
P. Landrock and 0. Manz
Nagoya Math. J.
Vol. 125 (1992), 33-51

SYMMETRIC FORMS, IDEMPOTENTS AND

INVOLUTARY ANTΠSOMORPHISMS

PETER LANDROCK AND OLAF MANZ

Introduction

Let G be a finite group, F a field and M an irreducible F[G]-module.

By Λ we denote the F-linear involutary antiautomorphism of F[G], indu-

ced by inversion on group elements. Suppose that char (F) Φ 2. We then

show that M carries a non-singular G-invariant symmetric bilinear form

with values in F if and only if there exists a A-invariant idempotent

e e F[G] which generates the projective cover of M. This extends earlier

results of W. Willems [Wi]. The assertion is not true if char(F) = 2.

We even consider this question in the class of those finite-dimensional

algebras which admit an .F-linear involutary antiautomorphism r and

which are symmetric with respect to a r-invariant symmetric functional.

Besides group algebras, also involutary semi-simple F-algebras belong to

that class.

In the final part of this paper, we let G be represented irreducibly

and orthogonally on a real vector space M. We then show that there

is a relationship between G-orbits on the unit sphere of M and idem-

potents e e R[G] such that M ^ R[G]e and e = e. This has some con-

nection to a problem in Coding Theory, namely to find G-orbits on the

unit sphere whose minimal Euclidian distance is considerably large.

§ 1. Involutary and symmetric algebras

Let A be a finite-dimensional F-algebra over a field F. We set A =

A/J(A), where J(A) denotes the Jacobson Radical of A. ΐn the following,

each A-module should be understood as a finitely generated A-Ze/ΐ-module.

1.1 LEMMA. Let e, f e A be primitive ίdempotents such that ef Φ 0.

Then the following assertions hold.
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(a) The map Ae —> Af, ae^-^ae f, is an A-module isomorphism.

(b) fAe = fAf (as F-vector spaces).

(c) fAe is a local algebra ίsomorphic to fAf, via the algebra-isomor-

phism fae H-> foe •/ (a e A).

Proof, (a) Since ~ef Φ 0 and both Ae and A/ are irreducible, the

map

Ae-+Af, ae->ae-f,

is an isomorphism. Consequently, Ae ^ Af via αβ *->ae-f (cf. [HB; VII,

11.6]).

(b) It follows from (a) that

fAf = HomA(A/, A/) ^ HomA(A/, Ae) = /Ae (as F-vector spaces).

(c) By (a), the map fae *-+fae-f (a e A) is a vector space monomor-

phism between fAe and fAf, and (b) implies that it even is an isomor-

phism. The assertion now follows from

(fae)(fbe)f = (fae)f. (fbe)f (a, be A). D

If A admits an F-linear involutary antiautomorphism τ, we call (A, τ)

an involutary F-algebra. Observe that τ leaves J(A) invariant and thus

τ induces an involutary antiautomorphism on A. Let V be an A-module

over an involutary F-algebra (A, τ). An F-bilinear form

< , >: V x V->F

is called a τ-form if it is non-degenerate and if

(av, w} = ζy, aτw} for all ae A, v, w e V

(i.e. the adjoint mapping of a with respect to <( , ) is given by aT).

1.2. LEMMA. Let (A, τ) be an involutary F-algebra and M an irre-

ducible A-module.

(a) // there exists a primitive idempotent f e A such that M = Af and

fτf φ 0, then there even exists a primitive idempotent e e A such that M =

Ae and eτ = e. Moreover, e can be chosen an the 1-element in fAfτ.

(b) Let M carry a τ-form < , ). If M contains a non-ίsotropίc vector

x, then there exists an idempotent feA which satisfies M— Af, fτf φθ

and fx = x.
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Prcof. (a) By Lemma 1.1 (c), the mapping

fAΓ-+fAf, faf*~faf*.f,

is an algebra-isomorphism. Let eefAfτ be the preimage of fefAf. Then

e is a primitive idempotent and is the 1-element of fAf\ Since fAfτ is

r-invariant, we also have eτ = e. Finally

ae ι-» αe •/ = af (a e A)

yields Ae = A/, hence M ~ Ae.

(b) We consider the map A —> M, α (-> αx. Then there exists a prim-

itive idempotent / e A such that A(ϊ — f) is its kernel. Consequently,

M = A/ and /x = x. Since

0 φ <x, x> = </x, fx) = </</*, x> =

f / ^ 0 follows. •

We denote by P(V) the projective cover of an A-module V.

1.3 THEOREM. Let (A, τ) 6β an inυolutary F-algebra. Suppose that

the irreducible A-module M carries a symmetric τ-form < , >. If char(F)

Φ 2, then there exists a primitive idempotent e e A swcΛ that eτ = e and

P(M) s Ae.

Proof. Since char (F) ^ 2, the symmetric form < , > is not symplectic.

Therefore, Lemma 1.2(b) applies and Lemma 1.2(a) yields an idempotent

e e A such that eτ = e and M ^ Ae. Hence P(M) = Ae. Π

We shall see in Example 3.1 that the hypothesis char(F) Φ 2 is not

superfluous.

It is well-known that an idempotent d = d + J(A) can be lifted to an

idempotent e e A which is a polynomial in d with integer coefficients.

This observation applies to our question about τ-invariant idempotents as

follows.

1.4 PROPOSITION. Suppose that (A, τ) is an involutary F-algebra. If

d = d + J(A) is a τ-invariant idempotent in A, then there exists a τ-

ίnvarίant idempotent e e A such that e — d.

Proof. We may assume that d is τ-invariant. Otherwise namely d

can be replaced by dd% because ddτ = ddτ — d2 = d. Arguing by induc-

tion, we may as well assume that J(A)2 = 0. We set e = 3d2 — 2d\
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Then e2 = e + (d2 - d)\2d + l)(2d - 3) = β, because d2 - de J(A). Since

eΓ = e and e = d, the assertion follows. •

It is clear that in Proposition 1.4, J(A) can be replaced by any τ-

invariant nilpotent ideal /.

A finite-dimensional F-algebra is called symmetric if there exists a

functional ω e HomF(A, F) which satisfies φ(ab) = >̂(6α) for all a, be A

and which does not contain any non-zero right- (or left-) ideal of A in

its kernel. We call φ a symmetric functional for A. (Equivalently, A can

be characterized by a non-degenerate symmetric associative F-bilinear

form ( , ): A X A ~-> F. Observe that then (α, b) = φ(ab). But we prefer

to work with the functional ψ.)

Let (A, τ) be an involutary F-algebra which is symmetric with respect

to ψ e HomF(A, F). We call (A, τ, φ) a. symmetric involutary algebra if

φ(aτ) = φ(a) for all a e A.

1.5 LEMMA. Let (A, τ, φ) be a symmetric involutary F-algebra. If

e e A is an ίdempotent satisfying eτ = e, then

(υ, w} = φ(vwτ), υ, w e Ae,

defines a symmetric τ-form on Ae.

Proof. Suppose that 0 = (v0, w} = φ{ι\wτ) for all w = ae e Ae. Since

eT = e, we obtain 0 = φ(vϋeaτ) — φ(vQaτ) for all ae A, and £> contains the

right-ideal v0A in its kernel. Thus vQ = 0 and < , > is non-degenerate.

Since φ is τ-invariant, we have

(v, w} = <p((vwT)τ) = 9?(α;ι;Γ) = <w;, u>

and < , > is symmetric. Let ae A. Then

<αu, w} = <p(avwτ) = φ(vwta) = φ(v(aTw)7) — <u, aτuf)

and < , > is a τ-form. •

The following is inspired by [CR; 9.17], where the element z is defined

for semi-simple algebras over a splitting field.

1.6 LEMMA. Let A be a symmetric algebra with respect to ψ e

HomF(A, F), and let M be an irreducible A-module with character β e

HomF(A, F). For dual bases {αlr , un} and {bl9 *•-,&«} of A (i.e. φ{atb^

= δij), we set
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z = Σ βiaΰbi 6 A .

We then have:

(a) β(a) = φ(za) for all aeA.

(b) z e Z(A) Π soc (A).

(c) Let e e A be a primitive idempotent such that M = Ae. Then the

map Ae -> soc (Ae), ae >-> aez, is an A-module isomorphism.

(d) Suppose that (A, τ, φ) is a symmetric involutary F-algebra and

assume that β is r-invariant (i.e. β(aT) — β(a) for all a e A). Then zx = z.

Proof, (a) Observe that φ(za3) = Σ?=i β(βι)ψΦia3) = β(aά) for ,/ = 1,

• , n. Since {α1? , α j is an F-basis of A, the assertion follows,

(b) Let c e J(A). By (a), φ(zc) = β(c) = 0 and φ contains the right-

ideal zJ(A) in its kernel. Thus z e ann (J(A)) = soc (A). If α, 6 e A, then

again (a) shows φ(a zb) — <p(zb a) = /3(6α) = β(ab) = φ(zab). Therefore,

(α^ — 2α)A < ker(9) and az = a α for all α e A .

(c) Let ε e A be any lift of the Wedderburn idempotent ε e A, corre-

sponding to M. For each α e A , we thus obtain

ψ(za) = j9(α) = j8(αe) = ^(^αε) = φ(εza).

This implies that εz = z and β2 ^ 0. Since soc (Ae) is irreducible and

z e Z(A) Π soc (A), the map Ae -» soc (Ae), αβ ι-> aez = aze, is an isomor-

phism.

(d) Since φ is r-invariant, we have φ(a\b)) — φ((a,ibj)τ) — φ(aίbj) — δi}

and {αί, , α }̂, {bl, - - , bT

n) are dual bases of A as well. Since also β is

assumed to be r-invariant, we obtain

We now apply (a) to both z and z\ Consequently, ψ(za) — β(a) = ^(2Γα)

for all α e A , i.e. z = zτ. Π

If (A, τ) is an involutary F-algebra and M an A-module, then M* =

HomF(M, F) becomes an A-left-module by

(aa)(m) = a(aτm), a e A, m e M, a e M*.

The module M* is called the d^αZ module of M (with respect to τ). It is

easy to see that M is self-dual (i.e. M* = M) if and only if M carries a
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τ-form (cf. [HB; VII, 8.10]).

Our next aim is to "lift" symmetric r-forms from P(M) to M.

1.7 PROPOSITION. Let (A, τ, φ) be a symmetric involutary F-algebra.

For a primitive idempotent e e A, suppose that Ae carries a symmetric τ-form

( , >. Then M ^ Ae = soc(Ae) as well carries a symmetric τ-form.

Proof We may assume that Ae is reducible and consider the sub-

module

soc (Ae)1 = {veAe\ (v, w} = 0 for all w e soc (Ae)}.

Since dim (soc (Ae)1) = dim (Ae) — dim (soc (Ae)) = dim (J(A)e), we con-

clude soc(Ae)1 = J(A)e.

As Ae is assumed to carry a τ-form, Ae is self-dual and thus M= M*.

If β denotes the F-eharaeter of M, it follows that β(aτ) — β(a) for all ae A.

For dual bases {α£} and {bj} of A, we consider z = Σί β(ai)°t a n ( i define

a bilinear form { , ) ; on M by

Since by Lemma 1.6(c), x H-> XZ is an isomorphism from Ae onto soc (Ae),

and since soc (Ae)1 = J(A)e, the form < , >' is well-defined. Suppose that

0 = (x, 3>o>' = (xz, y0} for all x e Ae. Thus xz runs through the whole of

soc (Ae) and y0 e soc (Ae)1 = J(A)e. Therefore, yQ = 0 and < , y is non-

degenerate. Since obviously (ax, y}; = (x, aτy}' for all ae A, itrem ains

to show that ( , >' is symmetric. By part (b) and (d) of Lemma 1.6,

zT = ze Z(A), and therefore

(x> y)' = (xz, y} = (zx, y) = <x, zT^> = <x, 2:,y> = <y2, x> = (y, x}'

for all x,y e Ae. This completes the proof. •

We are now able to formulate our main result.

1.8 THEOREM. Let (A, r, φ) be a symmetric involutary F-algebra, and

M an irreducible A-module. If char (F) Φ 2, then the following statements

are equivalent.

(1) P(M) carries a symmetric τ-form.

(2) M carries a symmetric τ-form.

(3) There exists an idempotent ee A such that M = Ae and eτ = e.

(4) There exists an idempotent ee A such that P(M) ^ Ae and eτ = e.
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Proof. (1) z=> (2): Proposition 1.7.

( 2 ) ^ ( 3 ) : Theorem 1.3.

(3)=>(4): Proposition 1.4.

(4)=φ(l): Lemma 1.5. Π

Recall that the symmetry of A is not needed for (2) => (3) and (3) Φ

(4), and that char (F) φ 2 is only relevant for (2) => (3).

§ 2. Some applications

As our main application, we consider the group algebra F[G] of a

finite group G over the field F. Then

α = Σ agg^ά = Σ a8g~x

geσ gβG

is an F-linear involutary antiisomorphism of F[G]. Moreover, λ{ e

HomF(F[G], F) defined by λ^a) = ax is a symmetric functional on F[G].

Since X0) = λ^a) for all aeF[G], (F[G], A, λt) is a symmetric involutary

F-algebra.

Let V be an F[G]-module and < , ) a A-form on V. Then

(gυ, gw} = (υ, w} for all υ, w e V, g e G.

Thus the Λ-forms on V" are just the G-invariant non-degenerate i^-bilinear

forms on V.

2.1, COROLLARY. Theorem 1.8 Λo/rfs for (A, r, ^) = CF[G], A, ̂ ) .

The Corollary extends earlier results of W. Willems. He showed in

his (unpublished) dissertation [Wi; 2.19] that F[G]e (for a primitive idem-

potent e) carries a symmetric G-invariant non-degenerate F-bilinear form

if and only if there exists deF[G] such that d = d and F[G]e ^ F[G]d.

Observe that it is easy to see that (F[G]e)* ^ F[G]e (cf. [OT; Lemma

1]) and hence e = e implies the existence of a G-invariant non-degenerate

F-bilinear form on F[G]e.

We generalize the approach above. Let H < G be a subgroup of G

such that char(F)| | iff | . Then / = / * = (1/|#|) ΣΛGITΛ is an idempotent

of ^[G], and F[G]f is a transitive permutation module. Its endomorphism-

ring

EndFίG1(F[G]f) ^ΛntifF[G\f = : hF(H, G) = 6

is called Hecke algebra. Observe that H = 1 implies that 6 = JF[G]. We
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choose representatives xt == 1, rc2, , xt for (£Γ, i7)-double cosets in G and

set indfo) = \H: HC)XiH\. Then 23 = [fxj\i = 1, , ί} is an F-basis for

b.

Let a — 2ΐ=i QiifXif) e b (α* e F). Then b is a symmetric algebra with

respect to ^eHomF(b, F), defined by φ(a) = α1? Also, { i n d ^ ) - / ^ 1 / ^ =

1, , £} is a dual basis of 93, whence α̂  = φ(a Λnd(x jj-fxj^), j = 1, , ί.

(This paragraph is a special case of [CR; 11.30 (i) and (Hi)].)

We define τ to be the restriction of A on b. Since / is A-invariant,

τ is an involutary antiisomorphism on b. Note that aτ = ΣU\ «*(/#*" V)-

We now expand aτ in terms of S3, say ατ = X^=1 &*(/#*/), ^ e F. Since

indix^'fx^f = f = fxj, it follows from the previous paragraph that ^(αΓ)

= 6i = 9>(Σί 6̂  (/x,/) •/) = ^ ( 2 , α, (fxΐιf)./) = α! = 9>(α) for α e b. Conse-

quently, (b, r, 9) is a symmetric involutary F-algebra.

2.2. COROLLARY. Lei h be a Hecke algebra over F and τ the involutary

antiisomorphism induced by A. Then Theorem 1.8 holds for (b,τfφ).

Theorem 1.3 clearly can be applied to any involutary F-algebra (A, r),

no matter whether A is symmetric or not. Suppose however that A is

symmetric with respect to φ, ψ e HomF(A, F). It might then happen that

(A, τ, φ) is a symmetric involutary F-algebra, but (A, r, ψ) is not.

2.3. EXAMPLE. Let q be an odd prime power. Set A = GF(q2) and

consider A as an algebra over F = GF(q). Let τ be the Frobenius auto-

morphism of A over F. Then τ is an F-linear involutary (anti-) isomor-

phism of A. For ae A, we consider

φ(a) = trA/F(a) = aτ + a and ψ(α) = aτ — a.

Then φ(A) = F, and ψ(α) = 0 if and only if aeF. Thus both φ and ψ

are symmetric functionals for A. However φ(aτ) = ^(α), but ψ(ατ) = — ψ(α)

for all ae A.

The situation of Example 2.3 is typical. Namely let (A, τ) be an

involutary F-algebra with center Z = Z(A). Suppose that Z is a field and

consider the subfield i£" of Z, consisting of all r-invariant elements. Then

Z\ K is a separable field extension of degree at most 2 (see [Al; X, Thm.

10]). We do not exploit this further on.

If φ is a symmetric functional for A, then it is easy to see that any

other symmetric functional ψ is given by

ψ(a) = φ(za) for all ae A,
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where z is a central element of A. The following fact as well is easy

and will be needed later on.

2.4 LEMMA. Let A be a symmetric F-algebra with respect to φe

Hom^A, F). If x is an inυertible element in Z(A), then φx e HomF(A, F)

defined by φx(a) = φ(xa)9 ae A, as well is a symmetric functional for A.

Proof. Since x e Z(A), we have

φx(ab) — φ(xab) = φ(bxa) = φ(xbά) = φx{ba) for all a, be A.

If φx has the right ideal cA in its kernel, then φ(xcA) = 0, whence xc = 0.

Since x is invertible, it follows that c = 0. •

We now consider a semi-simple algebra S. Recall that S then is

symmetric (cf. [CR; 9.8]). By Wedderburn's Theorem,

n

S = 0 Matm.(Z)ί) with finite-dimensional skew-fields Dt.
i = l

It M is an irreducible S-module, it belongs to a unique Wedderburn

component of S. Thus in view of an application of § 1, we may assume

that S = Matw(D) is simple.

2.5. PROPOSITION. Let D be a finite-dimensional skew-field over F

and assume that (D, ή) is an involutary F-algebra. Then there exists X e

HomF(Z), F) such that (/), r, X) is a symmetric involutary F-algebra.

Proof. Set Z = Z(D).

Case 1: Suppose that η induces the identity on Z. We then consider

D as a Z-algebra and pick a symmetric functional φe Hom^(Z), Z). Let L

be a splitting field for D. Since D is centrally simple over Z, it follows

that L ®z D = Matw(L) for some n e N . Since both φ and η are Z-linear,

we can define φ, r) e HomL(Matn(L), L) by a = idL (x) y> and ή = idL (x) 57. Then

37 is an involutary antiisomorphism on Mat7Z(L) and ψ satisfies

ψiiXiMyij)) - 9((Jΰ)(^;)) for all (Xij), (ytj) e Matn(L).

It follows that φ is (up to some F-scalar factor; the trace on Matn(L).

Since (xί3) >-> (JC^)' is an L-algebra automorphism on Matn(L), an elementary

version of the Skolem-Noether Theorem implies that there exists an in-

vertible matrix (ckl) e Matn(L) such that

(Xijy = (ckl)'\xjt)(ckl) for all (Xij) e Matn(L).
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In particular, ^(xtjy) = φ((Xij)) for all (xtj) e Matn(L). Consequently, we

have for all ae L and d e D

a (g> φ(d) = φ(a <g) d) = $((α <g) d)^) = £>(α <g) d*) = a

i.e.

Let /i e HOΠIF(Z, F) be any non-zero functional. We set X = μφ e

HomF(D, F). Since X Φ 0, the skew-field Z) is a symmetric F~algebra with

respect to X. As X(dv) = X(d) for all de D, the assertion of the Proposition

holds in the first case.

Case 2. Suppose now that η is not the identity on Z. Letx e HomF(JD, F)

be any symmetric functional on D. If X is not ^-invariant, we consider

instead ψ e HomF(D, F) defined by φ(d) = %(d) + χ(d'), d e D. Clearly,

<p(dv) = ψ(d). If φ Φ 0, then (Z>, 37, ̂ ) is a symmetric involutary F-algebra,

and we are done. We may thus assume that X(dη) — —X{d) for all deD,

and also that char (F) Φ 2.

We consider the F-linear map ηz e Ή.omF(Z, Z). Since ηz Φ idz, there

exists 0 Φ x e Z such that xη = —x. By Lemma 2.4, Xx e Hom F φ, F) de-

fined by Xx(d) = X(xd), d e D, is a symmetric functional on Z) as well. Now

χ^Φ) = X(xΦ) = X(—χiφ)=—X((xdy) = X(xd) = Xx(d) for all d e D , and

the proof is complete. •

In order to extend Proposition 2.5 to simple algebras S = Matw(D),

we use the fact that any involutary antiisomorphism on S can be written

as an involutary antiisomorphism on D followed by transposition and

conjugation of matrices.

2.6 THEOREM. Let S be a simple finite-dimensional F-algebra which

admits an F-linear involutary antiisomorphism τ. Set S = Matw(Z)) with

a skew-field D, Z = Z(S) = Z(D)ΊS and K = {ze Z\zτ = z).

(a) [Al; X, Thm. 11] Then τ induces an involutary antiisomorphism

7] on D such that K — {ze Z\zη — z).

(b) [Al X, Thm. 10] There exists a non-singular (ckl) e S such that

(dυy = (cuy\d]d{cu) for all (di3) e S = Matw(D).

2.7 THEOREM. Let S be a finite-dimensional simple F-algebra which

admits an F-linear involutary antiisomorphism τ. Then there exists ψ e

HomF(S, F) such that (S, r, ψ) is a symmetric involutary F-algebra.

Proof. Set S = Matm(Z)) for a finite-dimensional skew-field D. By
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Theorem 2.6, there exist an invertible (cu) e S and an F-linear involutary

antiisomorphism η on D such that

(d4i)' - (ckl)-\dh)(cu) for all (dtj) e S.

By Proposition 2.5, there exists X e HomF(D, F) such that (D, 37, %) is a

symmetric involutary F-algebra. We set φ = X-tr eΐlomF(S, F). Then φ

is a symmetric functional on S, and for (d*j) e S we have

?((cUr) = ?>((<*?,)) = Σ « = Σ *(<***) = φiidij)).

This establishes the claim. •

2.8 COROLLARY. Let (S, τ) be an involutary F-algebra. If S is semi-

simple and char (F) Φ 2, then the following assertions are equivalent for

an irreducible S-module M.

(1) M carries a symmetric τ-form.

(2) There exists an idempotent e e S such that M = Se and eτ = e.

Proof. Let 1 = βj + + εt be the decomposition of 1 e S into Wed-

derburn idempotents ε̂ . Then τ permutes the εέ. Observe that under each

of the conditions (1) and (2), the idempotent εt corresponding to M is fixed.

Thus the assertion follows from Theorems 1.8 and 2.7. •

For more examples of involutary algebras we refer to [Al; chap. X].

§ 3. Absolutely irreducible (7-modules

3.1 EXAMPLES, (a) Let (A, τ) be an involutary F-algebra and M an

absolutely irreducible A-module. If M carries a symplectic r-form < , ),

then it is very easy to see that there does not exist an idempotent e e A

such that eT = e and M = Ae:

Suppose there is such an idempotent e. Since < , ) is non-degenerate,

we find ae A such that (ae, e) Φ 0. Since M is absolutely irreducible,

eae = μe for some μ e F. Consequently,

0 Φ (ae, e> = <eταβ, β> = (eae, e) = μ(e, e> = 0,

a contradiction.

(b) Let (A, τ) be an involutary F-algebra, char(F) = 2 and M an

absolutely irreducible A-module with symmetric r-form ( , ). If dimFM

> 2, counting yields a non-zero isotropic vector in M. Since the isotropic
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vectors in M form a submodule of M, the form < , > is symplectic. By

(a), there does not exist ee A such that eτ — e and M — Ae. Thus the

assertion of Theorem 1.3 is false for char(F) = 2.

(c) Nevertheless, if F is not a splitting field, there might exist such

an idempotent. As a trivial example, consider A — F2[CZ] can let M be

its 2-dimensional irreducible module. Clearly, there exists exactly one

primitive idempotent ee A such that M^ Ae. Hence eτ — e, and M car-

ries a symmetric A-form, by Lemma 1.5.

For char (F) = 2, one might have to consider quadratic forms instead

of bilineai ones. For more results in this direction, we refer to the

(unpublished) dissertation of W. Willems [Wi].

In the following, we restrict ourselves to group algebras F[G] with

symmetric functional λx e HomF(F[G], F) and involutary antiisomorphism

τ = A. Since the A-forms are just the G-invariant ones, we shall speak

henceforth of G-forms.

We next slightly sharpen the assertion of 3.1 (a) in case of group

algebras. To do so, we need the following result (see [HB; VII, 8.12]).

3.2 THEOREM. Let M be an absolutely irreducible self-dual F[G]-

module. Then to within an F-scalar multiple, there exists only one G-form

on M. If char (F) Φ 2, this form is either symmetric or symplectic,

3.3 COROLLARY. Let M be an absolutely irreducible F[G]-module. If

char (F) Φ 2, then the following asesertίons are equivalent

(1) M carries a symplectic G-form.

(2) ff= 0 for all idempotents feF[G] which satisfy M ^ F[G]f

Proof. (1) iφ (2): Suppose there exists an / such that ffφ 0. Then

Lemma 1.2 (b) implies that there also exists an idempotent ee A such that

M = F[G]e and e = e. By Lemma 1.5 and Proposition 1.7, the module

M carries a symmetric G-form. Since M is absolutely irreducible, M

cannot carry a symplectic G-form, by Theorem 3.2. This contradicts (1).

(2) => (1): Suppose that M carries a symmetric G-form. As char (F)

Φ2, Theorem 1.3 yields an idempotent eeF[G] such that M ^ F[G]e

and e = e. In particular, ee = e Φ 0, contradicting (2). By Theorem 3.2,

M carries a symplectic G-form. •

The next lemma, which we only state under the conditions needed

later on, is probably well-known.
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3.4 LEMMA. Let e be an idempotent in F[G], where c h a r ( F ) | | G | .

Then λ1(e) = (l/|G|)dimF(F[G]e).

Proof. Let L ΞΞ> F be an algebraically closed extension field of F.

Then

dimF(F[G]e) = άimL(L®FF[G]e) = dimL(L[G]e).

Let e = /Ί + + fs be a decomposition of e into primitive idempotents

ft in L[G], and / = fx. We denote the character of L[G]f by X, and the

corresponding Wedderburn idempotent by ε e L[G]. Thus

and ^(ε) = %(1)2/|G|. Since al] primitive idempotents corresponding to ε

are conjugate to /, and since λx(u~ιfu) = λ{(f) (for units u in L[G\), we

conclude λx(f) = (l/χ(l))λ,(e) = X(1)I\G\ = (1/|G|) dimL(L[G]/). Consequently,

Ue) = iUfd = (l/|G|)gdimL(L[G]/,) = (1/|G|) dimL(L[G]β)

= (l/|GDdimF(F[G]e). D

As a disadvantage of Theorem 1.3 we recall that its proof does not

yield an explicit formula for a r-invariant idempotent in terms of the

given τ-form. Under certain circumstances, we can do better.

Let M be an F[G]-module with G-form < , ). For an element xeM,

we define

geσ

Then cx has the following properties.

(1) λ,(cxa) = (ax, Xs) for all a e F[G].

(Namely just observe that λx(cxh) = (hx, x) for all h e G.)

(2) If fe F[G] satisfies fx = x, then also fcx = c .̂

(To see this, note that

χx(Cχa) - (ax, x) = (afx, x) = ^ifeα/) = ί^/c^α) for all aeF[G],

and therefore fcx — cx — 0.)

(3) If < , > is symmetric, then cx = Σigeo (gx, x)g and cx = cx.

3.5 Remark. Before we proceed, we recall what Lemma 1.2 says in

our present context. Let M be an irreducible F[G]-module which carries

a G-form and which contains a non-isotropic vector x. Then there exist
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primitive idempotents /, e e F[G] with the following properties:

( i ) M^ F[G]f^ F[G]e.

(ii) fx = x.

(iii) e — e.

(iv) e is the 1-element of fF[G]f, hence fF[G]f = eF[G]e.

3.6 PROPOSITION. Let M be an irreducible F[G]-module which carries

a symmetric G-form <( , ). Suppose that M contains a non-isotropic vector

x> and let e = e be chosen according to Remark 3.5. //

{veeF[G]e\ϋ = v} = Fe,

then e = γcx for some γ e F.

Proof. We choose the idempotent / as in Remark 3.5. By (ii), fx = x

implies fcx = cx. Since < , ) is symmetric, (iv) yields

cx = cx = cj = cj = fcJefF[G]f = eF[G\e,

and cx = βe for some βe F. It remains to show that cx Φ 0. This follows,

because λx(cx) = <x, x} Φ 0. Π

3.7 THEOREM. Let F[G] be semi-simple, and suppose that the abso-

lutely irreducible F[G]-module M carries a symmetric G-form < , >. Suppose

that M contains a non-isotropic vector x (, which holds provided that

chΆγ(F)φ2). Then

e = (dimFM)l(\G\.(x, x}) cx = (dimFM)/(|G|.<*, x» Σ <gx, *>g
geo

is an idempotent such that M = F[G]e and e = e.

Proof. Let e = e be chosen as in Remark 3.5. Since F[G] is semi-

simple and M is absolutely irreducible, we have M = F[G]e and F =

EndP [ β ](M) ^&ntleF[G]e. In particular, {ueβF[G]e|ί} = v} = Fe, and Prop-

osition 3.6 implies that e = γcx for some ^ 6 F. It remains to determine

the scalar γ. By Lemma 3.4,

and the assertion follows. •

3.8 Remarks, (a) It should be clear that Theorem 3.7 still holds if

we drop the hypothesis "semi-simple" and assume instead that M has

defect 0 (i.e. the block ideal of F[G] corresponding to M is simple).
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(b) If M has positive defect however, then cx definitely is no candi-

date for an idempotent. To see this note that λx(cxj) = <jx, x) = 0 for

all j e J(F[G]). Consequently, cx e ann (J(F[G])) = soc (F[G\). Thus cx =

fcj eeF[G]e is in the socle and hence in the radical of the block ideal

corresponding to M. Therefore, c2

x — 0.

(c) We do not know how to generally proceed if F is not a splitting

field for M. The case F — R however will be treated in the next section.

§ 4. Real orthogonal representations

Let M be an R[G]-module and fix a symmetric, positive definite bi-

linear form ( , ) on M. Then [ , ] defined by

[v, w] = Σ (gυ, gw), υ, w e M,

obviously is a symmetric, positive definite G-form. It thus follows from

Theorem 1.3.

4.1 COROLLARY. Let M be an irreducible ~R[G]-module. Then there

exists an idempotent e e R[G] such that M ^ R[G]β and e = e.

4.2 LEMMA. Let e be a primitive idempotent in R[G] with e = e. Then

/ : = {vee~R[G]e\ϋ = v} = Re.

Proof. By Lemma 1.5, <u, w) — λx{vw), υ, w e R[G]β, is a symmetric

G-form on R[G]β. Moreover, < , ) is positive definite, and it holds that

<y, wά) = λi(vάw) = <uα, w;> for all a e eR[G]e.

Suppose that dimR/ > 2 and recall that eR[G]β = R, C or H, where H

denotes the quaternion skew-field. If eR[G]β ^ C, we choose i e eH[G]e

corresponding to the complex unit in C. It then follows for all 0 Φ υ e

R[G]β that

0 < (υi, vίy = (υii, u> = (vi2, u) = — (y, u> < 0,

a contradiction.

We may thus assume that βR[G]β = H. If dimR7 = 2, then / =

spanR<β, x) for some xeeR.[G]e and the elements of I pairwise commute.

Therefore, I is closed under multiplication and I = C. Consequently, if

dimR7 = 2 or 4, then J contains an element ί such that i2 = — e and we

proceed as in the last paragraph. We still have to consider the case
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dimR7 = 3, say I = spanR<e, x,y}. Let {e, i,j, k} be the canonical R-basis

of eR[G]e = H. After a suitable basis transformation we may assume

that x = i + μk and y — j + vk for μ, ι> e R. Since x2 = — e(l + μ2), we

obtain for 0 Φ υ e R[G]e

0 < (υx, vx) = (vx2, v} = - ( 1 + ^2)<u, u> < 0,

again a contradiction. This completes the proof. •

Let V be an F[G]-module (for an arbitrary field F) and < , ) a G-form

on V. Then the mapping

(x •-* < > >« > where <y, ι̂ >α = <y, αw;> ,

yields an isomorphism between EndF[ί?](V) and the F-space BG(V) of all

G-invariant bilinear forms on V (possibly degenerate).

Assume in addition that V = F[G]e for an idempotent e. The iso-

morphism eF[G]e ̂  E n d ^ / V ) is given by a H-> αα, where #α(ι>) = uα. Hence

« •-> < » >α , where <ϋ, w;>α = <ϋ, wa),

induces a vector space isomorphism between eF[G]e and BG(V). The

following serves as a substitute for Theorem 3.2.

4.3 PROPOSITION. Let M be an irreducible TR[G]-module. Then M

has exactly one symmetric G-form (up to R-scαZαr factors).

Proof. By Corollary 4.1, we may assume that M = R[G]e for an

idempotent e = e. Consider the symmetric G-form < , ) on M induced

by λι (see Lemma 1.5). Then every other G-invariant bilinear form on M

is given by < , >α for a unique a e eR[G\e. Now < , >α is symmetric if

and only if

<u, wa) = (v, ιυ)a = (w, v}a = (w, va} = (wά, v) = (v, wά}

for all v, w e M. This happens if and only if d = a, and Lemma 4.2 im-

plies that a = γe for some γ e R. Consequently, < , ) α = γ( , ), which was

to be proved. D

Let M be an irreducible R[G]-module. Using the form [ , ] and

Proposition 4.3, any given symmetric G-form < , ) on M may be assumed

to be positive definite. The group G is then said to be represented

orthogonally on M. It makes sense now to consider the unit sphere
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{xe M\(x, x} = 1} on M. Also a distance function d( , ) can be intro-

duced in the usual way by

d(x, yf = (x - y, x - y) , x, y 6 Λf.

4.4 THEOREM. Let G be represented irreducίbly and orthogonally on

the R-space M with respect to the form < , >.

a) Given xe M with (x, x} = 1,

is an idempotent satisfying both M ^ R[G]e and e = e. Here, elements of

M in the same G-orbit lead to G-conjugate ίdempotents.

b) Conversely, given e = ΣgςG<xgg an idempotent with M = R[G]β and

e = e, ίΛere, exists xe M with (x, x} = 1 and

<^x, Λ:> = IGI a^/dimRAf, geG.

Proof, a) Consider first xe M with <#, x> = 1, and choose the

idempotent e = βeR[G] with M ^ R[G]β according to Remark 3.5. By

Lemma 4.2, {v e eR[G]e\ΰ = v} = Re, and Proposition 3.6 yields

e = γcx = γ Σ (gx, x}g for some γ e R.
gea

The scalar γ again is determined by Lemma 3.4, namely

dimRM/|G| = λ1(e) = γ λx{cx) = r(x,x) = r .

Finally observe that replacing x by hx (he G) replaces e by heh~\

b) Assume conversely that e — e is given. Then Lemma 1.5 asserts

that

υ, weR[G]e,

defines a symmetric G-form < , ) ' on R[G]β = M. In particular,

(geG),

and Lemma 3.4 yields (e, ey — 1. By Proposition 4.3, there is a non-zero

γ e R such that <ι>, α;)7 = γ(v, w} for all v, w 6 R[G]β. Then 1 = <e, β)x =

γ(β9 e), and ^ > 0, since < , > is positive definite. Hence we may take x

to be V 7 e. •

For data transmission via a Gaussian channel, it turned out to be

successful to consider the codewords as G-orbits on the unit sphere of
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some Euclidian space R\ The question about reasonable lower bounds

for the minimal Euclidian distance—actually our motivation for this

paper—has only got partial answers. The following result was first proved

by D. Splpian in 1968. (See [BM; chap. 6] for this result and some

background in Coding Theory.)

4.5 COROLLARY (Slepian). Let G be represented irreducibly and or-

thogonally, but non-trίvίally, on the ΐί-space M with respect to the form

< , >. Let xeM with (x, x> = 1. Then

a) Σ*eβd(gx,xY = 2\G\.

b) // 9ΐ denotes any conjugacy class in G and ke% then Σgem d(gx, x)2

= 2 | 9 ΐ | ( l - X(k)lX(ί)\ where X is the character of M.

Proof, By Theorem 4.4, e = dimRM/|G] Σgec (gx, x)g is an idempotent

affording M.

a) Since M is not the trivial module, we have

o = ( Σ <gχ, * > £ ) ( Σ h) = Σ <gχ, * > Σ
gQG hβG gGG hβG

and therefore Σgeod(gx, x)2 = Σgea^O- - (gx, x» = 2\G\.

b) Since d(gx, x)2 = 2(1 — (gx, x})9 it amounts to show that

Σ <gχ, χ> = mW)IO) •

Put S = Σεevg a n d observe that e = X(ΐ)l\G\ ΣSGG (gx, x}g~ι. Thus (̂βSR)

= %(1)/|G| Σgem (gx, x) and it is therefore sufficient to show that λ^effi) =

(\m\l\G\)X(k). Let d = dimR EndR[σ](M)). Then ε = Z(l)/(|G|-d) ΣgeG t{g)g~ι

is the Wedderburn idempotent corresponding to M. We decompose ε =

e1 + - - - + es into primitive idempotents et e R[G], where e = ex and s — X(ϊ)/d.

Then ei — u^eUi for units ut e R[G]. Since

we obtain

(χ(i)/d)Λ(e3l) = Λ(εS) = χ(i)/(|Gi d) Σ *(g) = (x(i)ld)(\m\ι\G\)x(k)),
gem

which establishes the claim. •
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