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ON ε-APPROXIMATE SINGULARITIES OF AUTONOMOUS

SYSTEMS OF VORTEX TYPE

HIDEO OMOTO AND YOSHIFUMI KIMURA

§ 0. Introduction

Let us consider three vortex-filaments z5{t) with strength Γ) (j =

1, 2, 3) in the complex plane C. Then the system of motion equations is

given by

(E) *%- = V=ϊ Σ — ^ — U = 1, 2, 3).

This system (E) is defined on V = C3 — Δ, where Δ — {(zl9 z2, z3) e C3; z$ == zk

for j Φ k] is the super-diagonal set of C3. Let Sol(E) be the space of all

smooth solutions of (E) and let ψ : V->Sol(E) be a smooth map defined

as follows: For any a = (au a2, a^) e V, ψ(a) is the solution with initial

values a.

It is well-known (cf. [2], p. 260) that if three points a3 of a = (al9 a2, αr3)

make a regular triangle in C, then ψ(a) becomes a rotational motion

about these center of mass, which is called rigid-rotation. This solution

ψ(a) has no singular points (cf. Definition 2.1). Now instead of a, let

us take a(ε) = a + εβ as initial values, where ε is a small parameter and

β e C3. Then using computers, we find that ψ(a(ε)) has a singular point

at a time t = TQ(ε), and that jΓ0(ε) seems to approach asymptotically to a

log(l/ε) + b as ε -^ 0, for constants α, b (see Figure). We may set the

following problems:

(A) Is it true that 7Ό(ε)~αlog(l/ε) + b (ε->0)?

(B) If (A) is correct, explain how the above constants a and b are

determined from the given differential equations (E).

It doesn't seem that such problems have been treated yet.

In this paper we generalize the motion equations (E) on C to auto-

nomous systems of vortex type on Cm defined in § 1. We can also consider
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Figure. Integral curves of (E) with initial values
α i = - l , α 2 =l and (1) αr3=2.5ΐ; (2) α3=2.2i;
(3) α8=1.9ί;_(4) α8=1.8ΐ.
where I = Λ / ^ Ϊ Γ I = — 2, Γ 2 =l, Γ3=4.

the same problems with respect to ε-approximation of such autonomous

systems defined in § 2. Then we prove Theorem 3.6 in § 3 which solves

partially our problems.

In preparing this paper we have received useful advices and sincere

encouragements from Professor Y. Shikata. We would like to express our

cordial gratitude to him.

§ 1. Vortex-Hamiltonian structures

1.1. Notation. Let Cm be the space of m complex variables z], z*,

- . , z™. The elements of Cm are written as vectors of length m. We put

z0 = (zl, , zf) and

For any C°°-complex valued function / on Cw, we define the vector-valued

function d//dz0 by

Bf =

and for any smooth vector-valued function X — (X\ X2, •• ,Xm) on Cm,

the m X m-matrix dXldz0 associated with to the function X is defined by
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dX1 dX1

dX

17

dzQ 3Xm

1.2. Let us set Vo = Cm. We shall now consider motions of n-points
zj(f) (j — 1? * * , n) in VQ. First one notices that there is the canonical

Kaehler form Ωo on VQ, defined by

(1.1)

and that putting

(1.2)

Λ

(zQdz —

it follows that θ0 is a real 1-form on Vo such that

dθ, = β 0 .

Set V, - Cm, 0' = 1, , n) and let V = V, X X

let π5 be the j-th projection of V onto Fo> defined by

For each ,

πj(zu , zn) = Zj for fo, ., zn) e V.

DEFINITION 1.1. Let Γu , Γn be non-zero real constants and put

θj = πs(θ,), 0* = 1, , n).

Then

(1.3) 0 = Yj Γ θ •

is called ί/ie fundamental form with strength Γu , Γn on V. Further

(1.4) Ω = dθ

is a non-degenerate closed 2-form on V, and so we call (V, Ω) the sym-

plectίc manifold with strength Γu , Γn.

Let (V, Ω) be a symplectic manifold as in the above definition. We

can define the action of the general linear group GL{m, C) and the additive

group Cm on this space V as follows: For all geGL(m, C) and aeCm,

(i) g(zu , zn) = (g*!, , gen),

(i i) a(zu ,zn) τ= (a + zu - -,oc + z7l)
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for any (zl9 --,zn)eV.

In particular C* = C — {0} being regarded as the diagonal subgroup

of GL(m, C), V admits C*-actions. We denote by U(m) the unitary group

which acts on V.

Now let Δ be a closed subset of V with the following properties:

Δ is invariant under the groups U(m), C* and Cm respectively, and each

projection πά : V = V — Δ -> Vά is onto for j = 1, , n, V is also in-

variant under these groups. Here instead of (V, Ω) we take this open

symplectic submanifold (V, Ω) of V. Finally let H: V -> R be a smooth

function (called Hamiltonian function), satisfying the following three con-

ditions :

(a) U(m) and Cm-invariant.

(b) C*-semiinvariant, that is, for any a e C* and (zί9 , zn) e V,

H(azu , azn9 azu , azn) = H(zu -",zn9zl9 , z n ) + γlog|α|2, w h e r e
p s a real constant independent of a and (zu , zn).

(c) ddH=0,

where d and 5 mean the derivations of type (1, 0) and (0,1), respectively.

Thus the triplet (V,Ω,H) is called Hamiltonian structure of vortex

type.

DEFINITION 1.2. Let (V,Ω,EΓ) be as above. A real smooth vector

field X is called of vortex type if

(X.5) X J Ω = - dH.

Let X be of vortex type. We express this vector field X, using vector-

valued coordinates zu - - 9 zn oϊ V. X can be written as

X = Σ * M
7 = 1 7 = 1

where for each j , z5 = (̂ J, , zj1) a n ^ ^ ^s ^ e complex conjugate

and X^/3^ stands for χ^ = 1 X*

Then we find from (1.5)

(1.6) X, = - / ^

and

(1.60 Z j
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Moreover in terms of the condition (c) for H, it follows that the Xs are

anti-holomorphic vector-valued functions on V. Therefore integral curves

z(i) = (z^t), - , zn(t)) of X satisfy the following system of differential

equations, called an autonomous system of vortex type

(1.7) d ^ = XJ(zu . . . , Z v ) , ( i = l , . . . , „ ) .
t

§ 2. Singularities and properties of autonomous systems of vortex
type

We use the same notations as before.

DEFINITION 2.1. Let z(t) = (z^t), , zn(i)) be a solution of (1.7) and

let Kj : V -> Cm be the j-th projection as in 1.2 for j = 1, , n. This

solution z(t) is singular, more precisely jsingular, at a time t = t0 if there

exists an index j such that the image curve of Zj(f) = π3(z(t)) in Cm has

a vanishing derivative at t = f0, that is

= 0.

Now we assume that there exists a non-singular solution z(t) of (1.7)

with initial values a = (α ,̂ , orj e V at ί = 0. Let <ε(ί; ε) be the solution

with initial values 2(0; ε) = a + εβ for a small |e| > 0. Put

and

z(t;ε) =

which we call ί/ie ε-order approximation of z(ί; ε).

We now want to obtain a value ΐ0 of ί such that for some k,

(2.1) ^ ! L ( ί 0 ;

dt

For this purpose we write down a system of differential equations which

the above unknown vector-valued function w(t) satisfies. Set

where the X ; are defined by (1.6), then dz(t;ε)jdt = X(z(*;ε)). By differ-

entiation in ε,
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(2.2)
dt

or in the matrix form,

(2.20

dXX

dzn

\wj

which is the system of differential equations for the w's. Here one notes

that the BXJdZu are m X m-matrices. For convenience sake, let us put

(2.3)

A(z) =

f ( ί )
dz}

(Άn(z),
\Ani(z), '- ,Ann(z)ι

Then (2.2') can be written as follows;

(2.4)
at

= A(z(t))w(t)

where w(t) = '(w^t), , wn(t)). Putting z(0; ε) = a + εβ. We find that

w(t) is a solution of (2.4) with w(0) = β. From the above discussions our

problem is summarized as follows: Let z(t) be a non-singular solution of

(1.7) with z(0) = a and w(t) a solution of (2.4) such that w(O) = β. Then

the problem is to find a value tQ of t satisfying the following equation:

For some index k.

(2.5)
dt

We shall solve this problem in case where the above solution z(f) is

U(m)- or C*-solution defined in § 3.

2.2. In this paragraph we examine some properties of the vector field

X and the matrix A(z) which are defined in 2.1. First of all we obtain

the following

LEMMA 2.2. For ge U(m) and α e C * ,

(2.6) X(ga) = gX(a)
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and

(2.7) X(aa) = ±X(a).
a

Proof. Since the Hamiltonian H(z} z) is £/(m)-invariant, for any g =

(gab) e U(m) and aeV, we get

for *, = (*}, ...,«?).

Using matrix notations, (*) are expressed as

S-p-fc^-p^ for ally.

Therefore from Definition (1.6) of the Xj9 it follows

(2.8) Xjiga) = ιg-χXM), (j = 1, , 7i).

As g is unitary, we have (2.6).

Since H is C*-semiinvariant, (2.8) is also satisfied for a e C*, and so

(2.7) is proved. Q.E.D.

From this lemma and Definition (2.3) of the matrices Atj and A we

can prove immediately the following

PROPOSITION 2.3. For ge U(m) and αeC*,

(2.9) AtJ(ga) = gAvWg-1,

i.e.,

(2.90

(2.10) A ( α α ) = - ^ - A ( ά ) for a n y aeV.
a2

Finally we obtain the following proposition which states the so-called

angular momentum invariance.

PROPOSITION 2.4. We have

(2.11) Σ Λ ^ ; = 0,
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and

( 2 1 2 )

where Γό is the strength of the j-th point zs (j = 1, , n) and γ is the

constant defined in (c) of 1.2.

Proof. From Cw-invariance of H we get

3H(z + a, z + a) A dH Λ

^ = u

for a = (a\ , an) and a = 1, - -,m. Therefore from (1.6) we have

which shows (2.11).

(2.12) can be proved, using

dH(az, az)

9α
for α

= i j-i d^

Q.E.D.

In virtue of (2.11) we have the following

COROLLARY 2.5. The determinant \A\ of A is zero i.e.,

§ 3. The kinds of solutions

3.1. Rigid rotational solutions

3.1.1. We start from the following

DEFINITION 3.1. A solution z(t) of (1.7) is called a rigid rotational

solution or U(m)-solution with initial values a = (au , an) at t = 0, if

there exists a 1-parameter group S : R-> U{m), that is,

= exp tC for all * 6 Λ

such that

(3.1) z(t) = S(t)a ,

where C denotes an anti-hermitian matrix such that Ca3 Φ 0.
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Let z(t) be a [/(/nj-solution defined by (3.1). Then

Sa = X(Sa)

where S = dS/dt. It follows from (2.6) and C = S~ιS

(3.2) Ca = X(a).

Furthermore differentiating S(t)~ιX(S(t)a) = Ca with respect to t, we find

(3.3) Ά(a)Ca = C2a .

Now let z(t; ε) = z(t) + εw(t) be an ε-order approximation such that

z(0; ε) == a + εβ as explained in §2. Then w(t) satisfies

(3.4) *ψ>- = S(t)Ά(a)S(tYιw(t),

because of (2.4).

Let us set

(3.5) υ(t) = Sity'wit).

Then the system of linear differential equations for i'(Z) equivalent to

(3.4) is

(3.6) dψt = Ά(a)v(t) - Cv(t).
at

We introduce an it-linear map B : V ->V defined by

(3.7) S(f)= -Cξ+Ά(a)ξ, ξeV.

Using this map B, (3.6) is expressed in the form

(3.8) 4 ^ = B^ -
at

In order to solve (3.8), it is convenient to write down (3.8) in real forms.

We identify V with VR = Rmn X Rmn by the map φ defined as follows:

Let ξ = x + V^Λy e V for x and y real. Then

For simplicity we denote φ(ξ) = f. Let β(ί) = (ul5 u2) e VΛ, C = d + V^lCg,

and A(α) = At + ΛA^1A2. Then (3.8) is written in the space VR as follows;

(3.80
dt \v2



24 HIDEO OMOTO AND YOSHIFUMI KIMURA

where

(3.9) B = ( Aι - C,, - A2 + CΛ

\~A2- C2, - Λ + d/
If B(ξ) = Λf for some vector ξeV and a real number λ, then | = φ(ξ) is

an eigenvector of B corresponding to λ. As a consequence of it, we

obtain the following

PROPOSITION 3.1. B has the eigenvalue 0 and the vector Ca is the

^-eigenvector.

Proof. From Definition (3.7) of B and (3.3) we have

B(Ca) = - C2oc+ Ά(a)Ca = 0 .

But Ca Φ 0 from the assumption, which implies this proposition. Q.E.D.

Moreover we can show by direct calculations the following

LEMMA 3.2. Let us assume that

(3.10) CA(a) = A(a)C.

Then the characteristic equation of B is

(3.11) \(λE + C)(λE + C) - AA\ = 0 ,

where E is the unit matrix.

In particular in case of m = 1 we get following

COROLLARY 3.3. The matrix B has eigenvalues 0, — c, and — c. And

0 is of multiplicity JΞ> 2, where C reduces to the scalor matrix (c).

Proof. As m = 1, the condition (3.10) is automatically fulfiled. From

(3.11) and Corollary 2.5, — c and — c are eigenvalues of B. On the other

hand, (3.11) reduces to \(λ2 + cc)E — AA\ = 0, whence the multiplicity of

eigenvalue 0 is not less than 2. Q.E.D.

3.1.2. Now let us return to the discussions of singularities. Let

λu - - -, λι be eigenvalues of B and let mό be the multiplicity of λί9 (j = 1,

• , I). We denote by W(λj) the eigenspace associated with λ5 of multipli-

city ms\

W α ) - { f e V Λ ; α - J3)^f = 0}.

Remember v(t) is the solution of (3.8) with v(0) = β for β = x + V^ϊy e V.
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Since VR ® C is decomposed into the direct sum of W(λγ), , W(λL).

β = (x, y) 6 VR is expressed as a sum of W(^)-components of β. We say

that ^ is associated with β, if the W(^)-component is not zero.

DEFINITION 3.4. Let λ5 be an eigenvalue of B associated with β. λs

is called dominant for β, when

( i ) Re(λ j )>0,

(ii) R e ( y is greater than the real part of any other eigenvalue

associated with β,

where Re(λ) means the real part of λ.

In order to express the solution υ(t) of (3.8), using eigenvalues and

eigenvectors of B, we shall introduce the following notations: Let λ be

an eigenvalue of B and let /30 e W(X). If λ is real, we may assume that

/So is a real vector. At first in case where λ is real, we can write jS0, /30

in the forms

& = (*, y) e y β and β» = x + *Γ=ly e V.

With these notations let βu • • •, βt e W (̂-ί), and

( I ) P(ί) = c,j3, + ίc2i32 + + ί '- 'c.ft .

On the other hand if λ = α + V —16 is imaginary, we may write

βo = βt + f=ϊβι eVR®C

for β} = (xJt y,) e VΛ, U = 1, 2). Let

β} = Xj + V^Λy3eV, 0" = l,2)

and put for any real number ĉ  (j = 1, 2),

[/So : Ci, c2] = c^cos 6^-^ — sin bt-β2) + c2(sin bt- βx + cos 6Z β 2),

for a = Re(λ) and 6 = Im(λ). Further for any βu , βk e WΌ), we set

(II) P(ί) = [/§, : c n , c12] + ί[j§2 : c21, c22] + + ί*"1^ : cfel, cfc2] .

We call the above functions P(t) defined by (I), (II) for an eigenvalue λ9

W(^)-polynomial functions of degree k — 1. With these notations we can

express the solution υ(t) of (3.8) with initial values β. Let {λu •• , ί β ,

λu , λs, , ̂ β 4 l , , λτ} be all eigenvalues associated with β, where λ5

is complex-conjugate to λj9 (j = 1, , s) and ^β + I, , λr are real. Then

from the well-known theorem of differential equations with constant co-

efficients (cf. [3]) it follows
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r

where Λ; = α̂  + V —16^ and P/ί) are ^(^^-polynomial functions.

Remark. Let all notations be as above. Let β = Σy=ift + Σy=i βj

+ Σ*=β+iî *: ^ A ^ s a n eigenvector, that is, Bβj = λjβj, then Pj(t) is of

degree 0. Therefore for the ε-order approximation z(t\ ε) = z(t) + εS(t)v(t),

we have from (3.12) and z(t) = S(t)a,

(3.13)

Here we need the following.

DEFINITION 3.5. An eigenvalue λ of B is simply dominant for β if Λ

is dominant (cf. Definition 3.4) and if the VF(Λ)-component of β is the

eigenvector for λ.

Let us suppose that the above eigenvalue λr is simply dominant for β.

Then from the preceding remark

(3.14) P(t) = βr,

A Λ A

where /3r is the W(^r)-component of β.

Moreover we introduce a linear map Ak{a) : V^»Vk = Cm (k = 1, , n)

defined by

Afc(α)j80 = Σ AkJ(a)β0J

for any /30 = (/301, , /3Ow) e V. Finally we assume that for some index k,

there exists a non-zero real number δk such that

(3.15) Cak = βfcA(α)^r,

where a = (au , an) e V.

We say that the vector β satisfying (3.15) is k-dominant parallel to a

with a ratio-constant δk. Under the condition (3.15) for β, we have from

(3.13)

(3.16) d ^ t

ί £ ) = S(t)Άk(a){δkβr + εe

Let t = Γίε) be the solution of

(3.17) δk + εeλkt - 0 ,
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that is,

(3.170 nε) = -fl
λr

where the sign of ε is chosen such that 5fc/ε<0.

Now let || || be the usual norm on Cm. Since S(t) is unitary, Pά(t)

are W(^)-polynomial functions and aό — λr < 0 (j = 1, , r — 1), we obtain

in terms of (3.16) and (3.17), the following estimates of \\dzjdt\\ at t = T(ε)

for small |ε|, 0 < | ε | < δ:

(3.18) dzk(t;ε)

dt
Kr\e\»-Jr)

for an enough small positive number δ, where Kr is a constant independ-

ent of ε and fr denotes max{αi/Λr, , ar_Jλr}.

We can now resume the above conclusions in the form of

THEOREM 3.6. Let z(t) = S(t)a be a U{m)-solution and z(t; ε) a solution

with initial values a + eβ. Suppose that there exists a simply dominant

eigenvalue λr for β and that β is k-domίnant parallel to a with a real

ratio-constant δk, (1 ̂  k ̂  n). Then z(t; ε), the ε-order approximation of

z(t; ε), has the estimate for small |ε|:

(C) ^Kr\ε\«->*9
II dt

where

ε

and Kr, fr are constant as in (3.18) such that fr < 1.

In particular if s = 0 and r = 1, then

= 0.(D)
= T(ε)dt

Remark. Suppose ΓίΓ2 + Γ2Γ3 + Γ 3 Λ < 0 in the equation (E). We

take ctx = — 1/2, a2 = 1/2, α-3 = V — 3 as initial values. Then B has eigen-

values λ = V - 3 ( Γ 1 Γ 2 + Γ 2Γ 3 + /YΛ), - ,̂ ± 0, and ± v ^ l (Γ1 + Γ2 + Γ3).

Take ΓΊ = — 2 and Γ2 = 1. Then the eigenvector β corresponding to the

above simple-dominant root λ is 1-parallel to a = (au a2 α8). It is sufficient
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to take Γ3 = 2, a root of the equation V(X + 2)(X2 + AX + 4) - (2XΆ +

9X - 2) = 0.

3.2. C*-solutions

3.2.1. In this paragraph we treat an another kind of solutions.

DEFINITION 3.7. Let / be an open interval containing 0. A solution

z(t) of (1.7) with 2(0) = a is called a C*'Sθlutίon if there is a smooth

function / : /->C* such that

(3.19) z(t)=f(t)a (/(0) = l ) ,

where a = (al9 , orn) e V and all vectors aό are non-zeros.

Let z(t) — f(t)a be a C*-solution with initial conditions z(0) = «. Then

we have from (1.7) and (2.7)

ffa = X(^)

where / means d//oίί. Therefore // being constant, we can set

(3.20) c = ff

whence it follows

(3.21) ca = X(a).

Here putting c — a + */^Λb, we find by (3.20)

A|/p = 2α.
at

The solution f(i) of this differential equation under the initial condition

/(0) - 1 is

(3.22)
f(t) =

I/I2 = 2 α * + 1.
2α

If α = Re(e) is zero, then the solution z(t) reduces to [/(l)-solution. On

the other hand, if a Φ 0, then we can state the following

PROPOSITION 3.8. The Hamiltonian function H(z, z) is C*-inυariant,

i.e., the constant γ in (b) of § 1.2 is zero. Moreover it follows

(3.23) Σ Λ K I I 2 = 0.
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Proof. At first it follows from (2.12) and (3.21) that

Since Re(c) = a is non-zero and T is real, we find γ = 0, and so (3.23) is

proved. Q.E.D.

Now return to (3.21). Noting f(t)X(f(t)a) = cα, by (2.7) and (2.10)

(3.24) cα + Ά(a)a == 0 .

Here as before let £(£; ε) = z(t) + εf(t)v(i) be an ε-order approximation

with initial values a + εβ. To obtain differential equations which v(f)

satisfies, we take the independent variable τ as

d = { f f d

dτ ' " dt '

i.e.,

(3.25) τ = — log(2αί + 1).
2α

Then the system of differential equations for v(τ) is

(3.26) 4^-= - c u ( r ) + 3 ( α ) ϋ ( r ) .

Similarly as (3.7) we define an iϊ-linear map B : V —>V by

(3.27) B(z) = - ex + Ά(a)x

for any xeV, and so (3.26) can be written as

(3.28) dυ = S(ι ) .

Further we can write (3.28) in the real form

(3.280
dτ \ΪV 2

where v = vx + V^lu 2 and B is the real matrix of JB on ^ . From

Lemma 3.2 it follows that the characteristic equation of B is

(3.29) \(λ + c)(λ + c)E - AA\ - 0 .
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Thus we can prove the following

PROPOSITION 3.9. ( i ) — (c + c), 0, — c and — c are eigenvalues of

J5, and the vectors coc and \l — la are eigenvectors corresponding to — (c + c)

and 0, respectively.

(ii) The matrix A A has eigenvalues 0 and \c\2.

3.2.2. Let us return to the singularities of z(t; ε). Using d\dτ —

\f?dldt, we find from (3.26)

(3.30) lit)~ = ca + εA(Φ(τ)
dt

Assume the following conditions (F) are satisfied: (F) There is a simple-

dominant eigenvalue for β, say λ and β is ^-dominant parallel to a with

a real ratio-constant δk. Then put

(3.31) TM = £ ( ( - A) -i)

for a = Re(c). Then we can prove by the same procedures as 3.1.2 the

following

THEOREM 3.10. When the condition (F) is satisfied, the ε-approxίmation

z(t;ε) has the same estimates as (C) in Theorem 3.6 at t = T(ε).

In particular, if there is only one eigenvalue λ of B which is associated

with β and s simply dominant, and if β is ^-dominant parallel to a with

a real ratio-constant, δk, then

dzk

dt
= 0.

We may conjecture that the constants a, b in the problem (A) for the

motion-equation (E) are given by the same relations a = l/λrf b=(log—δk)lλr

appearing in T(ε) in Theorem 3.6.
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