HYPERTRANSCENDENTAL ELEMENTS OF
 A FORMAL POWER-SERIES RING OF POSITIVE CHARACTERISTIC

KAYOKO SHIKISHIMA-TSUJI and MASASHI KATSURA

§ 0. Introduction

Throughout this paper, we denote by \mathbf{N}, \mathbf{Q} and \mathbf{R} the set of all natural numbers containing 0 , the set of all rational numbers, and the set of all real numbers, respectively.

Let K be a fixed field of positive characteristic p and K_{a} an algebraic closure of K. We denote by $K \llbracket X \rrbracket$ the formal power-series ring and by $d=\left(d_{\mu} ; \mu \in \mathbf{N}\right)$ the formal derivation of $K \llbracket X \rrbracket$, i.e., for every $A=\sum_{i=0}^{\infty} a_{i} X^{i}$ $\in K \llbracket X \rrbracket$, the μ-th derivative $d_{n} A$ of A is defined by

$$
d_{\mu} A=\sum_{i=\mu}^{\infty}\binom{i}{\mu} a_{i} X^{i-\mu} .
$$

For differential rings and differential fields of positive characteristic, see Okugawa [4].

This paper contains three theorems. Let A be an element $\sum_{i=0}^{\infty} a_{i} X^{i}$ of $K \llbracket X \rrbracket$. We say that A is hypertranscendental over K, if, for every $\mu \in \mathbf{N}, A, d_{1} A, \cdots, d_{\mu} A$ are algebraically independent over $K(X)$. When the characteristic of the field is zero, the existence of hypertranscendental elements is well-known (see D. Hilbert [1], O. Hölder [2], F. Kuiper [3]). Theorem 1 shows the existence of hypertranscendental elements in case of positive characteristic.

Let L be a differential field and S a subset of a differential extension field of L. We say that S is differentially independent over L or all the elements of S are differentially independent over L, if for every $\mu \in \mathbf{N}$ and elements s_{1}, \cdots, s_{μ} of S, there are no nonzero differential polynomial $F\left(X_{1}, \cdots, X_{\mu}\right) \in L\left\{X_{1}, \cdots, X_{\mu}\right\}$ such that $F\left(s_{1}, \cdots, s_{\mu}\right)=0$.

Theorem 2 states that there are infinitely many hypertranscendental

[^0]elements in $K \llbracket X \rrbracket$ over K which are differentially independent over K.
If an element of $K \llbracket X \rrbracket$ is differentially quasi-algebraic over K (see K. Shikishima-Tsuji [5]), then
$$
\lim _{s \rightarrow \infty} \frac{1}{s} \operatorname{tr} \operatorname{deg}\left\{d_{\mu} A ; \mu<s\right\} / K(X)=0 .
$$

If A is hypertranscendental over K, then

$$
\lim _{s \rightarrow \infty} \frac{1}{s} \operatorname{tr} \operatorname{deg}\left\{d_{\mu} A ; \mu<s\right\} / K(X)=1
$$

Let A be hypertranscendental over K. It can be easily shown that, for every $0<r<p$, the formal power series $B=d_{p-r} A$ satisfies the equation

$$
\lim _{s \rightarrow \infty} \frac{1}{s} \operatorname{tr} \operatorname{deg}\left\{d_{\mu} B ; \mu<s\right\} / K(X)=\frac{r}{p} .
$$

For every $\alpha \in \mathbf{R}(0 \leq \alpha \leq 1)$, there exists a formal power series B_{α} of $K \llbracket X \rrbracket$ such that

$$
\lim _{s \rightarrow \infty} \frac{1}{s} \operatorname{tr} \operatorname{deg}\left\{d_{\mu} B_{\alpha} ; \mu<s\right\} / K(X)=\alpha
$$

This is Theorem 3.
§ 1.
For $m, n \in \mathbf{N}$, the binomial coefficient $\binom{m}{n}$ equals $\frac{m!}{n!(m-n)!}$ in case $m \geq n$, otherwise zero.

Lemma 1. Let $m, n \in \mathbf{N}$. If $m=\sum_{i=0}^{e} m_{i} p^{i}$ and $n=\sum_{i=0}^{e} n_{i} p^{i}$ are the p-adic expressions of m and n respectively, then

$$
\begin{equation*}
\binom{m}{n} \equiv\binom{m_{0}}{n_{0}} \cdots\binom{m_{e}}{n_{e}} \quad(\bmod p) \tag{1}
\end{equation*}
$$

Proof. By expanding both sides of the identity over the prime field of characteristic p :

$$
(1+x)^{m}=(1+x)^{m_{0}}\left(1+x^{p}\right)^{m_{1}}\left(1+x^{p^{p}}\right)^{m_{2}} \cdots\left(1+x^{p e}\right)^{m_{e}},
$$

and comparing the coefficients of x^{n}, we obtain the congruence (1). q.e.d.
Lemma 2. Let m, n, e, t be natural numbers. For $t<p^{e}$, we have the

following statements:

(1) If $m \equiv n\left(\bmod p^{e}\right)$, then $\binom{m}{t} \equiv\binom{n}{t}(\bmod p)$.
(2) If $m \equiv r\left(\bmod p^{e}\right)$ and $0 \leq r \leq t-1$, then $\binom{m}{t} \equiv 0(\bmod p)$.
(3) If $m \equiv t\left(\bmod p^{e}\right)$, then $\binom{m}{t} \equiv 1(\bmod p)$.

Proof. (1) Let $m=\sum_{i=0}^{x} m_{i} p^{i}, n=\sum_{i=0}^{\alpha} n_{i} p^{i}$ and $t=\sum_{i=0}^{\alpha} t_{i} p^{i}$ be the p-adic expressions of m and n respectively. Since $m \equiv n\left(\bmod p^{e}\right)$, we have $m_{0}=n_{0}, \cdots, m_{e-1}=n_{e-1}$. Lemma 1 implies that

$$
\begin{aligned}
\binom{m}{t} & \equiv\binom{m_{0}}{t_{0}} \cdots\binom{m_{e-1}}{t_{e-1}}\binom{m_{e}}{0} \cdots\binom{m_{\alpha}}{0} \\
& \equiv\binom{n_{0}}{t_{0}} \cdots\binom{n_{e-1}}{t_{e-1}}\binom{n_{e}}{0} \cdots\binom{n_{\alpha}}{0} \equiv\binom{n}{t}(\bmod p)
\end{aligned}
$$

(2) Since $r \leq t-1$, we have $\binom{r}{t}=0$. By (1), we have

$$
\binom{m}{t} \equiv\binom{r}{t} \quad(\bmod p)
$$

(3) By (1), we have

$$
\binom{m}{t} \equiv\binom{t}{t} \quad(\bmod p)
$$

Let B be a formal power series of $K \llbracket X \rrbracket$. We denote the leading degree of B by $v(B)$ (i.e., if $B=\sum_{i=r}^{\infty} b_{i} X^{i}$ and $b_{r} \neq 0$, then $v(B)=r$ and if $B=0$, then $v(B)=\infty$).

Theorem 1. Let A be an element $\sum_{i=0}^{\infty} a_{i} X^{m_{i}}$ of $K \llbracket X \rrbracket$ with nonzero $a_{i} \in K(i \in \mathbf{N})$ and $m_{0}<m_{1}<m_{2}<\cdots$ be natural numbers. If A satisfies the following condition, then A is hypertranscendental over K.

For any $e, s \in \mathbf{N}$, there exist natural numbers $i_{0}<i_{1}<i_{2}<\cdots$ such that

$$
\begin{equation*}
m_{i_{j}} \equiv s\left(\bmod p^{e}\right) \quad \text { and } \quad \lim _{j \rightarrow \infty} \frac{m_{i_{j}}}{m_{i_{j-1}}}=\infty \tag{1}
\end{equation*}
$$

Proof. Suppose A is not hypertranscendental over K_{a}. Then, there is a positive integer μ such that $A, d_{1} A, \cdots, d_{\mu} A$ are algebraically dependent over $K_{a}(X)$, that is, there exists a non-zero polynomial $F\left(X, Y_{0}, \cdots, Y_{\mu}\right)$ $\in K_{a}\left[X, Y_{0}, \cdots, Y_{\mu}\right]$ which satisfies the following two conditions:
(2) $\quad F\left(X, A, d_{1} A, \cdots, d_{\mu} A\right)=0$.
(3) If $G\left(X, Y_{0}, \cdots, Y_{\mu}\right)$ is non-zero polynomial such that $G\left(X, A, d_{1} A, \cdots\right.$, $\left.d_{\mu} A\right)=0$, then the total degree of G is not smaller than that of F.

We see that F is irreducible by the condition (3).
Let c_{1} and c_{2} be the degrees of F on X and on Y_{0}, \cdots, Y_{μ}, respectively. We take a natural number e such that $\mu<p^{e}$. By the assumption (1), there exist $k_{0}, k_{1}, \cdots, k_{\mu} \in \mathbf{N}$ such that the following conditions hold for every $s(0 \leq s \leq \mu)$;
(4) $m_{k_{s}-1} \geq c_{1}+\mu$,
(5) $m_{k_{s}}>\left(c_{2}+1\right) m_{k_{s}-1}$,
(6) $m_{k_{s}} \equiv s\left(\bmod p^{e}\right)$, and,
(7) $m_{k_{s}}>v\left(\frac{\partial F}{\partial Y_{t}}\left(X, A, d_{1} A, \cdots, d_{\mu} A\right)\right)+2 \mu$, for every $t(0 \leq t \leq \mu)$ such that $\frac{\partial F}{\partial Y_{t}}\left(X, A, d_{1} A, \cdots, d_{r} A\right) \neq 0$.

Let

$$
G_{s}=\sum_{i=0}^{k_{s}-1} a_{i} X^{m_{i}} \quad \text { and } \quad B_{s}=\sum_{i=k_{s}}^{\infty} a_{i} X^{m_{i}} \quad(0 \leq s \leq \mu) .
$$

By Taylor's expansion, we have

$$
\begin{aligned}
0 & =F\left(X, A, d_{1} A, \cdots, d_{\mu} A\right) \\
& =F\left(X, G_{s}, d_{1} G_{s}, \cdots, d_{\mu} G_{s}\right)+\sum_{t=0}^{\mu} d_{t} B_{s} \frac{\partial F}{\partial Y_{t}}\left(X, A, d_{1} A, \cdots, d_{\mu} A\right)-E_{s}
\end{aligned}
$$

where E_{s} is a sum of terms of degree ≥ 2 in $\left\{B_{s}, d_{1} B_{r}, \cdots, d_{p} B_{s}\right\}$. We have

$$
\begin{aligned}
& \operatorname{deg} F\left(X, G_{s}, d_{1} G_{s}, \cdots, d_{n} G_{s}\right) \leq c_{1}+c_{2} m_{k_{s}-1} \\
& v\left(d_{t} B_{s} \frac{\partial F}{\partial Y_{t}}\left(X, A, d_{1} A, \cdots, d_{\mu} A\right)\right) \geq v\left(d_{t} B_{s}\right) \geq m_{k_{s}}-t
\end{aligned}
$$

and

$$
\begin{equation*}
v\left(E_{s}\right) \geq \min _{o \leq t_{1}, t_{2} \leq \mu}\left\{v\left(d_{t_{1}} B_{s} d_{t_{2}} B_{s}\right)\right\} \geq 2\left(m_{k_{s}}-\mu\right) \tag{8}
\end{equation*}
$$

Hence, by (4) and (5), we have

$$
\begin{aligned}
v\left(\sum_{t=0}^{\mu} d_{t} B_{s}\right. & \left.\frac{\partial F}{\partial Y_{t}}\left(X, A, d_{1} A, \cdots, d_{\mu} A\right)-E_{s}\right) \\
& \geq m_{k_{s}}-\mu>\left(c_{2}+1\right) m_{k_{s}-1}-\mu \\
& \geq c_{2} m_{k_{s}-1}+c_{1} \geq \operatorname{deg} F\left(X, G_{s}, d_{1} G_{s}, \cdots, d_{\mu} G_{s}\right)
\end{aligned}
$$

Therefore, $F\left(X, G_{s}, d_{1} G_{s}, \cdots, d_{\mu} G_{s}\right)=0$ and

$$
\begin{equation*}
\sum_{t=0}^{\mu} d_{t} B_{s} \frac{\partial F}{\partial Y_{t}}\left(X, A, d_{1} A, \cdots, d_{\mu} A\right)=E_{s} \quad(s=0,1, \cdots, \mu) . \tag{9}
\end{equation*}
$$

Let

$$
W=\operatorname{det}\left(\begin{array}{ccc}
B_{0} & d_{1} B_{0} \cdots & d_{\mu} B_{0} \\
& \cdots \cdots \cdots & B_{\mu} \\
B_{\mu} & d_{1} B_{\mu} \cdots & d_{\mu} B_{\mu}
\end{array}\right)
$$

and

$$
V_{t}=\operatorname{det}\left(\begin{array}{cccccc}
B_{0} & d_{1} B_{0} & \cdots d_{t-1} B_{0} & E_{0} & d_{t+1} B_{0} & \cdots \\
& \cdots & d_{\mu} B_{0} \\
B_{\mu} & d_{1} B_{\mu} & \cdots d_{t-1} B_{\mu} & E_{\mu} & d_{t+1} B_{\mu} & \cdots
\end{array} d_{\mu} B_{\mu}\right) .
$$

On the other hand, $d_{t} B_{s}=\sum_{i=k_{s}}^{\infty}\binom{m_{i}}{t} a_{i} X^{m_{i}-t}$, and by (6) and Lemma 2,

$$
\binom{m_{k_{s}}}{s}=1, \quad\binom{m_{k_{s}}}{s+1}=\cdots=\binom{m_{k_{s}}}{\mu}=0 .
$$

Hence, the coefficient of the leading form of the power series W is $a_{k_{0}} \cdots a_{k_{\mu}}$ and $v(W)=m_{k_{0}}+\cdots+m_{k_{\mu}}-\frac{\mu(\mu+1)}{2}$. Therefore, $W \neq 0$. By Cramer's rule, (9) implies

$$
\begin{equation*}
W \frac{\partial F}{\partial Y_{t}}\left(X, A, d_{1} A, \cdots, d_{\mu} A\right)=V_{t} \tag{10}
\end{equation*}
$$

We have

$$
\begin{aligned}
v\left(V_{t}\right) & \geq \min _{0 \leq s \leq \leq}\left\{\left(m_{k_{0}}+\cdots+m_{k_{\mu}}-\frac{\mu(\mu+1)}{2}\right)-\left(m_{k_{s}}-t\right)+v\left(E_{s}\right)\right\} \\
& \geq v(W)+\min _{0 \leq s \leq \mu}\left\{v\left(E_{s}\right)-m_{k_{s}}\right\} .
\end{aligned}
$$

If $\frac{\partial F}{\partial Y_{t}}\left(X, A, d_{1} A, \cdots, d_{\mu} A\right) \neq 0$, then by (7), (8) and (10), we have

$$
\begin{aligned}
& v\left(\frac{\partial F}{\partial Y_{t}}\left(X, A, d_{1} A, \cdots, d_{\mu} A\right)\right)=v\left(V_{t}\right)-v(W) \\
& \quad \geq \min _{0 \leq s \leq \mu}\left\{v\left(E_{s}\right)-m_{k_{s} s}\right\} \\
& \geq \min _{0 \leq s \leq \mu}\left\{m_{k_{s}}-2 \mu\right\}>v\left(\frac{\partial F}{\partial Y_{t}}\left(X, A, d_{1} A, \cdots, d_{\mu} A\right)\right),
\end{aligned}
$$

which is a contradiction. Therefore, we have

$$
\frac{\partial F}{\partial Y_{t}}\left(X, A, d_{1} A, \cdots, d_{\mu} A\right)=0 \quad(0 \leq t \leq \mu)
$$

By the assumption (3), we have

$$
\frac{\partial F}{\partial Y_{t}}\left(X, Y_{0}, \cdots, Y_{\mu}\right)=0 \quad(0 \leq t \leq \mu)
$$

Since F is irreducible, it follows that $F\left(X, Y_{0}, \cdots, Y_{\mu}\right) \in K_{a}\left[X, Y_{0}^{p}, \cdots, Y_{\mu}^{p}\right]$ and there exist $F_{0}, \cdots, F_{p-1} \in K_{a}\left[X^{p}, Y_{o}^{p}, \cdots, Y_{\mu}^{p}\right]$ such that

$$
\begin{aligned}
F\left(X, Y_{0}, \cdots, Y_{\mu}\right)= & F_{0}\left(X, Y_{0}, \cdots, Y_{\mu}\right)+X F_{1}\left(X, Y_{0}, \cdots, Y_{\mu}\right) \\
& +\cdots+X^{p-1} F_{p-1}\left(X, Y_{0}, \cdots, Y_{\mu}\right)
\end{aligned}
$$

Since $F\left(X, d_{1} A, \cdots, d_{\mu} A\right)=0$ and $F_{i}\left(X, d_{1} A, \cdots, d_{\mu} A\right) \in K_{a} \llbracket X^{p} \rrbracket(i=0, \cdots$, $p-1$), we have

$$
F_{i}\left(X, d_{1} A, \cdots, d_{\mu} A\right)=0 \quad(i=0, \cdots, p-1)
$$

Since K_{a} is perfect, there exist $G_{0}, \cdots, G_{p-1} \in K_{a}\left[X, Y_{0}, \cdots, Y_{\mu}\right]$ such that

$$
F_{i}\left(X, Y_{0}, \cdots, Y_{\mu}\right)=\left(G_{i}\left(X, Y_{0}, \cdots, Y_{\mu}\right)\right)^{p} \quad(i=0, \cdots, p-1)
$$

Since $G_{i}\left(X, d_{1} A, \cdots, d_{\mu} A\right)=0(i=0, \cdots, p-1)$, (3) implies that

$$
G_{i}\left(X, Y_{0}, \cdots, Y_{\mu}\right)=0 \quad(i=0, \cdots, p-1)
$$

It follows that $F\left(X, Y_{0}, \cdots, Y_{\mu}\right)=0$. This is a contradiction.
q.e.d.

By this theorem, the power series

$$
\sum_{i=0}^{\infty} X^{p^{i^{2}+i}}, \quad \sum_{i=0}^{\infty} X^{i_{p+i}} \quad \text { and } \quad \sum_{i=0}^{\infty} X^{i!+i}
$$

are hypertranscendental.

§ 2.

Let $A=\sum_{i=0}^{\infty} a_{i} X^{i}$ be a formal power series of $K \llbracket X \rrbracket$. For $e \in \mathbf{N}$ and $k \in\left\{0,1, \cdots, p^{e}-1\right\}$ we denote the power series $\sum_{i=0}^{\infty} a_{k+i p^{e}} X^{i p^{e}}$ by $A_{k}^{(e)}$. Then, $A_{0}^{(e)}, \cdots, A_{p^{e}-1}^{(e)}$ are elements of $K \llbracket X^{p^{e}} \rrbracket$ and we have

$$
A=A_{0}^{(e)}+X A_{1}^{(e)}+\cdots+X^{p^{e-1}} A_{p^{e}-1}^{(e)}
$$

Theorem 2. Let $A=\sum_{i=1}^{\infty} a_{i} X^{i}$ be hypertranscendental. For each $t(t=1, \cdots, p-1)$ and $s \in \mathbf{N}-\{0\}$, let

$$
B_{s, t}=\left(A_{t p^{p-1}}^{(s)}\right)^{p-s}=\sum_{i=0}^{\infty}\left(a_{t p^{s-1}+i p^{s}}\right)^{p-s} X^{t}
$$

Then, $\left\{B_{s, t} ; s \in \mathbf{N}-\{0\}, t=1, \cdots, p-1\right\}$ are differentially independent over $K_{a}(X)$.

Remark. Let $m_{0}<m_{1}<m_{2}<\cdots$ be a sequence of natural numbers satisfying the condition (1) of Theorem 1. The power series $A=\sum_{i=0}^{\infty} a_{i} X^{i}$ where $a_{i}=1$ if i equals some $m_{j}(j \in \mathbf{N})$, otherwise 0 , is hypertranscendental over K by Theorem 1. Therefore, by Theorem 2, $B_{s, t}=\sum_{i=0}^{\infty} a_{t p^{s-1+i p s}} X^{i}$ $(s \in \mathbf{N}-\{0\}, t=1, \cdots, p-1)$ are differentially independent over $K(X)$.

Proof of Theorem 2. By $A_{0}^{(s-1)}=\sum_{t=0}^{p-1} X^{t p^{s-1}} A_{t p^{s-1}}^{(s)}$, we have

$$
A=A_{0}^{(e)}+\sum_{s=1}^{e} \sum_{t=1}^{p-1} X^{t p^{s-1}} A_{t p^{s-1}}^{(s)} .
$$

Hence, for $1 \leq \mu \leq p^{e}-1$,

$$
d_{\mu} A=d_{\mu} A_{0}^{(e)}+\sum_{s=1}^{e} \sum_{t=1}^{p-1} \sum_{v_{1}+v_{2}=\mu} d_{v_{1}} X^{t^{p-1}} d_{v_{2}} A_{t p^{s-1}}^{(s)} .
$$

For every $u, d_{v} A_{u}^{(r)} \neq 0$ implies $p^{r} \mid v$. Then, $d_{\mu} A \in K\left(X, d_{v p^{s}} A_{t p^{s-1}}^{(s)} ; s=1\right.$, $\left.2, \cdots, e, t=1,2, \cdots, p-1, v=0,1, \cdots, p^{e-s}-1\right)$. Hence, $K\left(X, d_{\mu} A ; \mu=1,2, \cdots, p^{e}-1\right)$
$\subseteq K\left(X, d_{v p^{s}} A_{T p^{s-1}}^{(s)} ; s=1,2, \cdots, e, t=1,2, \cdots, p-1, v=0,1, \cdots, p^{e-s}-1\right)$.
Since A is hypertranscendental,
$\operatorname{tr} \operatorname{deg}\left\{d_{v_{p s}{ }^{s}} A_{t p^{p-1}}^{(s)} ; s=1,2, \cdots, e, t=1,2, \cdots, p-1, v=1,2, \cdots\right.$,

$$
\left.p^{e-s}-1\right\} / K_{a}(X)
$$

$$
\geq \operatorname{tr} \operatorname{deg}\left\{d_{\mu} A ; \mu=1,2, \cdots, p^{e}-1\right\} / K_{a}(X)=p^{e}-1
$$

However, the cardinality of the set $\{(s, t, v) ; s=1,2, \cdots, e, t=1,2, \cdots$, $\left.p-1, v=0,1, \cdots, p^{e-s}-1\right\}$ is $(p-1)\left(p^{e-1}+p^{e-2}+\cdots+p+1\right)=p^{e}-1$. Hence, $\left\{d_{v p^{s}} A_{t p^{s-1}}^{(s)} ; s=1,2, \cdots, e, t=1,2, \cdots, p-1, v=0,1, \cdots, p^{e-s}-1\right\}$ are algebraically independent over $K_{a}(X)$. Since, $d_{v p} A_{t p^{s-1}}^{(s)}=d_{v p}\left(B_{s, t}\right)^{p^{s}}$ $=\left(d_{v} B_{s, t}\right)^{p s}$, we see that

$$
\left\{d_{v} B_{s, t} ; s=1,2, \cdots, e, t=1,2, \cdots, p-1, v=0,1, \cdots, p^{e-s}-1\right\}
$$

are algebraically independent over $K_{a}(X)$. Thus, we have the conclusion.
q.e.d.
§ 3.
For $k \in \mathbf{N}$, we associate the real number $\langle k\rangle$ as follows: If

$$
k=k_{0}+k_{1} p+\cdots+k_{e-1} p^{e-1} \quad\left(0 \leq k_{i} \leq p-1\right)
$$

is the p-adic expression, then

$$
\langle k\rangle=\frac{k_{0}}{p}+\frac{k_{1}}{p^{2}}+\cdots+\frac{k_{e-1}}{p^{e}} .
$$

For a set S, the cardinal number of S is denoted by $\# S$.
Lemma 3. Let $\alpha \in \mathbf{R}(0 \leq \alpha \leq 1)$. Then,

$$
\lim _{s \rightarrow \infty} \frac{1}{s} \#\{\lambda \in \mathbf{N} ; \lambda \leq s-1,\langle\lambda\rangle \leq \alpha\}=\alpha \quad(s \in \mathbf{N}) .
$$

Proof. Let $\alpha=\frac{\alpha_{0}}{p}+\frac{\alpha_{1}}{p^{2}}+\cdots$ be the p-adic expression of α, where there is no n such that $\alpha_{n}=\alpha_{n+1}=\cdots=p-1$. We fix a natural number s and associate $e=e(s) \in \mathbf{N}$ with s by $p^{e-1} \leq s<p^{e}$. The set

$$
\left\{\lambda \in \mathbf{N} ; \lambda \leq s-1,\langle\lambda\rangle<\frac{\alpha_{0}}{p}+\cdots+\frac{\alpha_{e-1}}{p^{e}}\right\}
$$

is the disjoint union of the following sets:

$$
\begin{aligned}
T_{i j}=\{\lambda= & \lambda_{0}+\lambda_{1} p+\cdots+\lambda_{e-1} p^{e-1} ; \lambda_{0}=\alpha_{0}, \lambda_{1}=\alpha_{1}, \cdots, \lambda_{i-1}=\alpha_{i-1}, \\
& \left.\lambda_{i}=j, \lambda \leq s-1\right\} \quad\left(i=0,1, \cdots, e-1, j=0,1, \cdots, \alpha_{i}-1\right) .
\end{aligned}
$$

Let $s=s_{0}+s_{1} p+\cdots+s_{e-1} p^{e-1}$ be the p-adic expressions of s. If $\alpha_{0}+\alpha_{1} p+\cdots+\alpha_{i-1} p^{i-1}+j p^{i}<s_{0}+s_{1} p+\cdots s_{i} p^{i}$, then

$$
\# T_{i j}=s_{i+1}+s_{i+2} p+\cdots+s_{e-1} p^{e-i-2} .
$$

If $\alpha_{0}+\alpha_{1} p+\cdots+\alpha_{i-1} p^{i-1}+j p^{i} \geq s_{0}+s_{1} p+\cdots+s_{i} p^{i}$, then

$$
\# T_{i j}=s_{i+1}+s_{i+2} p+\cdots+s_{e-1} p^{e-i-2}-1
$$

In any case, we have

$$
\frac{s}{p^{i+1}}-1 \leq \# T_{i j} \leq \frac{s}{p^{i+1}} .
$$

It follows that

$$
\begin{aligned}
s(\alpha & \left.\frac{1}{p^{e(s)}}\right)-(p-1) e(s) \\
& \leq s\left(\frac{\alpha_{0}}{p}+\frac{\alpha_{1}}{p^{2}}+\cdots+\frac{\alpha_{e-1}}{p^{e}}\right)-\left(\alpha_{0}+\alpha_{1}+\cdots+\alpha_{e-1}\right) \\
& =\alpha_{0}\left(\frac{s}{p}-1\right)+\alpha_{1}\left(\frac{s}{p^{2}}-1\right)+\alpha_{e-1}\left(\frac{s}{p^{e}}-1\right) \\
& \leq \sum_{i=0}^{e-1} \sum_{\substack{\alpha_{i j}-1} T_{i j}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \#\left\{\lambda \in \mathbf{N}|\lambda \leq s-1,\langle\lambda\rangle\rangle \frac{\alpha_{0}}{p}+\frac{\alpha_{1}}{p^{2}}+\cdots+\frac{\alpha_{e-1}}{p^{e}}\right\} \\
& \leq \#\{\lambda \in \mathbf{N} \mid \lambda \leq s-1,\langle\langle \rangle \leq \alpha\} \\
& \leq \#\left\{\lambda \in \mathbf{N} \mid \lambda \leq s-1,\langle\lambda\rangle<\frac{\alpha_{0}}{p}+\frac{\alpha_{1}}{p^{2}}+\cdots+\frac{\alpha_{e-1}}{p^{e}}\right\}+1 \\
& \leq \sum_{i=0}^{e-1} \sum_{j=0}^{\alpha_{j}^{i}-1} \# T_{i j}+1 \\
& \leq \alpha_{0} \frac{s}{p}+\alpha_{1} \frac{s}{p^{2}}+\alpha_{e-1} \frac{s}{p^{e}}+1 \\
& =s\left(\frac{\alpha_{0}}{p}+\frac{\alpha_{1}}{p^{2}}+\cdots+\frac{\alpha_{e-1}}{p^{e}}\right)+1 \\
& \leq s \alpha+1
\end{aligned}
$$

Since $\lim _{s \rightarrow \infty}\left(\alpha-\frac{1}{p^{e(s)}}-\frac{(p-1) e(s)}{s}\right)=\lim _{s \rightarrow \infty}\left(\alpha+\frac{1}{s}\right)=\alpha$, we have the conclusion.
q.e.d.

Lemma 4. A power series A is hypertranscendental over K if and only if $\left\{A_{0}^{(e)}, \cdots, A_{p^{e}-1}^{(e)}\right\}$ is algebraically independent over $K(X)$ for every $e \in \mathbf{N}$.

Proof. It is easy to see that if $\mu \leq p^{c}-1$, then

$$
d_{\mu} A_{k}^{(e)}=d_{p}\left(\sum_{i=0}^{\infty} a_{k+i p^{e}} X^{i p^{e}}\right)=0
$$

for $k \in\{0,1, \cdots, \mu\}$. Since $A=A_{0}^{(e)}+X A_{1}^{(e)}+\cdots+X^{p^{e-1}} A_{p^{e}-1}^{(e)}$, the vector space spanned by $A, X d_{1} A, \cdots, X^{p^{e-1}} d_{p^{e-1}} A$ over K coincides with the vector space spanned by $A_{0}^{(e)}, X A_{1}^{(e)}, \cdots, X^{p e-1} A_{p^{e}-1}^{(e)}$ over K.
q.e.d.

Theorem 3. For any $\alpha \in \mathbf{R}(0 \leq \alpha \leq 1)$, there exists a formal power series B of $K \llbracket X \rrbracket$ such that

$$
\lim _{s \rightarrow \infty} \frac{1}{s} \operatorname{tr} \operatorname{deg}\left\{B, d_{1} B, \cdots, d_{s-1} B\right\} / K(X)=\alpha \quad(s \in \mathbf{N}) .
$$

Proof. Let $A=\sum_{i=0}^{\infty} a_{i} X^{i}$ be hypertranscendental. We consider the formal power series $B=\sum_{i=0}^{\infty} \varepsilon_{i} a_{i} X^{i}$ with $\varepsilon_{i}=0$ if $\langle\rangle\rangle\rangle \alpha$ and $\varepsilon_{i}=1$ if $\langle i\rangle>\alpha$. Let $\alpha=\frac{\alpha_{0}}{p}+\frac{\alpha_{1}}{p^{2}}+\cdots$ be the p-adic expression of α, where there is no n such that $\alpha_{n}=\alpha_{n+1}=\cdots=p-1$. We fix a natural number s and associate

$$
\begin{aligned}
& e=e(s) \in \mathbf{N} \quad \text { by } p^{e-1} \leq s<p^{e} \\
& t=\alpha_{0}+\alpha_{1} p+\cdots+\alpha_{e-1} p^{e-1}
\end{aligned}
$$

and

$$
\beta=\left\langle\langle t\rangle=\frac{\alpha_{0}}{p}+\frac{\alpha_{1}}{p^{2}}+\cdots+\frac{\alpha_{e-1}}{p^{e}} .\right.
$$

For every $k \in \mathbf{N}\left(k<p^{e}\right)$ such that $\langle k\rangle \gg \alpha$ and every $i \in \mathbf{N}$, we have $\left\langle\left\langle i p^{e}+k\right\rangle \geq\langle k\rangle\right\rangle>\alpha$. By the definition of B, we have

$$
B_{k}^{(e)}=\sum_{\imath=0}^{\infty} \varepsilon_{k+i p^{e}} a_{k+i p^{e}} X^{i p^{e}}=0 .
$$

Therefore,
(1) if $\langle k\rangle\rangle>\alpha$ then $B_{k}^{(e)}=0$.

For each $j \in \mathbf{N}\left(j<p^{e}\right)$, either $\left.\langle k\rangle\right\rangle\langle\langle j\rangle$ or else $\langle j\rangle\rangle>\alpha$. In the former case, we have $\binom{j}{k}=0$ by Lemma 1. In the latter case, we have $B_{j}^{(e)}=0$ by (1). Hence we have

$$
d_{k} B=\sum_{j=k}^{p_{j}^{e-1}}\binom{j}{k} B_{j}^{(e)} X^{j-k}=0 .
$$

Therefore,
(2) if $\langle k\rangle>\alpha$ then $d_{k} B=0$.

It follows that

$$
K\left(X, B, d_{1} B, d_{2} B, \cdots, d_{s-1} B\right)=K(X)\left(d_{k} B ; k \leq s-1,\langle k\rangle \leq \alpha\right) .
$$

Hence
(3) $\operatorname{tr} \operatorname{deg}\left\{B, d_{1} B, d_{2} B, \cdots, d_{s-1} B\right\} / K(X) \leq \#\{k \in \mathbf{N} ; k \leq s-1,\langle k\rangle \leq \alpha\}$.

For every $k \in \mathbf{N}\left(k<p^{e}\right)$ such that $\left.\langle k\rangle\right\rangle<\beta$ and every $i \in \mathbf{N}$, we have $\left.\left\langle i p^{e}+k\right\rangle\right\rangle\left\langle\langle k\rangle+\frac{1}{p^{e}} \leq \alpha\right.$. By the definition of B, we have

$$
B_{k}^{(e)}=\sum_{i=0}^{\infty} \varepsilon_{k+i p^{e}} a_{k+i p^{e}} X^{i p^{e}}=A_{k}^{(e)} .
$$

Therefore,
(4) if $\langle k\rangle<\beta$ then $B_{k}^{(e)}=A_{k}^{(e)}$.

For any $k \in \mathbf{N}$ with $k<p^{e}$ and $\langle k\rangle<\beta$ it follows from (1) and (4) that

$$
d_{k} B=A_{k}^{(e)}+\binom{t}{k} B_{t}^{(e)} X^{t-k}+\sum\binom{i}{k} A_{i}^{(e)} X^{i-k}
$$

where the summation ranges over all i with $k<i<p^{e},\langle\langle i\rangle<\beta$. Therefore,

$$
\begin{aligned}
K\left(X, B_{t}^{(e)}\right)\left(d_{k} B ; k \leq s-1, k\right. & \left.\neq t)\left(A_{i}^{(e)} ; s \leq i<p^{c},\langle i\rangle\right\rangle<\beta\right) \\
& \left.=K\left(X, B_{t}^{(e)}\right)\left(A_{k}^{(e)} ; k<p^{e},\langle k\rangle\right\rangle<\beta\right) .
\end{aligned}
$$

Since $\left\{A_{k}^{(e)} ; 0 \leq k<p^{e},\langle k\rangle<\beta\right\}$ is algebraically independent over $K(X)$ by Lemma 4 , we have

$$
\begin{aligned}
\operatorname{tr} \operatorname{deg}\{B, & \left.d_{1} B, d_{2} B, \cdots, d_{s-1} B\right\} / K(X) \\
& \geq \operatorname{tr} \operatorname{deg}\left\{d_{k} B \mid k \leq s-1, k \neq t\right\} / K\left(X, B_{\iota}^{(e)}\right) \\
& \geq \#\{k \in \mathbf{N} ; k \leq s-1,\langle k\rangle\rangle<\beta\}-1
\end{aligned}
$$

Since $\{k \in \mathbf{N} ; k \leq s-1,\langle k\rangle\langle\beta\}=\{k \in \mathbf{N} ; k \leq s-1,\langle k\rangle \leq \alpha\}-\{t\}$, we have

$$
\begin{align*}
& \operatorname{tr} \operatorname{deg}\left\{B, d_{1} B, d_{2} B, \cdots, d_{s-1} B\right\} / K(X) \tag{5}\\
& \quad \geq \#\{k \in \mathbf{N} ; k \leq s-1,\langle k\rangle \leq \alpha\}-2
\end{align*}
$$

Now the conclusion follows from (3), (5) and Lemma 3.
q.e.d.

The problem treated in this paper has been derived from a subject suggested by Professor Hideyuki Matsumura, for whom the authors are grateful.

References

[1] D. Hilbert, Mathematische Probleme, C.R. du 2. congrès international des math., Paris 1902.
[2] O. Hölder, Ueber die Eigenschaft der Gammafunction keiner algebraischen Differentialgleichung zu genügen, Math. Ann., 28 (1886), 1-13.
[3] F. Kuiper, On algebraic independence in differential rings, Proc. Kon. Ned. Akad. Wetensch., Ser. A67 (1964), 90-103.
[4] K. Okugawa, "Differential Algebra of Nonzero Characteristic", Lectures in Mathematics, Department of Math. Kyoto Univ., 16, 1987.
[5] K. Shikishima-Tsuji, Differentially quasi-algebraic extension of positive characteristic p, submitted.

Kayoko Shikishima-Tsuji
Institute of Mathematics
Yoshida College
Kyoto University
Kyoto 606, Japan
Masashi Katsura
Department of Mathematics
Faculty of Science
Kyoto Sangyo University
Kyoto 603, Japan

[^0]: Received February 21, 1991.

