z; 2)
and D*c(w, 2z, {; 2) is invariant for any permutation of a triple (w, z, ) of
distinct numbers in Q. Let 2 be a conformal mapping from 2 onto 0%*.
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If 95 c0, Q%500 and A(oo) = oo, then the unicity of (K, L) shows that
K(z, & Q) = K(h(2), h(§); 2WHERVH(Q),
L(2,¢; Q) = L(h(2), h(Q); PWH @V () (2, — {oo}, 2 % D).

Note that 4’ is single-valued and that the values vA'(2) ¥ A'(), VA (2) vV A (0)
are determined independent of the choice of the branch of /. Thus a
simple calculation shows that, for three distinct numbers w, 2, { € 2 — {0},

@21 De(w, z,§; Q) = De(h(w), h(2), h(Q); 29)|A W)W (2 ()] .

This equality holds in the case where { = h({) = o, and in the case
where 2 2 o0, 0* 3 00, also. Equality (19) is equivalent to (21) in the case
where { = oo and h(§) = 1/&. Since any conformal mapping 4 is expressed
in the form A(¢&) = A*((1/§) + a) with a e C and a conformal mapping A*
such that A*(o0) = oo, we have (21) for any {e 2. Since Dc(w, 2, {; 2) is
invariant for any permutation of (w, z, {), we consequently see that (21)
holds for any triple (w, z,{) of distinct numbers in £. This completes
the proof of Proposition 2.

§4. Proof of Case I

In this section, we prove Theorem 8 in the case I. Since I' = [0, 1],
the function w, = ¢ is the arc-length representation of I'. We write Q, =
Q—10,t] ¢t>0). For a domain R 5 oo, let q(z; R) denote the conformal
mapping from R onto D¢ such that g(oo; R) = o0, ¢/(c0; R) =lim,__ q(z; R)/z
> 0. We divide the proof into three steps.

First step. We show that 0K (z, C; 2,)/ot exists at t = 1.

Let d, = min{1/2, (the distance between 92 and [0, 1])}. Given 1/2 <
u <1+ d, we take ¢,(w) = w/u. Then the boundary of ¢,(f2,) consists of
90,(2) and 5[0, 1]°. We write by J,(-, )=J(-, -; 2,), J*(-, )=J(-, -; ,(2.)
(J=K, L). We write also J=¢J, (J=K, L). Equality (4) and the reflection
principle show that there exists 0<¢ < d, such that J,(z, -), J*(z, ),
(J = K, L;|u — 1| < ¢) are analytic in a neighborhood of 32 as a function
of z. We have

@) K50 = Kilol), LD VARAD = Kef T
= K1(2,0 - (= DK, 0 + 2208 2,0 + 1272 2)

+ 0(|u - 1)
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= K250~ - D{KG 0 + 228 @0 + 12 ¢ 2)

+o(u — 1).
The reproducing property yields that

K0 = o[ Kitw OKw,ldw| = |
_u j K (uw, OK (aw, 3)|dw| + L j Kiw, OK(w, 2)|dw|
27 Jocu®
1 u—1 (o N
e K, oK, 2

+wd g KL (w, ). 3) + K*w, k_,)w_(w z)}\dwl +o(u — 1))
~ Ko+ 4=t j {Kw, 9K@w@2) + w— w, KW, 3)

+ K@ 0w 2w, z)}ldwl + o(u — 1.

Let 2, =3{[6,1 — 4] UD(0, 5) UD(, 8} (0 << d,). Then, combined with
(4), this yields that

lim
u—-1 Y —

AKE @D - K@ 0 = o [ {Kw 0K@,2)

+ wg_(w, DKW, z) + K(w, @ww» w, z)} |dw)|

= [ (K@ oL@ ) + w 2w, oL, 2)dw
2z Jaa ow

f L(w, Qw »A(w Zdw = K(2,0) + z——(z )
2

+z;~—(c, 2 - L 1 j {K(w OLw, 2) + w- X (w,f:)L(w,z)}dw
w

- 1.] Lw, 0wk (w,2dw 0<s<d),
21'L'L 25 w

where, for the integrals on 1;, the orientation of dw is chosen so that
{[6,1 — 8]UD(0,6) UDQ, 9)}° lies to the left. By (22), we have

oK

oK . .
1) = ’ ;HL -:T O do
@=Ll en0)| =10 0<:<d)
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with

T() = — 1 f {K(w HL(w, z)+w (w OL(w, z)}

—J+Jum9w34m2wu
27t Jas ow

Thus 0K (z, C; 2,)/0t exists.

Second step. We show that DK(w, z, (; Q2,) exists and (17) holds at
t=1.

Since 0K (z, Z; 2,)/0t is independent of §, we have
(z,,, 2) = 1lim T(9) .
L0
Express T'(6) as a summation of T(s) (k =1, .., 5) which are defined by

T,) = — 71,_ " {K(x+z0, O)L(x+i0, z)+x (x-l—zO OL(x+i0, z)}dx
i1 [

__#_f L(x + i0, C)x (x + 0, 3)dx

T = L [ {K(x—io, OL(x—i0, z)—i—x—(x—iO, PL(x—i0, z)}dx
27t J

-|- . J L(x — lO, g)xg—_(x —10,2)dx,

2ri
70 =- -1 [ w9 woLw, 2dw,
o Jsan  ow
7@ =- 1 [ Lw 9w w,zdw,
27l Jswo ow
To) = — 1 K(w, OL(w, 2)dw
27l Jso,pusa,s
— —~17,- w-—(w OL(w, 2)dw
27l Jsw9
b L(w, O w & (w, z)dw .
2t J 50,0 ow

The behaviour of K(z,?), L(z, ) near z = 1 is as follows. Taking

q(2) = q(z;[0,1]9) = 2{(2 — %) + \/<z — —;—)2 — %} ,
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we put R = q(2,). Note that ¢(1) = 1 and K(¢&, q(¢); R), L(&, q(¢); R) are
analytic across S(0, 1) as a function of & Since

g(® =1+ 2/2—-14 0(z — 1),
V@) =@ — 1D+ (z— D"+ 0(z -1 (2—1),

we have
K(z,0) = K(q(2), 9©Q; BVI@VIO
= {KQ,a®: B + 2z = 120.0,403 B + 0(2 — 1))
X{z = D™ + (2 — D7 + 0(z — 1PWq©) i
= {(z = DK@, q©); R) + (z — D"'A; + O(z — 1["Wg@) (z—>1)

and

oK
0z

28 = {— %(z — 1)K, q(©); R)

+ -}(z — 1A, + Oz — 11**/‘)}4&"@ (z—1),

where, in general,

A, = K1,90); B + 2%5;(1, 7@); R),

B, = L(1,q(0); R) + zg’;:u, 2(0); R) .

In the same manner,
L(z,¢) = {(z — D)L, q(©); R) + (z — 1)'*B; + O(z — 1)}/ q'(0)
(z—1)
and

oL
0z

(20 = {~ +—D"LA @ B)
+ _}I(z — 1)"B, + 0(z — 1|“")}~/Q_’(—C) (z—1).
The behaviour of K(z, ), L(z,£) near z = 0 is analogous. We have
J@J:MMML%@J=OWH5@4QJ=KD.
We now return to the study of T\(5) (=1, ---,5). We have
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1) = — 5[ + o)

1 (-
2z Jo

' {K<x+io, OK(@+10, 3)- z>+x-g—K—<x+io, K0, 2)
X

+ K(x + i0, m%’jm + 00, z)}dx + o(1)

= — L [0 k(x4 0, K (x + 70, D)dx + o(1)
2n Jo  ox

- _ _2LK(1 5410, KA =3 F10,2) + o(l)
T

= = L e K (L q@3 B) + e A + O]

X {87 "e* K (1, q(2); R) + 6~ "A, + OGN (@) v a(©) + o(1)
- [— Ela-lﬂKa, 9(0); DK, 9(2); B)

+ K0, 93 BA, - KA, 96 DAY VT@VED + o).

In the same manner,

- —-gﬁ—{m, qQ); RA, — KQ1, q(2); R)Ac}]w% Vg © + o(1).

We have
T6) = — - [ 2K (w,OLw, 2)dw + o(1)
271 Jsan ow
1 1

- 2xi Jswoa {—— Zw—mK(L 6@; R) + -}L—w“aﬂAC + O(lw|—1/4)}
X W L(1, q(2); B) + wB, + O(w)dwyT@VT® + o(1)
1

- - [— L w2k, q@®; BLA, q2); B)
7wl J 50,9 4

— K@, q®; BB, — L @) RAHdw/d@ VI + o)

— [_ 51_5—:/21«1, q(®); RIL(1, q(2); R)

T

~ K, q(0); BB, ~ L(L, @) DA [VT@VEO) + o).
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In the same manner,

T5) = [— —29‘;5-~2L<1, 9(0); BK(, q(2); B)

~ K@ 4@ BB, - LT 40 BA}|Va@VI@ + o).

Evidently, 74(3) = o(1). Using L(1,q(s); R) = — K(1,q(a); R) (¢ = 2, 0),

we obtain
TG) = Y, 7o) = [~ 717[5*/21{(1,?(5;’); RK(,q(@); B)

+ K@, q0: DA, - K1, 0@); DAY

%5”%(1, 1(©; RKQ, q2); B)

_ ?1” 5-'2K(1, ¢(©); RIL(Q, q(2); R)

l

LK@ q@iBB. — L(L, ¢@); BAJ

_ ,21;5—1/21:(1, 9(Q; RK(, q(2); R)

~ LK1 4@ BB, - LT q@; BAYVa@Va® + o®)

- %[La, 9(2); BB, + L(, ¢(©); B)B,

— K(1,q(); RA, — K1, ¢©; RAIWI@VIO + o(1)
(= Ty/4 + o(1), say)

which shows that
K (2 2:0) = 1im T() = Tya.
ot il0

By (4), we have
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L1, q(2); RL{, q(©; R) = K(1, q(2); KA, q(©); R),

and hence

DK(1,2,¢; Q) = li{l}{L(u, 2)L(u, §) — K(u, 2)K(u, )}
= lim{{(u — DL, ¢(@); B) + (w — "B, + O((w — D™}

X {(w — DL, ¢©); R) + (w — DB, + O((u — 1))}
— {(u — )""K(1, q(2); R) + (u — A, + O(u — )"}
X {(u — DK, q(©; R) + (u — DA, + O((u — 1))}

- (L, 4(3; BB, + L(L, g0 R)B, -
Thus DK(1, 2, {; Q,) exists and (17) holds.

Final step. We show that oL(z, ¢; 2,)/ot, DL(w,, 2, ¢; 9,) exist and (17)
holds with K replaced by L.

We may assume that z+¢{. For 1< u <1+ d, we have

L0 — Lz, 0) = #j L,(w, OL(w, 2)dw
=__1 B K LW, n,)K(w z)dw + ‘.__J L LW, OL(w, z)dw
2nt Jom 27l
= TJ + T‘.’» say

Taking

2.(2) = q(z; [0, u]*) = —i—{z — —Z« + \/<z - 12‘—)2 — <%)z} :

we put R, = q,(£2,). We have

2.(2) =1+2/z —u+ O —1),
VaU(R) = w e — u) "+ (2 — w4 O — 1)),

where O(-) means the uniform estimate with respect to ze d[l, u]° when
| 1. Thus

{K(l 7.0; R,) + 2z — u 2 <1 7.00; R + O(u — 1)}

X Uz — w) " + (z — u)“* + O((u — V"W,
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= {u-l/d(z - u)_lﬂK(l, M§ Ru) + (Z - u)lﬂAu.C
+ O((u — D" .Q) (zedll, ul,ull),

where '&(1’ m; Ru) = —'a’g(sy ‘LL(C); Ru) ’ and, in general’
0& 0¢& e=1
A, = K1, 0.(0); R + zu-'/*—aaiga, 7.(); Ry,
B... = L(1, q.(0); R.) + 2u-v*%<1, 2.(0); R,) .

In the same manner,

Lu(z> C) = {u_‘ﬁ(z - u)-l/AL(la qu(z); Ru) + (Z - u)‘HBu,C
+ O((w — "W qu(©) (zedll,ul’, ull).

Note that
1 —-1/4 -1/4 1 T in/A | in/k
L = wyw — D dw = (e = e
27l Joarude 2z
u=t Ju—1 3 3
xj u—1—x)xdx = _—_B<__,__),
0 ( ) V2r 4 4
L[ - 0w — Drdw = L= e
2rt Jarule 2ri
u-l —1 3 5 u—1
X I u—1—x)"xrdy = % B(—, ——) = )
0 ( ) V2r \4’ 4 4
1 1/4 —1/4 U—1 —mrm——=ma (5 3)
o w— ) (w — 1) dw =2~ ("t — e-t"\B( =, =
2ri a[l,ujv( " ) 2ri { ) 4 4
_ o u— 1
4 9

where the orientation of dw is chosen so that [0, u]° lies to the left.
Thus

Ty =1 K (w, DK (w, 2)dw

- 2l J ot ule

= [h [ — 0 R 4@ R + 0 — 0 A
2r1 Jaus,uge
F O = 1)

X {0 = DK, 9); B) + (w — 144,
+ 0w = 17)du |V g @i
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1
27

= |w K@ @@ RIKLG@5 B = ) — ) dw

+ uK(1, qu(0); RA, -1 j W — W) Mw — 1) dw
2wl Jarule

1
2ri

+ K0, 0@5 Bhwe - [ = 0w — Ddw]Va @ vaid
+o(u—1)

1 1/2,,-1/4 3 3 ~ (7)) 2(2)*
- [ = ’B<Z’ Z)K(l’ 7.00; RYK(, 9(2); R)

+ %{u_l/dK(l, m, Ru)Az — K(]., CI(Z), R)Au,c}]'\/m\/m
+o(u—1).

In the same manner,

s L1 (_qyeynp(3 3 _ _
T3 _[ ﬁn(u 1)y /B<4, 4)L(1, 7.(0); R,)L(1, q(2); R)

— 27 oL, 0,03 ROB, — L, @) BB, VT@ Va0
+o(u —1).
Since
L(1, q.(0); RIL(L, 9(2); B) = K(1, 0.(0; R)K(L, 4(2); ) ,
we have
lim 1 {L.(20) — L(z 0)
— lim (K (L, 0.0 R)A, — K, ¢@); DA, .

— urL(, qu(0); R)B, + L(1, ¢(2); BB, JVZ@VTUO
- %[K(l, 20: BA, — K(1,q(@); R)A,

— L(1,q(®); R)B, + L(, 9(@); RBIWd @) Va Q) = T¥/4, say.

Thus the right-derivative 9*L(z, {; 2,)/ot exists and equals TF/4. In
the same manner, we see that the same property holds for the left-
derivative. Consequently, oL(z, ¢; 2,)/0t exists and equals T3/4. Since
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DL(1,2,¢; Q) = lifrll{L(u, 2)K(u,?) — K(u, 2)L(u, 0)}
= lim[{(u — D)~L(1, q(2); R) + (v — 1)"*B, + O((u — 1))}

X {(u = DK@, q@); B + (u — DA, + O((u — D)}
— {(w = DK, q(@); R) + (u — DA, + O((u — ")}
X {(w = DLA, q(Q); B) + (w — VB, + O((w — 1))}
X V@@V ©
= [— L(1,¢; RA, + L(1, q¢(2); R)A,
+ K(1,q(©); R)B, — K(1, q(2); R)BJVd' @V q' (0
= [K(1,q(©); BA, — K1, 9(); R)A,
— L(1, q(©); R)B, + L(1, 9(2); RBIVg(@)Vq(©) = Ti.
Thus DL(1, z, {; Q) exists and oL(z, {; 2,)/ot = DL, z, ¢; 2,)/4. This com-
pletes the proof of Theorem 8 in the case I.

§5. Deduction of Case Il from Case I

In this section, we deduce the case Il from the case I. We work
only with K; the argument for L is analogous. The arc-length represen-
tation of a closed analytic arc I' is denoted by w, (0<t<|I'|). For
— <0<~ let &, denote the totality of closed arcs I" such that " — {0}
is analytic and I' is expressed as e”x + x*’P(y/ x), 0<x<r in a
neighborhood of 0 with an analytic function P in D(0,r%). For I'e Z,,
let w, (0 <t<|I')) denote the arc-length representation of I' such that
w,=0. We put 4, =[—1,01UI", 0<t<|I"). Here are some lemmas
necessary for the proof of the cases II-IV.

LEmMA 9. Let [ be a closed analytic arc and let A be an arc in &/
with an endpoint w, such that ANI = {w}). Let h be the conformal
mapping from A¢ onto [— 1, 0]° such that h(co) = oo and h(0) = 0. Then
h(0) exists, h'(w,) is continuous on tel0,|I')] and h(I")e ¥, fecr some
—a<0<nr

To see this lemma, we may assume that w, = 0 and 4 belongs to .7,
in a neighborhood of 0. Then I'e %, for some — <6< n. Take an
analytic arc y passing through 0 such that y* © 4. Then {* is a conformal
mapping from a domain U bounded by y and a small circle S(0,r) onto
D(,r) — 4. Form an analytic function

B(©) = a(h(©); - 1,01) = 2{h(@ + 5 + Jpo + = -5
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in U. Since A*(y) is an arc on S(0, 1), the reflection principle shows that
h* is analytic in a small disk D(0, ") (0 < r’ <r). Since ¢ %L, h*(0) =1
and h* is one-to-one, we can write A*(C) = 1 + alA(t) with acR, a #= 0
and an analytic function A in D(0,r’) such that A(0) = 1. This shows
that

h@) = - {h*© + hJ(?) =

—{L+ ah®) + A+ ah@©)' — 2}
= 4@ CAOML + aLAQ) 7,
and hence we can write
hz) = 40 zh(V 2){1 + av 2 A(/ 2)}' (ze D(, )

with a suitable branch of ./~ . Thus A/(0) exists and equals a?/4. Since
h(2) = a*/4 + o(1) (z—0), A'(w,) is continuous at ¢ = 0, which yields that
h'(w,) is continuous on [0,|I']]. Since I"e ¥, and I' is analytic, there
exists an analytic function g in a small disk D(0, r”) (0 < r” < 7r’) such
that g(0) = 0, g(0) = ¢* and g([0, 7’]) C I' in a neighborhood of 0. Then
h(I") is expressed as

4
1
4

4"aze“x[e*“_g@ AW g1 + a\/lg_(gcjﬁ(«/—g(—@)}"‘] , 0<x <

x
in a neighborhood of 0. Substituting the variable x by 4-'a’x, we obtain
h(MNe2,.

LEmMA 10. Let I' be a closed analytic arc and let k, be the conformal
mapping from It onto D(0,r)c such that k,(oo) = co, |ki(0)| =1 and
k(w)=r, 0<t<L|I'). Then the limit lim, {k w,) — r}k(w,)| (= a,
say) exists, a, is continuous in (0,|I']], ¢, > 0 and lim, ,a,/r, = 1/2.

In the same manner as above, we see that a, exists, g, is continuous
in (0,|/'|] and @, > 0. There remains to prove lim,,,a,/r, = 1/2. We can
write

kz(wu) = kt(wt) + bt\/wAutlI)t + O(u - t) )
kl(w,) = %bxwu —w) 4 0Q) (uld)

with b,4/dw,/dt > 0. Then a, = |b,/2. Thus it is sufficient to show that
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lim,,|b,|/+/r, = 1. To do this, we may assume that w, = 0. Then '€ %,
for some — << . Let g be the conformal mapping in the proof of
Lemma 9 and, for a small number >0, let s = s(f) be the number
defined by g(s) = w,. Form a conformal mapping

W@ = kiog(z+ 5 +2)
16z 2

in a small ring D(0, r*) — D(0, s/4) such that k¥(s/4) = r, and k}(S(0, s/4))
= S(0, r,); r* is a small number independent of ¢. The reflection principle
shows that k¥ is analytic in a ring D(0, r*) — D(0, s¥/(16r*)) with the
identity k}(z) = r2(kf(s*/(162)))-* in D(0, s/4) — D(0, s*/(16r*)). Since k()
uniformly converges to { on S(0, r*), we have

1 1
k¥(s/4) = —— —__k¥2)d
F(s/4) 2x1 Jamw,m-po,sasmy (2 — (s/4))? He)dz
_ i r" 1 kX(r*et) rrei dy
2z Jo {r*e’ — (s/4)} ’
1 (* 1 TR st
—_— k* *Hpiv) -1 t l\#d
2z Jo {(s*/(16r*))et — (s/4)}? Frre™) 16r* erev
1

[ gtremevay +om =1+00 10,

2zr*

Since
|k (s/4)| = lim — |k, g{s + 4¢fs + (&)} — k.o g(5)|
= bitim L |gfs + 4els + o)} — g1 = 2AbL OV,

we have
21b,g@)|Ws =1+ 0(1) (£}0).

Since |g’(0)| = 1, s{(0) = 1 and lim, ,¢/r, = 4, this shows that lim, ,|b,|/v/ 7,
= 1. Consequently, lim,,,a,/r, = 1/2.

LemMma 11. Let I'e %, Then y(4,) = (1 4 t)/4 + o(t) (¢} 0).

Since " € %,, the diameter of A, is larger than or equal to 1 4 ¢ + o(2),
and hence 7(4)>{1+t+ o(®)}/4 [11, p.9]. There exists a constant C
such that A, is contained in a rectangle {x 4 iy; — 1< x <¢, |y| < Ct¥}
(0<t<|I'). A simple calculation yields that
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T AL 3/9 1 + t
e+ iy; —1<x <ty < Ct’})=T+0(t),
which gives that y(4,) < (1 + t)/4 4+ o(¢). Thus the required equality holds.

LEmmA 12. LetI'e &y, — <6<z For0<s<4y(— 101U —1,
let t = t*(s) be the number defined by y(4,) = (1 + s)/4. Then, for any
compact set F in ([—1,01UT)°,

(23) 33}9161(2; Auy) —qz;[— 1,81 =0(s) (s]0).

To see this, we write simply ¢*(z) = q(z; 4%,,), ¢%2) = q(z; [— 1, s]°).
Note that

(s — 2 _s—1 (_3—1)2“(34-1)2
9:2) s+1{z 2 +\/z 2 2 }
ng“ _ 1 o 1+ @%2)

s @ = s+1q3(z)1—q‘s’(z)'

Substituting the parameter of Lowner’s D. E. by a suitable one, we obtain

Ky = q;k(wt*(s))) .

L SV W N 4 C))
08 @ s+1 7:(2) 1 — k,q%(2) (

(See (56).) There exists 0 << <1 such that [g%(2)|>1 + &, |g¥(@)|>1+ ¢
(ze F, 0<s<4y([—1,00UI") — 1). Then

aqf 2q; ’
2) — 15 (2
as() as()

2 1g¥@) - a¥a)l| < |

— 1 * 14 £,q¥2) 0 1+ ¢32)
T sy1l® ®) 1 — £,g*Q2) @ 1 — %)
_ 1 _oon L+ £,q5(2)
= Ti1 ‘{q;*(z) qs(z)}——1 S

(14 5@ 1+ g
ra@( e g

-1 0 1 |k q¥(2) — q32)|
< 36 q¥(2) — qX2)| + 4e; @ =1

< 1167%{g¥ @) — @U@ + [k, — 11}

Since gF = % we have

0@ — %) < 11a* [ 02(@) — 02| + I, — L

< 11¢;? J: {o(x) + |k, — 1]}dx,



178 TAKAFUMI MURAI
where o(x) = sup,.r|qF(2) — q%(2)| Thus

@4) () < 11e* [ (p@) + r, — L.

Let C = max{p(x) + |#, — 1]; 0 < x < 4y([— 1,0]UI") — 1}. Then (24) shows
that p(s) < 11Ce?s. Using (24) again, we have

o(s) < 121Ce5*s* + ueﬁfux —1|dx.
0

Since lim,, £, = 1, this inequality gives (23).

Now we deduce the case II from the case I. Let Q¢ & and let I’
be a closed analytic arc such that Q°NI" is at most a singleton. If
Q°NI" = {w,}, we denote by A the component of 2° such that AN = {w,}.
The condition £ — I'e ¢ shows that AUl'ewr. If QNI =@, we put
A =@. We divide the proof into several steps.

First step. There exists a conformal mapping A from QU4 onto a
domain bounded by a finite number of analytic Jordan curves. Then
h(AUT) e s/ and h(I") is a closed analytic arc. Let w¥ (0 <s < |h(I))
be the arc-length representation of A(I") such that w¥ = w,, and let s = §(f)
be the function defined by w¥ = h(w,). Then ds/dt = |W'(w,)| and ds/dt
is continuous in (0, |[']]. If the required properties are established for a
domain A(Q), an arc A(I") and 0<s <|h(I')|, then we have, with Q% =
h(Q) — {wf; 0 < x < s},

aK Z. _ oK T\ . Ok ds TITN L7
@8 0) = S (h(@), h©; 0 A RRVIO),
DK(w, z,¢; 2) = DKW}, h(2), h(Q); 25) | (w,)| V(@) VR ©)

o<t<|I,

which yields the required properties for 2, I' and 0<¢ < |I'l. Thus,
from the beginning, we may assume that 2 — 4 is bounded by a finite
number of analytic Jordan curves.

Second step. We show that the right-derivative 0*K(z,Z; 2,)/ot at t = 0
exists if A =[—1,0] and I' ¢ &,.
Here is an equality necessary for the proof:

(25) K(2,00)=K(52—-[0,:)+0@® ¢]0).

To see this, we form a conformal mapping ¢*(2) = (¢%)'0q*(z) from
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Q. onto a domain 2F whose boundary consists of [— 1, s] and 9:#(Q U A),
where qF(2) = q(z; 4%), ¢°@) = q(z;[— 1,8]°) and #*(s) is the number
defined in Lemma 12 for /"¢ %, Then

) T

=§i1{ ()+~;()}+s”1

4@ = 2t L ar@) + -

4 2
+ 5 ,t},,{(q;k(z) — q32) + ( @) 0zz) ) }

and hence (23) shows that
@ =z40(), @ =14+0(s) (s|0)
locally uniformly with respect to z. Thus

K(Z, z; ‘Qt*(s)) = K([;k(Z), E@; Q?)W/W\/m
=Kz, 285 + o(s) (s]0)

and

K20 -[0,s)= [ K@wz; 0~ [0 shEw,z; 0F)|dw|

271' a0}
- 217 K@, 50— [0, DR, 7 092915
. K(w, 259 — [0, sDE(w, z; 0F)|dw)
27c a[-1,51¢
1

= _ Kw,Z; 2 — [0, sDK(w, z; 2%)|dw| + o(s)

2 Jaca-[o,s]
:K(zaz;‘gf)’*—o(s) (Slo)a
which shows that
K(z,0;04,) =Kz ;2 —10,8)) + 0o(s) (s]0).

Let s = s*(¢) denote the inverse function of #*(s). Then this equality is
rewritten as

(26) K(z,8;02) = K(z,5;2 — [0, s*@) + o(s*®) (] 0).

By Lemma 11, we have
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X
IO ) = 1 0@ @10, e,
sf) =t + o) (]0).
Using this equality, we have, in the same manner as above,
K(z,0; 2 —[0,5*@)) = K(2,5; 2 = [0,¢]) + o(®) (¢]0).

Combined with (26), this equality yields (25). Consequently, the case I
and (25) show that the right-derivative 9*K(z, £; 2,)/dt exists and equals
K gz 0-100)] .
ot t=0

Third step. We show that the right-derivative 3*K(z, C; 2,)/ot exists
in (0, |I']].

Take the conformal mapping A, from A¢ onto [— 1,0]¢ such that
h(w)=0 (0<t<L|I'). Then Lemma 9 shows that A/(w,) exists and
h(I' —T')e %, Since h, is conformal, we have A/(w,)(dw,/dt) > 0. Since

K(z,C; 2.) = K(h(2), h(0); h(QIVR(R V() (0<t< ),
the second step shows that 9*K(z, C; 2,)/0t exists and equals

@) 2K @), h@i h(2) — 08| (K@) VEEVED .
Fourth step. We show that DK(w,, z,{; 2,) exists and is continuous
in (0, |I']].

Let k, be the conformal mapping in Lemma 10. Then we have, with
-(:)I, = kt(‘Qz)y

DK (w,, 2, {; 2)) = DK(k(w,), k(2), k(2); 2)|ki(w,)k/(2)E(L)]
o<t<u.

Since J(g, -;9) (J = K, L) are analytic in a neighborhood of r, with
respect to & the right-hand side is rewritten as

{2 2@ 99 4 utwn) = r) 220 k(2); 0 + oV = D)

X AL k(@5 0) + () = ) T2 kD3 0) + o(u = D)

— (K, k@3 0 + (@) = ) 20, @31 ) + o/ = 1)
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x (Ko 203 00 + (e = r) S

X Bk 2k Q)] 0<t<u),

(ro klD); ) + oW — & t)}

where -Z—‘é(rz, 3 0) = ——(5, 1 9) (J = K, L). Recall the quantity a,
E=ry
in Lemma 10. Since
L(r, k(2); .Qt)L(I‘,, k(0); ‘Qt) = K(r, k(2); QL)K("L) k(Q); -éz) s
Lemma 10 shows that DK(w,, z, £; 2,) exists and

(28) DK(w, 2,8 0,) = [L(rl, (2); m (rt, L (¢ k(©); 0

+ ? (rt, (2); Qt)m

— m (n, k(D); 0,)

. ﬁs— (ro k2); é»K(m, E(D); é»]aAk:(z)k:(@)l :

Since a, is continuous in (0, |I'|], DK(w,, 2, {; 2,) is continuous in (0, |I'|].

Fifth step. We show that 6*K(z, C; 2,0t = DK(w,, 2, ; 2,)/4 (0 <1t
<|I').

Let A, be the same as in the third step. Then we have

(29) DK (w,, 2 ¢; Q)
= DK(h(w,), h(2), h(0); h(Q)|hi(w) W@ VAT 0<t<u).

In the same manner as in the fourth step,

lim DK (h(w,), h(2), h(0); h(R)) = lim DK (s, hi(2), h(Q); h(2)) -

wlt

The case I shows that this quantity is equal to
K [
L (), B0 b @) — 10, 8D)|

Lemma 9 shows that lim, ,, A(w,) = h{(w,). Thus, letting » tend to ¢ in
(29), we see that DK(w,, z,{; 2,)/4 exists and equals (27), which yields
the required equality.

Final step. There remains to prove that the left-derivative
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0-K(2,C; 2ot exists in (0,|I'|] and equals 0 K(z, C; 2,)/3t.

Fixing 0 <t,<|I'|, we form a functien
o) = Kz ¢ 0) — Kz,8,0,) — j ‘ —giK(z, ¢; 0)ds
to S

on [4,|I']]. Then p*() = 0 and the right-derivative is identically 0, which
yields that p*(t) = 0. Thus 9-K(z, {; 2,)/dt exists and equals 3°K(2, {; 2,)/ot
in (t,|')], and hence the derivative exists in (%, |/']]. Since 0 <t, <|[|
is arbitrary, 0K (z, Z; 2,)/0t exists in (0, |I"|]. This completes the proof of
Theorem 8 in the case IL

§6. Proof of Case III by the operator .7

In this section, we prove Theorem 8 in the case III. This case
corresponds to the variation by cutting a hole [28] and the proof is easier
than that of the other cases. There are three methods of the proof.
The first method is as follows: For a small number ¢ > 0, we define a
competing function of form K(z,&; Q) + to(z, , )DK(w,, 2, {; Q) so that
the difference from K(z, ; 2,) is negligible. The second method is as
follows: Taking a conformal mapping from [ outside a small disk, we
use the reflection principle on the boundary of this disk in order to study
K(z,Z; 2,) — K(z,&; 2). In this note, we use the third method, which is
an application of the singular integral operator J# and completely different
from the methods by conformal mappings. This method is not short,
however, this is a powerful tool to study y(-). Evidently, DJ(w,, 2, {; Q)
(J = K, L) exist. We shall see that (17) is still valid in this case. For
Eec o/, L¥(E) denotes the L*space of functions g on E with norm [lu|; =
{ f | ;zlz\dz[}lﬂ. The operator #, from LYE) to itself is defined by

Hip(@®) = Lp. [, Sl

= Llim L u@de (zeB).
T oo B -z  — 2
We define % by #,p = #.p. The operator #; is anti-symmetric, i.e.,
(Ayp, v)e = — (, #v)p, where (-, -); is the inner product. The operator
Id — 4, #, is invertible and its inverse operator is denoted by .7,
where Id is the identity operator. Using 7, we can express K(z, Z; E°),
L(z,¢; E°) in the following forms.
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ProrosiTioN 183.

60 K@oE) = <[ Lo a(—p)wldul,

G LG E) = 2o+ [ LA Jw)dul.
To see this proposition, we begin by showing
(32) c(z; E9) = X JE ;}»j£7<‘__1.__)(w)|dw| (ze B¢ — {c0)).

The dual extremum problem yields that

e(z; Ec)—mf{ J
27 Jage

— i . c) |2
= [, | L. 2 Epidw)

b )| [dwl; v € HYE), (o) = 0]
w —_—
— ! K(z,7,E9) [4, Chap. VII].

2r

For e HY(E®), (o) =0, there exists pel*E) such that (w) =
4-|dC| (we E¢). Then

5L
—_ 7 7 ldwl c
Ww(w) = #yp(w) + Lp(w)T a.e. on oE°.
w
To each we E — {endpoints of C, (j =1, ---, n)}, there correspond two
points w* € 9E° so that dw* = — dw~, where {C,}7_, are closed analytic

arcs such that £ = | J;.,C;. Since

[+ v ldw
r Jorel w — z
_ 51; ) (\wlf + () + ip(w)-J
ot ) + i) 92 )|dw1
= U2, + ]+ 1)
we have
ctes B9 = inf [ 2(| L+ i+ 1) we ).
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There exists p,e LY(E) attaining c(z; E¢). Then a variational method
shows that

1
( St St JfE#)E + (o, )5 = 0

for all pe LXE), and hence

_ _ 1 . =
U — Bt = Bl |, ie. w=ZA{ 1}
Since 1d 4 54 7, 4 = J5, we have
Cgey L 1 : -
c(z; E°) = —{ + Hpw| + “#oHE}
T — 2 E
= A otto ) = L[ Loz dwidw)
T — 2 2/E TJVE W —2 — 2
:}_I 1 z{ 1 }(w)]dwl.
TJE W —2 —

Thus (32) holds.

We now deduce (30) from (32). Let K*(z, )/z be the kernel in the
right-hand side of (30). For each (e E°¢, K*(.,{) is analytic in E-°.
Evidently, K*(c0,8) =0 and K*(z,2) = K*(, z). Equality (32) shows
that

(33) L K2 E9) = cz; E) = LK*2,2) (2¢E°).
T T

Let

o0 oo

an,mz_ng:;n_’ K*(Z, Z) - Z Z bn,mz“_nttﬂ‘1

1 n=1 m=1

M

K@ GE) =3

3
it

be the expansions at co. Then (33) yields thata, , =0b,, (mn=1,2,...)
(cf. [30])). Thus K(z,C; E°) = K*(z,{). We next prove (31). We have

39 LegE)=_—1_ 4+ L L{twsEy -t ddw
z2—¢ Ot Jore w — 2 _
-1 1 L Rw, & E9|dw|.
z—C 2r Jore w — 2
Equality (30) shows that
1 1

Kw, &; E9) = %z( L )(w)—l—iZ(. )(w) |ZZ‘ ae. on JE-.

—-<
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Replace K(w,Z; E¢) in (34) by the right-hand side of this equality. Since
dw* = —dw- a.e. on E, we obtain (31). This completes the proof of
Propositon 13.

Using this proposition, we prove Theorem 8 in the case III. We
divide the proof into three steps.

First step. We show that dK(z, C; £,)/ot exists and equals
DK(w,, z, &; Q4. (0K(z, C; 2,)/0t means the right-derivative at t = 0.)

Let 2e€ % and I' be a closed analytic arc in £. Considering a suit-
able conformal mapping if necessary, we may assume that Q¢ .% and
wy=0 Let E=0° E =EUTI, (0<t<|I'). Given a small number
t >0, we denote by M the multiplier operator p— Xyp from L*E,)) to
itself, and denote by N the multiplier operator p— Xy, where X, is the
characteristic function of F. We write simply

H =y, T =T, S=MIM, R=NJI;N.

t

Then (30) shows that
K@ G2) =~ (T, K@D = (S ),

where p.(w) = 1/(w — &) (=2 and (-, ) = (-, *)g,. To study I — 8§,
we rewrite the identity (Id — ##)J = Id as

{Id — #M#M — #NFN — #M#FN — #N#M)T = Id.
Composing S from the left-hand side, we have
(35) MT =S+ SHN#HNT + SHMAFNT + SHNAMT .
Composing R from the left-hand side, we have
(36) N9 =R+ R¥#MA#MT + RFMA#ANT + RFNFMT .

Replace N7 in (35) by the right-hand side of (36). Adding the resulting
quantity and (36), we obtain

T =S+ SHN#R + SHNFRHFMAMT + SHNFR#AMANT
+ SH#NAR#NAMT + SHMAFR + SHMAFRHMAMT
+ SH#MARFMANT + SHMARFNHFMT + SHENAMT
+ R+ R#FMA#FAMI + RFMANT + RENAFAMT
=S+ K + -+ K, say.
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In the estimates of K, (j =1, - - -, 13), the following inequality plays an
important role:

(37) |(# My, Ny) — #Mu©)(1, Ny)|
< Sirif lulldw| | plldw] (s e LE),
T B I'y

where C = (the distance between E and [')-% In fact,

(5 My, No) — A MuO)(1, M) = - [ @ (T_Z—E/z(w)ldwl}ldzl,

)

which gives (37). Since NJ#R is anti-symmetric, we have (1, N#ZR1) = 0,
and hence

(Kt p10) = —(#MT p,, NFRp) = —#MT p,(0)(1, N#Ry,) + oft)
— — PMT 1 O)0)(1, NZRL) + o(t) = of).

Since
(1, Rl) = n(I",) = %t +o(t) [18], #MANIT 1,(0) = o),

we have

(Kipptss p10) = (,}fM]?N.Ty“ Rp) = %Mfoyz(O)(l, Ry + o(t)
= HAMANT p,(0)p(0)(1, R1) + o(t) = o(t).

Since A#MAMT 1,(0) = #MASp,(0) + o(1), we have
(Kipto ) = (FMAMT p,, Rpy) = #MAMIT 1,(0)(0)(1, R1) + o)
= T ME S 0)(0) + o))

In the same manner, we have

(Kot 1) = 11(0)(0)(RL, 1) + o(t) = gmzw)?c(o*) + o(t),

(Koftey 1) = —(BMT poy N Sp) = —#MT 11,(0)#Sp(0)(1, N1) + o(2)
= —t#Sp.(0)# Sp(0) + ot) ,

(Kopey p10) = tJf;M.%—”_SpZ(O)fM%S—yC(O) + o(t),

I
4

(Kipee, 1) = % t11.(0)# M A Spz(0) + o(t),
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(Koptay ) = — #MIT 1, (0)#Spu(O)(N#AR# N1, 1) + o)
= —(Z — )P Su0# S0 + ott),
(Ko 1) = o) (j=1,2,3,17,8).
Proposition 13 shows that
(388)  #Sp0) = K(0,5;9), p0)+ #M#ASp,(0) =L0,&0) (£=270).
Thus
m{K(z, {; Q) — K(z, {5 Q)
= (T s 1) — (Spey 1) = ;i](Kjﬂz, o)
= 7 U ©p0) + # MFSr(0)2(0) + 2:(0)F Mot Sp(0)

+ A# M A Sp,(0)# MA# Sp(0) — H#S1,(0)5# Sy (C)} + ot)

= THLE, 2 OLO, T 9) — KO0, 2 DKO, 85 Q) + o)
- i’«tDK(O, 2,00 + o),

which shows that 6K(z, {; £,)/ot exists and equals DK(0, z, £; 2)/4.

Second step. We show that 9L(z, {; 2,)/0t exists and equals
DL(0, z, ¢; Q)/4.

We may assume that z = {. Equality (31) shows that

Lz 0 0) =+ YpTp, ),
Z2—0 il

Lz, 6 Q) = ;Lg ¥ %(M«%Sﬂg, ).

To study ##9 — MS, we rewrite the identity (Id — #H#)H# T = # as
(Id — #AMA#M — #ANA#N — AMAN — FNAMYHAT = F .

Composing S from the left-hand side, we have

Composing R from the left-hand side, we have

NAT = R# + REMA#AMAT + RAMA#ANAT + REANA#AMAT .
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Using these identities, we obtain, in the same manner as above,

HT = 8H# + SHNHRH + SHNARAMAMAT
+ SHANARAMANAT + SENARANAMAT
+ SH#MARH + SHMARAMAMAT
+ SH#MARAMANAT + SHAMARANKMFPT
+ SH#ANA#MHAT + R# + RAMAMAT + RAMANET
+ R#AN#MAT = SH + L, + --- + L, say.

In the same manner as above,

(SH e, ) = —(pe, MA Sp,) — t11(0)# Sy, 0) + o(t)
= (MA# Sy, p.) — tu0)# Sy, (0) + oft),

(Lupes ) = = (2 = 1)t 0F S, 0) + 000,
Lyt 1) = —<§ - 1)%1&4%3,;40)%3;,2(0) + o(t),
(Lapi, ) = -1 My O MA S, (0) + o).

(Lapter 1) = {:: £t Mo M A S p(0)# M # S, (0) + o),
(Loptr, 2,) = — tA# M A Sp(0)# Sp,(0) + of2),
(onﬂ:a ﬂz) =z tj?-Mﬂc(O)#z(O) + o),

I

(Lospres 1) = —Z— £ M o M A# Syt (0)12,0) + o(2),
(L p2) = o(t) (j=2,8,7,8,12,13).
Thus, by (38), we obtain
m{l(z, ¢ Q) — Kz, §; Q)

— (BT g 1) = MZ Sy 1) = ~tpeOZSp,0) + 3 Ly )

— %t[{yz(O) + #MA Sy, (O {A My (0) + #Mx#M#Su(0)}
— HSp(0){10) + #MASp(O)}] + ()

= THLO, 2 OK(0, 5 0) — K0, DLO, 59} + o)

= -—} tDL(O, <, C, Q) -+ O(t) )
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which shows that 9L(z, ¢; 2,)/0t exists and equals DL(0, 2, {; 2)/4.

Final step. We show that DJ(w, z,; 2,)/ot (J = K, L) are right-con-
tinuous at t = 0.

We may assume that w, = 0. Here is a lemma necessary for the
proof.

LEMMA 14. Let k,, r, (0 < ¢t < |I')) be the same as in Lemma 10. Then
we have, with O, = k(9),

(39) lim K(r,, k(2); .(:)L) = K(0, z; Q) — L0, z; 2),
t10

(40) lim L(r,, ky(2); 0) = L(C, 2; 2) — K(0, 2, 9),
L0

(41) limr, 2%, k2); 6)) = L0, 2 9,
Lo o0&

(42) lim , g’;j (ro ki2); 0) = K(©0.2;, ),
L0

0 oJ
here (. .10y =9 (e .. 0, J =KL
where aE(r ) BE(E ) ( )

=7t

Choose ¢ >0 so that D(0,¢) C 2 and k(2)e 2 — D0, ) 0 <t < |')).
Then K(g, k,(2); 9,), L(¢, k(2); Q) uniformly converge to K(&, Z; 2),
L(&, z; ), respectively, on &e S(0, ¢), when £ 0. Form

K(& k(2); 2)) (£ e D0, &) — DO, 1))

wO = {—méiin/s (¢ € D(O, 7)) — DO, 7ifz)

Since
K(& k(2); 2)& = —L(& k(2); Q)r, (£€8(0, 1),
(&) is analytic in D(0, ¢;) — D(0, r’fe,). This shows that

K(r, k(@); 0) = 1 a(ede

271 Jatpo, - Ye) € — 1,

1 2n 1 .
K™, k(2); D)eeidyr

27 Jo gett — 1,

—_ —-~——L etV kt ;.(_32 td/'
% JO Ceet =1, (e (2); Q)r.dy

_ El_ f " K™, 7; Q)dy — L j Lise', 2; Q)dy + o(1)
T Jo

= K(0,z; Q) — L0, 2; ) + o(l) t10),
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which gives (39). Since

r, %(r,, B2); 0) = L T a(ede

2xi Jaip,c-Dw, ey (8 — 1,)°

1
= ——————.K v { el
f (Eoei“' )2 (eoe k (Z), ,)eoe d Vs

3 | e =g e R B

-1 j L€, z; Q)i + o(1) = L0, 2, @) + o(1)

which gives (41). In the same manner, we obtain (40) and (42). This
completes the proof of Lemma 14.
Recall (28) and lim, ,q,/r, = 1/2 in Lemma 10. Lemma 14 shows that

lim DK(w,, 2, C; Q,) = -—[{L(O 2; Q) — K, ; DK, Z; Q)
+ K(0, z; 9){L(O, T; Q) — K(0,; 2} — {K(0, z; 2) — L0, z; DILAO, C; Q)
— L0, z; DK, 5; 2) — L, &; D)
— L0, z; L0, ¢; 2) — K(0, z; DK(0, Z; 2) = DK(0, 2, ¢; 2).

Thus DK(w,, 2, ¢; £,) is continuous at ¢ = 0, i.e., 0K(z, C; 2,)/0t is contin-
uous at ¢t = 0. In the same manner as in the proof of (28), we have

DL(w, 2,¢; 2,) = [L(r,,k<z> o,) (rl,k«;), 5)

+ —A(ru k(2); Q)K(r,, k(D); O) — K(r, k2); “) ("/, R(0); Q)

(r,, o K@ O)LUre, k(23 0) |a KGWHD,

and hence, using Lemma 14, we see that DL(w,, z, ¢; £,) is continuous at
t =0, i.e., aL(z, ¢; Q,)/ot is continuous at ¢ = 0. This completes the proof
of Theorem 8 in the case III.

§7. Proof of Case IV

In this section, we prove Theorem 8 in the case IV. We work only
with K; the argument for L is analogous. Let Q¢ ¢ and let I" be a closed
analytic arc with the arc-length representation w, (0 < ¢ < |I'|) such that
Q0> and 32 N I' = {w,}. Without loss of generality, we may assume
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that w, = 0. We show that 9K (z, £; 2,)/0t exists and 9K(z, {; 2,)/ot is con-
tinuous at ¢ = 0. There exists a component 4 ¢ .o/ of 2¢ with an endpoint
0. Let A be the conformal mapping from 4° onto [—1, 0]° such that
h(c0) = oo and A(0) = 0. Then Lemma 9 shows that A(I") ¢ ¥, for some
—7< <7z If =0, then the case II yields the required properties. Thus
we may assume that 6 0. Let w} (0 < s < |hA(I")])) be the arc-length
representation of A(I") such that wj = 0, and let s = §(f) be the number
defined by w* = h(w,). If the required properties are established for A(Q)
and A(I), then

%{f— 2,50) = %—f(h(zx AD); h(D) — [wk; 0 < x < s))

oy dw, [ dwt \ e
X W(w,) dt( = ) VH@VRQ) 0<t<|I').

Lemma 9 shows that A/(w,)(dw,/dt)(dw?*[ds)-! is right-continuous at ¢ = 0,
which yields that 80K(z, {; Q,)/ot exists and 9K(z, C; 2,)/ot is right-contin-
uous at £ = 0. Thus, from the beginning, we may assume that 4 = [—1, 0]
and I'e#,, 0 0. We put 4, =[-1,0UT7, (0<t<|I"). Here are
some lemmas necessary for the proof.

LEmMma 15. For an analytic function P in D, we put
U ={0:;0<y<1, o) =iy + ys¥'P(y/ sy),
V.,=U,UU, (0<s<1).
Then
(43 lim (V) = (V).

The sequence {V },.,., converges to V, as s | 0, however, (43) is not
obvious. Take, for example,

E:U{[2_k 2k+1]U<1+i +[21@ 72k+1]>} (12,

= lL2n’  2n 2n 2an’  2n

This sequence converges to [0, 1] but ([0, 1]) > lim, . ¢(E,). (See [18]).
In the proof of (43), the connectivity of V| is important. Take the Green’s
function G,(z, o0) of V¢ with pole at oo (0 <s<1). Then we see that
lim,,, G,(2, ) = Gy(z, o). The Ahlfors function f(z; V¢) of V, is expressed
as —exp {—G,(z, ) — iG¥(z, o)}, where G¥(z, oo) is the conjugate multi-
valued harmonic function of G,(z, o) such that G¥*(co, 00) = 0 (mod 27r).
Thus lim, ,f(z; V) = f(z; V§), which gives (43).
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Lemma 16. Let V,, z, (0 < s < 1) be the same as in Lemma 15. Let
a, = 1}{{1 {ac(»); V) — oz, (1); VOIWy =1 0<s<1),
where q is the function defined in the beginning of §4. Then lim, @, = a,.

To prove this lemma, we write simply §,2) = q(z; V¢ (0 < s < 1).
Lemma 15 shows that {g,},.,., locally uniformly converges to §, as s 0,
and hence §,(S(0,2)) c D, M) — D0, 1/M) (0 < s < 1) for some M > 1.
Since §,(V,) = S(0, 1) and §, does not take 0 in V¢, we have §,(D(0, 2) — V)
< D(, M) — D(0,1/M). There exists ¢ > 0 such that the ranges of a
semi-disk D(0, ¢,) N {Re z > 0} by analytic functions z,(1 + 2% (0 <s< 1)
are contained in D(0, 2). Form [(2) = §,07,(1 + 2»). Since L(i[—e¢, &)
c S(0,1) and the range of the semi-disk by §, is contained in a ring
D, M) — D(0, 1/M), we may regard I, as an analytic function in D(0, ¢,)
whose range is contained in the ring. Thus {/},.,., is a normal family
of analytic functions in D(0,¢). Lemma 15 shows that {q,},.,., converges
to g, in D(e/2, g/4), which yields that {l},.,., converges to [, in D(0, ¢).
Thus lim,,, 7(0) = §(0). Since

§oot (1 +0) = g0+ a5 +0o(Wd) (3]0,
we have
I(2) = 1,(0) + a2z + o(|z)) (z—0),
and hence a, = I/(0) (0 < s <1). Thus
lima, = hff,l 1(0) = I§(0) = «,.

si0 s

LemmA 17. Let

B = 1ifn {a(w,; 4) — q(w,; A} Vu —t (0<t<|T).

Then lim, , B, exists and the value is common for all I' € #,, i.e., the value
depends only on 6. If 6 = =, then lim, B, = 0.

To prove this lemma, we write simply §.(2) = q(z; 49 (0 <t < |I').
Since "¢ #,, we can express [’ as e'’s 4 33/213(¢_§), 0<s<rin a small
disk D(0,r) with an analytic function P in D(0, r*. Dilating the coor-
dinate axes if necessary, we may assume that r=1. Let i, = e’s +
s“”ﬁ(¢?) (0 <s<1). This is a parametric representation of I'N D
different, in general, from w, Define ¢ = #(s) by w, = ,. Then dt/ds is
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right-continuous at s = 0 and #(0) = 1. We have B, = 8,4/dt/ds with
B, = lifgl {a.,.) — g @)y e (t=Hs).

Thus it is sufficient to show that {8,},.,., converges to a quantity depend-
ing only on §. Take a conformal mapping

gz 1,00 — 1
&) =i e op 1

from [—1, 0]° onto the upper halfplane C,. Then Q(0) = 0 and Q(o0) = i.
We can write @Q(2) = iy z + 2P*(,/ z) with an analytic function P* in
D, and hence we can write
(W) + W, P*(,)'") = e/ s 4 sP(y/'s)

with an analytic function P in D. Thus Q(I' N D) is expressed as ie‘’/%y
+yP(y), 0<y<1l Let U, V,r,a,q =q(-;V) (0<s5<1) be the
same as in Lemmas 15 and 16. Then Q(I",) = /s U, (¢ = &s), (0 < s < 1).
Since §)(c0) >0 and V| is symmetric with respect to the real line R, g,
is a conformal mapping from C, — U, onto C, — {C, N D}, and hence

m.(3) = +{a.@QEIVF) + 3.QEIY )

is a conformal mapping from A¢ (¢ = #(s)) onto C,. Thus

{m,(2) — mco)}/{m,(2) — m (o)}

is a conformal mapping from A¢ onto D¢, and hence

for some 0 < ¢, < 2z. Since QW,,.)/v s = t,(v1 + (¢/s)), we have
___eim {mx(oo) - 7713(00)}{ms(li)3+5) - mx(ws)}
{ms(ws+s) - ms(oo)}{ms(ws) - ms(oo)}
— _etadmyoo) — m(co)H1 — (G, o7, (V1 + (&/8))d, o 7, (DI}
2{m,W,..) — m(c0){m,(@,) — m(co)}
X AGrot W+ (efs)) — d,o, (D} (¢ =Hs)).

Qt(w“e) - Qt(li)s) =

Thus

B _ __ pids as{ms(oo) - m—gv(-o—o—)}{l - 63013(1)'2}
“4) B e B (@) — o)
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To study the right-hand side, we write
(45) 00 =1V L+ e, (= o).

Then |a,,|<M" (n=0,1,...;0<s<1) for some M>1 Lemma 15
shows that

lim y5m,(e0) = lim Y2 (4,ly'5) + 4.1y 5) ) = Lr(Vo.
Since Q(z) =i — i/(22) + O(2|?) (2 — =), we have
GQ@INE) = (V) Gyt — - + oqzm}

+ N aa(—iyea{l -
n=0 2

(1)
= VS~ {51V - & —’;— a, (=5} Lt (e
(2> o0),
and hence

. __ pids 00) — 0 1
(16 gi(eo) = efm,(o0) — m (o) lim s

— Ypits my(oo) — ms(oo) lim 1
1—4,Glys)? == 2{q(QR)/yS) — ¢,y )}
— et ms(°°) - m,(oo)
1—4,Glys)?
o 1 - E __' naon/2 - — 7
% gy V07 = B gl = i),
Since lim, (g/(c0) = 4 and lim, ,4/ s m (o) = ir(V,)"'/2, we have
lim, e = —1. Consequently, Lemma 16 and (44) yield

lsigl fés = — ﬁiao)’( VL — qooz(1)7% .

The expression in the right-hand side shows that lim,,, 3, depends only
on 4, i.e., lim, (B, depends only on 4. If § = x, then §,07(1) = —1, which
gives lim, , 3, = 0, i.e., lim, ,3, = 0.

Lemma 18. Let n, be the conformal mapping from A¢ onto [—1,4,]°
(6, > 0) such that n,() = oo, |nj(e)|=1 and n(w,) =24 O<t<|I).
Then
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. . __0 0/x
47 lim | nl(w,)] = 1 t:(” ) .
47 Llf?\”(w)‘ im 5,/ -0

Suppose that 0 < §<< r. We begin by showing that lim,,,4,/¢t exists
and depends only on 6. Recall g(2) = q(z; 49) (0 < t < |I'). The function
g(w)'q,(2) + q,(w,)q,(z)"* maps A onto [—2, 2]° so that the image of w,
is 2. Thus

nz(z) = T(At){(?z(wz)AQt(Z) + ('jz(wz)q:(z)~1 + 2} -1,

which shows that 4, = 4y(4,) — 1. Since Gi(c0) = 1/y(4,), (46) shows that

1 (L/\/s)zl 4 1 N N\ o /2 1
(1) = L= V) = R, (s (= s,
7 2m.(c0) — my(o0)] w T =
where §,, m,, i(s) are the functions in the proof of Lemma 17. Recall (45).

Since § (oo) \ 0 and V, is symmetric with respect to R, a, , (n = 0, 1) are

Sy

real-valued, and hence

V"" Gl $) — .1V S) + 4y S) " — Gl 5)"

= r(Vs)‘1 —{a,, + 71(V)is + o(s) (s]0).

Thus
1 {1+ y(V)'sHr (V)" + a,.s}
7)) = — + o(s)
’ 4 V)T = e + (Vs
— 5 S VOEV) + a4 ol (= s s 10).
Since {§,}¢c... converges to &, we have lim,,,a,, = a,,. Consequently,

lim 6,/¢ = lim {4(4,) — 1}/t
1o t10

= lim 21 Vs){r%s)) + b 2 VH(VY) + 4}

The last expression shows that lim,,,d,/t depends only on 4. Next we
show that lim, ,|n/(w,)| exists and depends only on 4. Since

n‘t(wu) - nt(wt) - 7(Vt)ét(wu)~xgt(wt)—‘{QL(wu) - q:(w:)}z (0 < t < u) ’

we have

nz(w»:(%—) lim ) = 1) _ (V)( o) aw)-ig.

ult u—t
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Thus
(48) lim |ni(w,)| = r(V,) im |8, .
t10 t10
Lemma 17 shows that lim, ,|n/(w,)| depends only on §¢. Since both
Hm, ,|n/(w,)| and lim, 4./t depend only on ¢, it is sufficient to prove (47)

in the case I' = ¢[0,1]. For 0 < ¢ <1, we take the Schwarz-Christoffel
transformation

pl2) = 2 = e Yz — Y (3 = 0/n)

from D¢ onto a domain F¢ of form
e F, = [—0., 0] U (e”[0, 7.])
for some triple (v, 0., 7.) of non-negative numbers. Let a be the number

in (—e¢) such that ai\pe(ewn = 0. Then
X z=

a

(1 4 ¢) tan

e—a e+ a
=1 —¢t :
g~ (- gtan—
and hence a is analytic in a neighborhood of 0 with respect to ¢ and
a=¢e+ O() (¢} 0). Since p.(e***) =0, we have

a

7. = |p(e*)| = 4 sin sin“¢f_;__

b

144 €+ 0
2

and hence 7, is analytic in a neighborhood of 0 with respect to ¢ and

7o = 1+ @)1 — ¢)' % + O(e) (¢} 0).

Let © be the number in (—¢, ¢) such that ai| p(—e™)| = 0. Then
X x=b

G+ @tan <L~ —gtan 220,

and hence b is analytic in a neighborhood of 0 with respect to ¢ and
b= —¢e+ O (¢ 0). We have

b

’

0. = |p(—e")| = 4 cos'*? = _iz_ 0 cogi-s .8 ;

and hence ¢, is analytic in a neighborhood of 0 with respect to ¢ and
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6. =4— A+ A -+ O (10).

Considering a conformal mapping e**¢'p,(2) from D° onto
{[—1, 0] U (e*[0, 5.6,'D}, we obtain

H[—1, 0] U (e”[0, p.67') = o7*.

Given a small number ¢ > 0, we define ¢ = &) by

t =90 = i—(l + @)1 — §) ¢ 4 e

Since
a1 Q+Q—9) . ..
e T
1, 1/1—¢)
ZJrz(lﬂs)wro(t) 40,
we have

: ~ atim 1 A R AY
];1115155/t—4];lg1 —t—{]’(AL) T([ ]-’ O])}_ <1+¢> ’

which shows the second equality in (47). Since §, is analytic in a neigh-
borhood of 0 with respect to £, we have

(49) lim % _ 41im O (1) = (1—¢>¢_
t10 t t10 ot 1+ ¢

We can write
nt(wu) = 5» + n:(wt)(wn - wt) + O(l w, — w, l3/2)

— b, + ni(w) d(;‘t’t W —t) + O — 1) (ult)

with nj(w,)dw,/dt > 0. Since |nj(c0)| = 1, Lemma 11 shows that
— DIl =+ ou =1 (@i,
which gives that ds,/dt = |n)(w,)| Combined with (49), the first equality

in (47) follows. In the same manner as above, we obtain (47) in the
case where —7 < 6§ < 0. Suppose that § =z Since ['e.?Z,, we have



198 TAKAFUMI MURAI

A, Clx+iy; —1<x<0, |y < C? (2] 0) for some constant C. Since
e +iy; —1<x<0, |y < CP?) =1/4+ o) (¢)0), we have lim,,,d,/t
= 0. Since lim, , 8, = 0, (48) yields that lim, ,|n/(w,)| = 0. This completes
the proof of Lemma 18.

Now we return to the proof of the existence of 9K(z, C; 2,)/ot and
the continuity of 6K(z, &; 2,)/ot at ¢t = 0 (in the case where 4 = [—1, 0]
and I'e %,, 0 +0.) Let n, be the conformal mapping in Lemma 18
O <t<L|r'). Then

2 120 = 28 (@), 03 2| ViV

i)W i) Vi)

_ ﬁaéi(n,(z), n(©;n(Q) — 0.
©<t<|I).

The argument in the case I shows that

’

lim ‘985 (1.2), 10); n(2) — [0, ¢))

= ,alg(z, 502 —[0,¢])
0¢

c=dy

and hence Lemma 18 yields that

oK
ot

i b0y = (F= 0N K (o o
im 2% (2, ¢ 2) (Tw) et [0, &)

e=0

Let n¥* be the conformal mapping from A¢ onto [—1,4,]° such that nf(co)
= oo and n¥'(0) =1 (0<t<L|I'). (Note that n¥(w,) +# 6,) Lemma 12
shows that nf'(z) = o(t) (¢ 0,2z€ 2 — I'). Thus

= K(z,5;2 — [0,4]) + o®)

K (o ei0-10,d)

= K(z,{; Q) + 4,
0O

o) (10,

=

By Lemma 18, we have

K . . (ﬂ——ﬁ)”/“ ) P
IR (5,8 0) = (E2) 2R (7,00 - [0,
7 (2,C; o) 0 o (2 ¢ [0, D)

e=

Consequently, aK(z, Z; 2,)/0t exists and 0K(z, C; 2,)/ot is continuous at
t = 0. This completes the proof of Theorem 8 in the case IV.

Remark 19. We easily see that lim, , Dc(w,, oo; 2y) (= Dc(w,, oo; 2y),
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say) exists even if w,e€0f2. We here note that the right-derivative
dc(oo; 2,)/0t at t = 0 is not, in general, equal to Dec(w,, co; 2,)/4. Take
Q=1[—1,0]° and I" = ¢[0,1] (0 <8 < n), for example. Then the second
equality in (47) shows that

_ 0/x
aAc(‘m;'Qo):—l‘(ﬂT 0) .
ot 4\ g+ 0

We have

0
Dc(w,, oo; 2,) = cos{—l«ImJ~ __gx } = cos{l \p(wt)} y
2 -1 X — W, 2
where (w,) is the angle at w, of the triangle with vertexes — 1, 0, w,.
(See Proposition 24.) Letting ¢ tend to 0, we obtain

Dc(w,, o0; 2,) = cos%.

Since {(x — 0)/(x + 0)}/* + cos(6/2), we have dc(oo; 20)/at £ De(w,, oo; 20)/4.

§ 8. Application to simply-connected domains

In this section, we mainly study Dc(w, z, {; 2) for simply-connected
domains £. Prior to the study, we give some remarks to Dc(z, oo; 2)
and D(z, ¢, oo; £) for general multiply-connected domains 2. Let 4 be
a conformal mapping from a domain £ containing oo onto a radial slit
domain [21, p. 335] 2* such that A(o0) = oo, |A/(0)| = 1. Then Dc(z, oo; Q)
< Dc(0, oo; 2%), where z, is the point in 2 such that h(z) = 0. In fact,
Rengel’s inequality [33, p. 393] shows that |A/(z,)| < 1. Since Dc(z, ¢; Q)
X |dz||d¢]| is conformally invariant, we obtain the required inequality. If
0* is a circular slit domain [21, p. 335], we have Dc(z,, co; 2) > Dc(0, 0o ; 2%).
Thus radial slit domains and circular slit domains are very important to
estimate Dc(z, o0; 2). A simple calculation shows that Dec(z, oo; Q) is
superharmonic in £ and, if 2 is bounded by analytic Jordan curves, then
Dc(z, 00;2) =0 on 92. The behaviour of D¥(z,{, 00; 2) near z = ¢ is
as follows. Recall the definition of D%c(z, , oo; 2). We can rewrite this
quantity as

De(z, ¢, 0; 2) = 2Re[{— ¢(2; 2)g(&; Q) + g(2; Dp(L; DIL(z,E; Q)
— {¢(z; DP(C; Q) — g(z; D€ DK(z, C; Q)]

Since the Ahlfors function f(z; 2) of £° equals g(z; 2)/¢(z; 2), we have
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lim D'e(¢ + ce, &, 003 0) = 2Re[lim (~ 6(¢ + e Dg(C; 9)
+g@+wd%9m¢;m%%i—ﬂmaﬁw—ﬂg@w%ﬂKEiﬁﬁ]

= 2Re[e"{— ¢'((; D g(C; 2) + 8/ Dg(L; )}
— 16(&; DL — | A& QPKE, C; )]
= 2|¢(C; DL — |f(&; A
R zwé(_c;_@ (& 92 — K¢ &0
X R T o~ K¢ 9)
(=D%c(C, L, 00;2), say) (0<6<2n).

Note that K(¢, {; 2) is the supremum of |f/(¢)| over all fe H(2), ||f|lg- < 1.
The function {f(z; 2) — f(&; DY{1 — f(z; Df(C; 2)} belongs to H=(Q), the
norm is equal to 1 and the derivative at z = { is equal to f/(¢; Q)
XAl — £ D' Thus Dic(g, g, o0; 2) < 0. Since Dic(E, g, oo; Q) is not
a constant with respect to 6, Dc(z,{, oo; £2) cannot be extended as a
function in (2, e X 2. If O is simply-connected, then there uniquely
exists 0 < 0 < 2z such that D%c((,{, co; Q) = 0. In the case where 2 is
simply-connected, it is easy to study Dc(w, z, ¢; 2). We have

ProposITION 20. If Q is simply-connected, then D*c(w,z, ¢;2) <O0.
In particular,

: : (1 + |2)L + 28p
50) D 0, ) D)= —
G0 De0.2 5D = =456~ (hetre = &

A - S N -

1+ 2¢| 1+ 2 }
The equality D*c(0, z,{; D) = 0 holds if and only if zE is real.

The hyperbolic distance in D is defined by

d(z,¢) = arctanh\ 12 _—zci ’ (z,LeD).

We have
d(z,0) + d(0,0) = amtanh%i% )

Thus the expression in the right-hand side of (50) shows that D’c is
closely related to the triangle inequality with respect to the hyperbolic
distance. The proof of this proposition is as follows. By Proposition 2,
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we may assume that 2 = D and w = 0. Since

K@lﬂ»=1]éz,L@£ﬂD=

1 - (2103011,

we have
ch(w,z,C;D)zzRe[{ 1 1 —_ 1 1 }
w—2z 1—w¢ l—wzw—-C z—
_{ 1 1 1 } 1 ]

w—zw-—2=_ 1—wz 1—wg —

Ll

and hence
X L z—-¢ _  1-2¢
Dc(0,2,¢; D) = 2Re{ZC(§ -0 201 —z9 }

lz — CF(2f + [P}

{(=F —1EF)" —

\zCIZIz ¢p
1 N2 11 _ AP .
- m{(l — |2CB — |1 — 2ZPQ + |2CP)
LG e QS - - iep)

SRl |z =P 11— 2Cp
1 {(IZIZ (4 ¢ S -1 ) S (E el (47 +(1—1zcv>2}
Pl 2P 11— 2Cp (zl—1C) @ —zQ)

_ (2P —cpy { 1 }

l2CF Uz —¢pF (2l — g
_(1—1zc12)2{ R }
lzcf Ul —22F (1 —|2t)?
|2l + 100" @letl — 20 — 20 | (1 +[2LD*(@l2E] — 2L — 20)
|zlflz — CF |2CP|1 — 22p
_ 2zt — 28 — 20 A + |2g)? {<IZI+ICI)2_ ! z—¢ }
|2CFlz — CF 1+ |2¢] 1—2C

A calculation shows that
_ @letl— 2L =200 — 2D — 1K),

(lzl + |<] )2 _

1+ |2¢] 1+ zé (1 + 2L 4 2CF
(1 4 |28D*1 + =2CF {(IZI + lCl) _ 2} )
1 4 |2¢| 14 2C

2 — 2l — 3 =
B = et =2 = A — jep

Replacing 2|2{| — 2 — Z{ by the expression in the right-hand side, we

obtain (50). Equality (50) shows that D?c(0, z, ¢; D) = 0 if and only if
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lz| + 18 _ | 2—=¢
1+ |2¢ 1 -2

»”

“either 12| + |€] = | 2+ C__
14 |2¢| 14 2¢

Thus D%c(0,2,¢; D) =0 if and only if 27 is real. This completes the
proof of Proposition 20.

CoroLLARY 21. Let Cap(-) denote the logarithmic capacity [35, p. 132].
Then for any two bounded continua A and B such that AN B + 0,

Cap(A UB) < Cap(A) + Cap(B).

Note that Cap(-) is not subadditive. If E is connected, then Cap(F)
= y(E) [35,p. 132]. Hence it is sufficient to show that y(AUB) < y(A) +
y(B). Without loss of generality, we may assume that A, B are bounded
by Jordan curves, A¢, Bce % and 0ANdB consists of finite points. Let
w, € (024, N (@A NIB), where 2, is the component of (A |y B)® containing
. For 0 <e<|0A|, A, denotes an arc with an endpoint w, such that
A, C0A and |A,|=|0A|— e We define B, in the same manner. If
7(A.UB,) <7y(A,) + 7(B,) for all sufficiently small numbers ¢ > 0, then the
required inequality is immediately deduced. Thus, from the beginning, we
may assume that A, B are arcs in «/ with a common endpoint w, con-
tained in 99,,; and ANB consists of finite points. We define an arc-
length representation {, (0 <t<|B|) of B so that { = w, Let B, =
{(;0<s<t} (0<¢<|B)) and

I={0<t<|Bl;{,eANB or £, e02,us}-
We define a function on [0, |B]] by

Dc(Cw 0 "QAUBL) (ZG [O’ {B” - I)

Dye(Cys 005 Q4y,) = {O (tel).

Then Dyc({,, oo; 2,,5) is bounded on [0,|B]]. Since y(AUB,) = y(2%y5),
we have

%Zi«A UB) =0 = %Doc@“ 00} Duvs) (G €3Qaun),
and hence
1 [
F(AUB) = 1(4) + + [ " Dol w03 uun)it.

We show that
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(61)  Dye(Ls 005 24ys) < De(C,, 005 By) (¢ 0,|B]).

If tel, (51) evidently holds. Suppose that te¢l. Given ¢ >0, we can
choose (i € 2,5, so that

IDC(CH o, ‘QAUBL) — De(F, oo ‘QAUBL)I <e,
|Dc(C,, o0 BY) — Dc(CF, 003 B[ < .
We define an arc-length representation 2z, (0 <s<|A|) of A so that
z2,="0. Let A, =1{2,;0<x<s}(0<s<|A] and
J={0<s<|A;z,e ANB or 2,¢939,,u5} -
We define a function on [0, |A[] by

ch(zw Cl*y 00, QA.;UB;) (s € [0> lAl] - J)

DgC(Zsy 'CZ'“, 0 ‘AsUBz) - {0 (S € J) .

Since
0

GS*DC(CZ‘:’ oo 'QA;UBL) =0 (3¢ aQA,,uBL) ,

we have

141
De(E, 03 Qaun) = De(@t, 0 B + 4 | Die(en ¢, w03 Qi) ds.

Since Q,,,p is simply-connected, Proposition 20 shows that
Dic(z,, &f, 005 24,05) <0, and hence Dc(lf, oo; Q,y5) < De(Cf, oo; B)).
Thus

Dc(g,, »; -QAUB,) < Dc(§,, o0 BY) + 2¢.

Since ¢ > 0 is arbitrary, we obtain (51). Inequality (51) shows that

AUB) < 7(A) + 1 |7 De(@., w01 BYdt = () + 1(B).

This completes the proof.
Here is another expression of D?c from the point of view of Loéwner’s
D. E. for simply-connected domains [33, p. 387].

ProrosiTiON 22. Let I' be an arc in o/ with the arc-length represen-
tation w, (0 < t<|I')) and let p, be the conformal mapping from E: onto
D¢ such that p,(o0) = oo and p(w,) = 1. Then

4 oy
r(I") ot

(62) Dic(w, 2, ;1) = — (I')2(2)De(z, 003 I') (02T,
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where 2,(2) = {Im @11 — p2)I-

CoroLLARY 23. Let I' and 4, (0 < t < |I'|) be the same as above. Then

(53) T(F):% ﬂrlexp{— f L9y (py,, (w)ds}dt

(T s

Since Dc(z, o0; 1) >0, (52) also shows that D*c(w,, z, o0; 1Y) < 0.
Let gi(z) = q(z; I') (0 < ¢<|I'). Then q}(c0) = 1/y(I;,). Since

- L >q§(‘z)) dz = - 7(I')dlog gi(2)
= —y(l')dargqi(z) >0 on al7%,
we have
G4 gz ) = —Vr(T)a'@)4l2), ¢(z; %) = ¥y (T)a¥(),
where a branch of ,/ is chosen so that +/q7(e0) = 1/v7(I"). Thus

(65) Dc(z, 003 I'Y) = r(I') g D1 — |g}(2)| .

Choosing a suitable parametric representation of Léwner’s D. E., we obtain

aq 1 . 1 + £1qi(2) Y

56 ¢ = L (I')qgli(z) T2 = ql(w,)) .

66 8@ = T T = aiw))

In fact, for a pair ¢ < u, there exists a conformal mapping @,, from D¢
onto a subdomain of D¢ such that @, ,(c0) = oo, @ ,(c0) >0 and g} =
®, ., 0q%. Poisson’s formula shows that

qr = log ?,,.(q}) — 1 Yo log |@, u(ew)l et + Qu dv,

lo
& q, ql, 27 Jvi

where (Y4, ¥,,) = {0 < < 2z |9,,,(e*)| > 1}. Analogously,

lo r() _ =1lo qi(0) _ — 71_ %“10 D, ,(e*)|d
BTy B o) 2 Ju, OB

Note that lim, ,, y,,, = lim, , ¥}, = q{(w,). Letting u tend to ¢, we obtain
(56). Equality (55) shows that

0 . e v -2
E.DC(-,OC>,Ft)—- (Ft)lq {1 — gt

alqtl . ~2 ’ -33|CII|
+T(ﬂ)~——at {1 —1q!1”} + 2r(I')lal'll 4} "
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Equality (56) yields that

dlall _ 1oy (g 1= lail
ot p(I) ot 11— klqif

1Yl — 1 97 (pyjaviRe LT szqt — &l
TR0 at( Jlal'| Aodar

and hence
2 De(., 005 %) = 211 |g L — |q}1-7)
ot ot

142 — kgl
'f‘ﬂ-(rz)lq l{l 1% Q}Re + 2«lq} K 4,

1 — £lq))
8 1 —|qif
+ 220 ()lar il Tlf'i’q‘—‘
= SLotari — a1 + Re D E 2 2 )
(i) o 9Dl oo 79 (e (1—1xzq” N |1~1x1qz|2>

4 37’ co: ¢ (Im £} g})*
(Ft) ot (L)De(:, 005 1) |1 — &lqlff .

Since p, = #!q! and 6Dc(z, oo; I'9)/ot = D*c(w,, 2, oo; I'9)/4, we obtain (52).
Combined with Theorem 1, (52) immediately yields (53).

It is interesting to compare our variational formula with Loéwner’s
D.E.. We here point out that (56) is deduced from Theorem 8. Recall
(54). Since gi(2)' = — g(z; I')¢(z; I'Y)", Theorem 8 shows that

1 -2 aq{ — ag . ¢ "1% . e . c) -1
aite) 2L ) = {ﬁ (51 + a0 22 (z; r,>}¢<z, I
= - %{DK(wt, 2, 00; I) + qi(2) " DL(w,, 2, o0; ')} (z; )" .

Since

Kw,z, I') = — Wm'(w)«/q'(z),

L(w’ Z; Ff) = Wﬂ/q ,(w)\/q /(Z)

we have
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- %{DK(w, 2, 00; I') + qi(2)"'DL(w, 2, 003 I')}p(2; ')~

- %(L(w, 2 )i I — K, 53 THgw; I)

+ qi2) " {L(w, z; TDg(w; ) — K(w, z; T)¢(w; TN ¢(z; ')

., 1
= —lq (w )I(qz( ) — gl qiw)1 — qiw)ql(z)}

=

1 1
T 0 d@idw - 4@ T 4@ — dwa@) )

_ 1, — 1 4 qi(w)qi(2) qi(w) — qi(2)
9N %@ dwae - @)
_ lgl (w))

4|l FiR)al(w) — ql(DH1 — ql(w)ql(2)}
X (— qiw){1 — qi(w)ql(2)}F + ql(w){gi(w) — gi(z)}»
'@ giw)f — Halw) — |giw)P g2y}
Agi(w)| W) Fal(2){gi(w) — g1 — gi(w)qi(2)}

Put w=w, (0 <<t<u). Letting u tend to ¢, we have

3G} oy oy 1+ qHWw)gi2)
ot (2) = 1igi(=) 1 — qi(w)qi(2)

with yf = lim, ,,|g"(w.){q(w, )} — 1}/4. Since q}'(c0) = 1/y(I",), this equality
shows that
- 7‘(1"/)'2%(1“,,) = —p (), ie, 7l = 7A<r,>~*%§f<rﬁ).

Thus we obtain (56).

8§9. Application to doubly-connected domains

In this section, we study D’c(w, z, ¢; ) for doubly-connected domains
Q. We begin by showing some examples of the computation of D?c. Let
R, ={p<|2|<1} (0<p<1). Then

K(Z C,R ) - nzz_:w 1 fcz:ni-l

L GR) =1+ 5 ?C)(?ﬁ_ﬁ—;— [21, p. 3911,

Thus, in the case of R, we can write D’c, explicitly. Using Jacobian

b
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elliptic functions [12], we can rewrite D?c as follows. Define a modulus

0 < k<1 of elliptic functions by p = e **/*, where K = K(k) is the com-

plete elliptic integral of the first kind and K’ = K(v¥1 — k?). Let sn and

dn denote the Jacobian elliptic functions with modulus k2 Thus

2K?

nalwzd

% Im[< dn(é—u) dnE—v)  dné—u) dn(¢—v)\dn(a—0)
sn(é—u) sn(E—v) sn(E—u) sn(e—v) / sn(i—0)

_ (dn($~u) dn(—-v)  dn(€—u) dn(é—p) ) dn(ﬁ—v)]

sn(é—u) sn(E—7) sn(€—u) sn(6—0) / sn(ui—v)

(57) D?'C(w, 2, C; Rp) ==

5:;£logw, u:£log2, v=£logc,
[ %/3 123 123

where a branch of log is chosen so that logx >0 (x >1). In fact, put

Kie )= — K dlu=0 1 _
ir sn(u—70) o/ z4C
% _ K dn(u —v) 1

He 0 = ) VENT
Since sn(u + 2K) = — sn u, dn(u + 2K) = dn u and 4/ e* = — 1, these
functions are single-valued in R, as functions of z. Since sn u = u + o(w),
dn u=1+ o) (u—0), we have L¥(z,{) =1/(z— ¢ + O1) (z—¢). If
|z| = 1, then u is real-valued, and hence L*(z, )y Z = K*(z,{)y/ 2. Since
(1/i)(12|/2) dz = |dz| on |z| = 1, we have (1/i)L*(z, {)dz = K*(z,%)|dz]| on |2|
=1. If |2| = p, then u = iK'’ + (K/r)arg z. Since sn(u + iK’) = sn(u — iK’),
dn(u + iK’) = — dn(u — iK’), we have L*(z,0)/ 2z = — K*(z,0)y/z on
|z| = p. Since (1/i)(|z|/2)dz = — |dz| on |z| = p, we have (1/i))L*(z, {)dz =
K*(z,¢)|dz| on |z| = p. Thus K*(z, ) = K(z, £; R,) and L*(z, ) = L(2, {; R,),
which gives (57). Let 2, be a radial slit domain which is conformally

equivalent to E,. Then

Q... (w) = exp{AN,(w, &) — N (w, 2)}

_ o 2n
— = o 5 R0 )
X, (w) = Fw)" — Cw)",
Y. (w) = (w/2)" — (w/O)" — (zlw)* 4 (C/w)"
is a conformal mapping from R, onto £, such that @,,.(2) =0 and
Q... (0) = oo, where A ,(w,& is a multi-valued analytic function in
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R, — {&} whose real part is the Neumann function with pole at & [21,
p. 377]. Hence, in the case of 2, also, we can write D*c explicitly.
is an example of D*c which is expressed by elementary functions.

ProprosiTiON 24. Let Q = {{_Ji_ilay, b)) (0, < b, <+ - <a,<b,). Then

2 o 1
(58) Dc(w,z¢;0) = 4| M(w)M(2) M ()|

x Re[(M0) + M) MGo) = MO

Here

w—z w—_C
_ Mw) — M(z) M(w) + M)\ M(z) + M()
w—z w—_ / z—-C
_ (M(w)+M(Z) M(w) + M%)
w-—z w—_
_ M(w) — M(2) M(w)—m\m—M(C)]
w— =z w-—2_ / z—-¢ ’

M© =[] V&, = Ol =8 (E=w20.
Note that +/M(z) is single-valued. Since

K(Z, Z’ ‘Q) = Sinh(hz - }—lc)’ L(Z, C, ‘Q) =

1

z—C z—-C
. 1 n b 1 .

h=1nll e €=20 @00,

cosh(h, — hy),

we have

Dic(w, 2,¢; 9)

— 1 —_— 3 A —_— 7, _—
,2Re[ BB g O (e —h)sinb (k) cosh (R, ~R)

_ (w_z)(wl_@(g_z) sinh (%, — h.)cosh(h, — h;)cosh(k, —k;)
- (w—Z)(L—vl—i)(z—c)
+ e DGD

- R [G-—z)G—ullﬁz;L -
< T - R+ )

cosh(h, —h,)cosh(h,,—h;)sinh(h, —h,)

sinh (2, —k,)sinh (hy,— ) sinh(l—zz——hc)]

WM@©) M)
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1
(@—2)(w—0)(Z—0)
((«/Mh*(w))_ VM@ ><¢M<w> VM) )((%M(z)) N wMTc)))
VM@  WMw) \VMEQ VM@ \ZMQ) = VM@)
1
T (w-2@-DE-0
(fM‘(w‘) VM) )(WM(wS) N wM@)))(wM(z» _ AMO) )
VM@ VMW WME) T M)\ VMG — VME)

1
T @) w-0GE=0

<<¢M(‘“u7»_ VM@ )< VM@ (WWQ))((«/““‘M@» MO >]
e~ WM \WM©Q) VM@ N\ VMQ  WMe) )|

which yields (58).

Note that any triply-connected domain is conformally equivalent to a
radial slit ring [33, p. 413] which is equivalent to a domain of form in
this proposition. Thus (58) is applicable to simply, doubly, and triply
connected domains.

There remains to prove Theorem 3 in the case where 2 is doubly-
connected. There are two methods of the proof of this theorem; a geo-
metric method by (58) and an analytic method by theta functions [12]
and (57). In this note, we use the first method. We shall see that the
required inequality is deduced from an inequality of Mobius type in
elementary geometry. It is sufficient to show that

(59) Dic(x,is, —it; E°) <0
for all s>0,¢t>0, xeR — E and closed sets E of form:

E = [a,b]U[a, ] (a<b<a <¥),
E=(—o00,b]U[a,b]U[e/, 0] (I <a<b<a).

In fact , once (59) has been shown, the required inequality is deduced
as follows. By Proposition 2, we may assume that £ is a ring R,. Since
Dc(w, 2, ¢; R,) is continuous in R, X R, X R, — {w # 2, w + {, z %+ {}, we
may assume that any straight line passing through 0 contains at most
one point in {w, 2, {}. Rotating the coordinate axes if necessary, we may
assume that we R. We may also assume that Im z > 0 and Im ¢ < 0; this
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is possible because Dc(w, z, {; R,) is invariant for any permutation of a
triple (w, z,£). Using elliptic functions, we can define a conformal map-
ping f from R, onto a domain F* of form F = [a”, b”] U [a*, b*]CR so that
fw)e R, Imf(z2) > 0 and Imf({) < 0. Take a linear transformation g such
that gof(2)/i > 0, gof(£)/i <0 and g(R U{oo}) = R U {e}. Then g(F) is
a union of two continua on R U {co}. Thus we obtain a conformal mapp-
ing gof from R, onto E° = g(F)° of type (59). We have gof(w)e R U {co}.
Choosing a point in R, sufficiently near to w if necessary, we may assume
that gof(w) = oo. Applying (59) to x =gof(w), s =gof(2))i and ¢t =
—gof(Q)/i, we obtain Dc(w, z, {; R,) < 0, by Proposition 2.

To prove (59), we assume, for a while, that E = [a, b] U [/, ¥'] (a <
b<0< o< V) Applying (58) to 2 = E° and w = xR — E, we have

. ey 1 M(z) + M)
D2, 8 B) = gyl ™ Lo = o = 06 =5

X {(M(x) + M@)(M(x) — M) — (M(x) — M(2))(M(x) + M())}
Mz — M)
(x—2)x—-DE-0
X {(M(x) + M2)(M(x) + M(©)) — (M(x) — M(2))(M(x) — H@)}]
— 1
2lMERM©Q)||(x — 2)(x — OF

« Re [ (x —;)—(xz =0 () + MO (M) — M)

- ﬁ:—ﬂ@‘—g—c’f@@ — MO)M() + MO)]

_ Ax* + Bx + C
2 MEMO||(x = 2= — OF
with
A = Re {1 (W) -+ MO)(M() — M)
— S (1) — MEME) + MO,
B=Ref- %%(M(z) + MO)(M(z) — M()

+ 25 (MG) ~ MOYME + M)}
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C = Re {2 Q) + MM — M)

— MOME + M@} -

(Here we used M(x) >0 (xe R — E).) Since Ax* + Bx + C is quadratic,
it is sufficient to show that

(60) B —4AC<0, A<<O.

First we show B* — 4AC < 0. To express B* — 4AC in terms of geometry,

we write

et = M= 508 >0 < 620,

Then, putting z = is, { = —it, we have

— 1 . 0, — 0 1 0, + 6
A= -2 rzr{ sin —=2 < sin ‘}

v ¢ s+t 2 +s—t 2
Bz__s_:i — 3+t o

s 11 (r.—r)+ t(" ro)

_ 4st — T T
- mﬂ/"z’k{\/ra/n Vrfr},

C:—2«/;‘jrc{ 8t _ginb.—06 _ _ st sm0+0‘},
s+t 2 s —t 2

and hence

BZ—4AC:{ st
16r,r, s+ —1
—{ 1 sin0’_0‘+ L sin0’+6‘}

s+t 2 s —1 2
X{ st 0, —6. st . 02+0¢}

2

}?'{rzr;1 + r;tr, — 2}

sin
s 4t 2 s — 1t

__ st ? —1 “1.
= {m} {rorit +ri'r, — 2}

St
Wit Py

2 2 2
{H—gﬂ} {r,r;l + r7ir, — 2cos @, cos b, + > :; ¥ sin 6, sin 49(}

cos (0, — 6)} + ————{1 — cos (4, + 6}

I

I

{ﬁé—j}za say.
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Note that 0< 4, <=7, —2<6,<0. Let R, Q, R, Q,r,q,7,¢,a,a, B8 p
be the positive numbers in the figure in §1. Then

D= QQ'rr RRqq’
RR'qq’ Qe'rr

i sin(a + &) sin(g + B).

— 2cos(x + ') cos (B + B)

A calculation yields that

1
RQR'Q'rqr'q’

Thus B* — 4AC < 0. For the sake of completeness, we show our compu-
tation of D. We have

QQ’?‘I" RR/qq/ _ Q2Q12r2r/2 + Rlezqquz
RR/qq/ QQ/rr/ RQR/Q/rqr/q/
1 2
— b)) (s? b/2 £ 2) (2 72
RORQrara {(8* + bO)(S* + &) + &) (& + )
+ (8" + a))(s* + @) + b)) (F + b))

= m{%%‘ + c st + s%t) + c(st + t)

4 ;8% 4 ¢ (s* + tB) + 2a%b%a*b')

61) D= b —a) — a)(b — a)a — b)(s* — 7).

with

cl — aZ + bZ + al2 + b/2’ cZ — a2a/2 + be/Z’

¢, = 2((12 + a/?)(bz + bIZ)’ ¢, = aza/z(bz + b/z) + (az + a/z)bzbzz.
We have

2cos(x + a’)cos (B + B) + s :; i sin(a + &') sin (8 + B

= 2{cos @ cos &’ — sina sin a’}Hcos f cos §/ — sin fsin '}

+ s "*; ¢ {sine cos &’ 4 cos a sin a’}{sin B cos f/ + cos fsin '}
s
_ 2{ (8* + ab)(s* + a’b) (b — a)(b — a’)}
RQR'Q’ RQR'Q
% {(tz + ab)(# + a'b) b —a)(b — a’)}
rqr'q’ rqr'q’

n ¢4+t {s(b — a)(s® + a’b’) I (s + ab)s(b’ — a’') }

st RQRQ RQRQ’
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e, e rontt -0y
- Wm{(sz + ab)(s* + a'b) — s(b — Q)b — @)}
X {(E + ab)(E + a'b) — (b — (b — @)}
+ (8" + (b — a)(s* + a'V) + (s + ab)(¥ — a)}
X {(b — (& + a'b) + (& + ab) (¥ — a)}]

1
—_ 2 4t4 dl 4t2 2t4 d 4 t4 d ZtZ
ROBQrard {2s'' + di(s'" + $'t') + dy(s' + 1Y) + dis

+ d(st + &) + 2a2b2a/2b/2}
with
d,=2{ab+ b —b—-—a) —a)}+(b—a+ b —a),
d, = 2aba’t) + (b — a + b — &)}{(b — a)a’t’ + ab(b’ — a')},
dy = 2{ab + a’b/ — (b — a)(b/ — )}
+2b—a+ b — a)(b— a)t + ab(b) — a')},
d, = 2aba’b'{ab + o't/ — (b — a)(b/ — a)} + {(b — &)’V + ab(b’ — a')}*.
Since
di=c, d=c, dg—c,=(b—0a)b —a)¥ —a)a -,
di—c;, = —-2b—a)(t) — ) —a)a —b),

we have (61). Next we show A < 0. Since

0< B*<44AC = 16rzrcst{ L gine0:=0 1 0+ 06 } ,
(s + 22 2 (s — ¢t 2
we have
L gin 0+ 6 L sinb:=f% (_r<g<0<0,<n),
s —1t 2 st

and hence

— 1 . 0,—86 1 .
A= —2Jrzrc{s+t sin 2= 5 ¢+ o 51n0’;0‘}<0.
Thus (60) holds, which yields (39) (¢ < b <0< o < ¥). In the above
argument, the signs of a, b, o/, b’ are not essential. We have (59) as long
as a< b<a <Vb. In the case where E = (—o0, b'] U [a, b] U [a/, o]
(' <a<b<da), we apply (58) to Q2 = {[—y, b1 Ula, b] U [a, y]}* (y >
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la’| + |b’]). Letting y tend to oo, we obtain

_ A'x* 4+ B'x + C’
2lM@ERM@Q)||(x — 2)(x — OF

where M(&) (& = 2,8), A’, B/, C' are defined, in the same manner as above,

by

Die(x, 2, §; E°)

b

-9y —8 "
(o) = tim (&S0 )

/
reits = — gz _—g)(gj - g (re>0,10<m&=20.

Note that B® — 4A’C’ is equal to the discriminant with respect to

[—a, =b] U[—a, —b], 2=1is, { = —it. Thus B* —4A’C’ < 0. Since
A’C’ >0 and 0 < (4, — 6,)/2 < n, we have, in the same manner as above,
A’ < 0. Thus (59) holds for & < a < b < a'. This completes the proof
of D%(., -, ;2) <0 for doubly-connected domains 2. Combined with
Proposition 20, Theorem 3 follows.

Using Theorem 3, we can study y(A) + y(B) — (A U B) for two con-
tinua A, B with a quantitative estimate. Moreover, let A be a union of
two continua and let B a continuum such that A N B = @. Then, in the
same manner as in §8, we have y(A U B) < y(A) + y(B), by Theorem 3.

Remark 25. The function c¢(cc; £2,) is not, in general, concave. Take
Q=1[-1,0] and I'=1iy + [0,1] (y > 0), for example. Then Proposition
24 shows that

Dc(wo, 0] ,QD) — ( 1 + y/\2/1 + y2 )1/2

Choose y > 0 sufficienty small so that c(co; 2,) > 0.49 and Dc(w,, oo; 2,)
< 0.7. Then, if Dc(w,, co; 2,) < Dc(w,, oo; 2y) (0 < t < 1), we have

0.49 < c(o0; 2,) < e(e0; 20) + - Dewy, o0 2) < 1< 043,
which is a contradiction. Thus dc(co; 2,)/0t = Dc(w,, co; 2,)/4 is not de-
creasing.
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