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ON DETERMINING CERTAIN REAL QUADRATIC FIELDS

WITH CLASS NUMBER ONE AND RELATING THIS

PROPERTY TO CONTINUED FRACTIONS AND

PRIMALITY PROPERTIES

EUGENE DUBOIS AND CLAUDE LEVESQUE

§ 1. Introduction and preliminary results

Thanks to K. Heegner [He], A. Baker [Ba] and H. Stark [S], we know

that there are nine imaginary quadratic fields of class number one. Gauss

conjectured that there are infinitely many real quadratic fields of class

number one, but the conjecture is still open.

In a series of papers, R. A. Mollin [Ml, M2, M3] studied the class

number one problem for the so-called Richaud-Degert real quadratic fields

), where the square-free integer m is defined by

m = D2 + d with De N = {1, 2, •}, d e Z = {• , - 1, 0,1, . •}, d\4D.

R. A. Mollin and H. C. Williams [M-W], and independently S. Louboutin

[Lo2], gave a list of all the Richaud-Degert quadratic fields with class

number one. The first two authors showed that their list is complete,

with possibly one more value, which is however ruled out if one assumes

the general Riemann hypothesis (GRH). The last author assumed a certain

version of GRH.

If Q(V^) is a fixed real quadratic field such that m is square-free

> 1, then define the polynomial fm(x) by

fm(x) : = - x2 + x + m ~ 1 if m = 1 (mod 4),
4

fm(x) : = _ x* + m if m ξέ 1 (mod 4).

Define also

Δ : = m, ω : = (1 + ^/7n)/2 if m = 1 (mod 4),
Δ : = 4/n, ω : = */Jn if m ^ 1 (mod 4),

Received February 12, 1991.

157



158 EUGENE DUBOIS AND CLAUDE LEVESQUE

and consider ω = [α0, al9 , au •], the continued fraction expansion of ω.

Here at: = * "*" λ where for each i,

with

ί(l,2) if m = l (mod4),
o, W •- j ^ χ ) if m ^ ! ( m o d 4 ) 9

and α έ : = — ' ^ m , the greatest integer less than or equal to at.L (^i J
Finally, by definition, let

where r is the length of the primitive period of ω.

H. Lu gave in [Lu] a necessary and sufficient condition, involving

the continued fraction expansion of ω and the number of solutions of

certain Diophantine equations, under which the class number of a real

quadratic field is one. This is precisely the purpose of this paper to

apply his criterion to certain families of real quadratic fields previously

discovered by L. Bernstein [Bel, Be2], C. Levesque and G. Rhin [Le-R]

and C. Levesque [Le]. This will lead to certain criteria which must be

satisfied to have class number one.

Let us state H. Lu's result which we plan to use extensively.

THEOREM 1.1 (Lu). Let m > 1 be square-free and let h(m) be the class

number of the real quadratic field Q^Tn). Let λx(m) and λ2(m) be the

number of solutions of the two Diophantine equations

x1 + 4yz = Δ with integers x, y, z > 0 ,

x2 + 4<y2 = Δ with integers x, y > 0,

respectively. Let also ω = |αo> au , ar] be the development of ω as a simple

continued fraction with primitive period length r and let c be defined as

follows:

if m = 1 (mod 4), then c: = 0 when r is even with

r = 2n and an odd, and c : = 1 otherwise;
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if m =fc 1 (mod 4), then c: = 1 when r is even with

r = In and an odd, and c: = 2 otherwise.

Then

Moreover

r

h(m) = 1 if and only if c + Σ «* = >U/n) +

To use this criterion we remark that λx{m) = XI τ(fm(t)) where r(g)
denotes the number of positive divisors of g and where the sum is taken
over all integers t > Po, such that fm(t) > 0, i.e., Po < t < ω.

Lu's criterion is not the only elementary one which exists in the
literature. There are others, some of which we would like to give the
flavor of. Here is one of the first to be considered by different authors
[Lol].

THEOREM 1.2. The class number of the real quadratic field Q(^m) is

one if and only if E(m) contains the set

[p'.p is prime, p < V Δ /2 and X(p) Φ — 1},

where 1 is the character associated to Q(,y//n). In other words,

h(m) = 1 φ=> all the non-inert primes smaller than V^/Qo are in E(m).

In practice, if h(m) = 1 and if a prime p divides one of the QilQ^ then

there exists an integer j such that p — QjlQ0.

There is also what is called the real equivalent of the Frobenius-
Rabinowitsch criterion [M-W]. Let us quote S. Louboutin's version [Lo2].

THEOREM 1.3. h(m) = 1 if and only if for every integer v such that

0 < v < i/rh/Qo, the prime divisors of fm(v) smaller than ^m!QQ are in E(m).

Let us recall that the theorem of Frobenius-Rabinowitsch is charac-
terizing class number one imaginary quadratic fields with the help of a
primality property for the first values of a certain polynomial. In fact
an equivalent way of stating Theorem 1.3 is the following one, in which
one gets the full flavor of the Rabinowitsch-like criterion, in the sense
that the class number one property is translated into the behaviour of
the factorization over Z of fm{v).
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THEOREM 1.4. h(m) — 1 if and only if for every integer v such that

0 < v < ^rhjQ0, the part of fm(v) free from the primes of E(m) smaller than

*/m/Q0 is 1 or is a prime greater than ^/mlQQ.

Proof This follows from Theorem 1.3 if we note that fm(υ) < G/^/Qo)2-

Referring to Lu's theorem, we now want to give precisely which part

of λjjri) + λ2(m) contributes exactly to c + Σί=i α * ^n ^ac^> the v e r v defini-

tion of the class number h tells that h(m) is equal to the number of non

equivalent integral ideals of Q(^m). According to Lemma 11 of [Lu], the

number of integral ideals of Q(<s/m) equivalent to §ί = [1, ω] is c + 2jί=iα*>

where ω — [α0, au , ar] has primitive period length equal to r, so c +

2]<=i <*>i is precisely the cardinal of all ideals Si = [Q, (P + V Δ )/2] such that

P2 + 4QQ7 = A and such that Q appears as Qf.

It is now natural to define λ^m) and λ2(m) to be the number of

solutions of the two Diophantine equations of Theorem 1.1 with the as-

sumption that y, z e β(m), where

β(m) := {QJQt: 1 < ί < r, Q, <

Therefore c + 2]Γ=i α i i s equal to λx(ni), to which we add λ2(m) to take into

account the double contribution of the case Q = Qf.

When m Ξ£ 1 (mod 4), P 2 + 4QQ' = Δ & QQ; = /m(P/2). When m = 1

(mod 4), P 2 + 4QQ' = J φ QQ' - /W((P + l)/2). Moreover /w(ί) > 0 ^ Po

< ^ < ω.

Therefore, when we want to solve P 2 + 4QQ' = Δ with Q equal to Qt

for some i, we want to count how many times fm(t) (Po < t < ω) is equal

to QQf with Q equal to Qt for some i. It suggests to define

S(g) : = {b:b\g and either 6 e £(m) or ^/6 e B(m)},

and to let τ(g) be the cardinality of S(g),

Note the analogy of f with the function τ\τ(g) is the number of divisors

of g, while t(g) is the number of divisors of g having a certain property.

We now see easily that λjjri) + λ2(m) is equal to the sum of all the τ(fjt))

(t running from Po to [α>]), to which sum we add λ2(m).

In fact, we have proved the following.

THEOREM 1.5. c + Σ ί . i a, = Urn) + λ2{m) = λt{m) + Σpo^<ω *(/«(*)
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last sum being taken over all integers t > Po such that fm(t) > 0). Moreover

h(m) = 1 Φ=Φ> λ^m) = λx{m) and λ2(m) = λ2(m).

In each of the next sections, the strategy will be the following. In

a given parametric family of continued fractions, we will first determine

£(m), then we will calculate explicitly I2(m) + Σp o< ί < ωr(/w(0), which

quantity once equal to λ^m) + λ2(m) will provide certain primality condi-

tions equivalent to the unicity of factorization in

§ 2. The case m = (Ak + a)2 + A

Let m be the square-free integer defined in [Be] as

m : = (Afc + α)2 + A with A : = 2α + 1; α, & e N .

Here α even implies m = 2 (mod 4), and a odd implies m = 3 (mod 4), where-

upon m = a (mod 2). We shall always denote ά the remainder (0 or 1) of

the division of a by 2. It follows from N. Nyberg [N] and L. Bernstein [Bel,

Be2] that the primitive period length of the continued fraction expansion

of ΛJΊΫI is 6k. More precisely, ^rh = [aQy au , α3fc_i, α3fc, aZk_u , QΊ, 2σ0]

with

a0 = Ak + α, tfi = 2Afc"\ αg .̂j = 1, α3fc = α0 — 1, α6fc = 2α0,

and for k>2, we have

α8.-i = 1, α3s = A - 1, α3 s + 1 - 2A*— ι - 1, 1 < s < k - 1,

Q3s_2 = A ; Q3 S_! = 2Afc - 2Afc"s - A* + 2a + 2, Q3s = 2Afc-, 1 < s < k.

Since α3fc = α (mod 2), we have c = 2 — α, so

6fc A - l

c + | ] α . = 3Afc + 3α - 2k + 3 - a + 6 £ A*.

We can prove right away the following preliminary result.

THEOREM 2.1.

( i ) // a = 1 (mod 3) with a>l or if a = 2 (mod 3) with k odd, then

him) > 1.

(ii) If A is not a prime, then h(m) > 1.

Proof (i) In the former case, we have m = 1 (mod 3) and X(S) — 1,

so 3 is split. In the latter case, we have m = 0 (mod 3), so 3 is ramified.

Since a Φ 1 we have 3 g i?(m), whence the conclusion by Theorem 1.2.
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(ii) Let A be a composite number divisible by the prime q. Then

m = α2 (modq) and X(q) = 1, whence (7 is a split prime not in E(m).

Theorem 1.2 applies again.

In the rest of this chapter, we plan to apply Theorem 1.5. Let us

remark that the Diophantine equation xn + Ayz = Am implies xf = 2x and

comes down to x2 + yz = m. Therefore the number λjjri) of solutions

#' > 0, y > 0, z > 0 is equal to

2 τ(m - f) =
ί=0

We have the lower bound,

o

Σ
ί=0

and we plan to evaluate this last sum. We easily see that

£(m) = {1, 2, A\ A\2Aι\ 1 < t < k - 1},

though a few calculations are in order: for instance QZs^x > α0 = Ak + a

for 1 < 5 < k, k > 2. Therefore we want to count to factors of fm(s) =

7n — s2 of the following types:

( i )

(ϋ)

(iii)

(iv)

1 o r / m

2 or ί

A' or -

2A' or

<β),

Jβ)
2 '

L(s)
A1 '

L(s)

( 1 < k),

-, a<t<k-i).
2A'

We are therefore led to consider the following subsets of {0,1, , α0}:

S:= {a + 1, - a - 1 + A\a + A"}, T:= {0,1, •• ,σo}\S,

Gt : = {α + 1 + wA': 1 < u < A*-' - 1},

G't:= { - a - 1 + uAι: 1 < u < A*- - 1}, (1 < < < k - 1).

As far as the elements of the above sets are concerned, we have:

m _ (a + iγ = A\A* + 2a), m - (-a - 1 + A")2 = 2A"+\ m - αj = A,

m - (a + 1 + uA'Y = A'gt(u),

m - ( - a - 1 +
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with

gt(u) : = A21*-* + 2aAk~t - u2Aι - 2u(a + 1),

g't(u) : = A"-* + 2αAfc"< - a2 A* + 2u(a + 1) = &(M) + 4w(a + 1),

gt(u) ΈΞΞ 0 (mod 2) <=> M = 1 (mod 2) <=φ gt'(n) = 0 (mod 2).

When s runs through T, we let nx be the number of divisors of fm(s)

of type (i), and n2, the number of divisors of type (ii); so when s runs

through T, there are nλ = 2 c a r d ^ ) divisors of type (i) and n2 = card(!Γ)

+ 1 — ά divisors of type (ii) since

m - s2 = 0 (mod 2) <=> s == α (mod 2).

Note also that for all s e T, 2 Φ fm(s)/2, i.e., 4 Φ fm(s) = m — s2, since

4 + s2φm = (Ak + a)2 + A.

When s runs through Gt U G£ for a fixed Z, we let n3(t) be the number of

divisors of fm(s) of type (iii); we see that there are nz(t) = 2card(GίUG0

divisors of type (iii). Note here that for all s e Gt U G', A* is never equal

to fm{s)jA\ since the contrary implies ^(s) = A1 or ^(s) = A1; now g ί(s)>A ί

since A2*-* + 2αAfc~ί > (1 + u2)Aι + 2u(a + 1); in fact, this last inequality

is true for u = Ak~t — 1, as is easily seen, so it is true for 1 < u < Ak~ι — 1;

similarly, g[{s) = gt(u) + 4u(a + 1) > A*. Now let n4(£) stand for the number

of divisors of type (iv), so that there are n4(t) — card(Gf) + card(G£) divisors

of type (iv), since they occur when u = 1 (mod 2); note again that for all

s e Gt U Gί, 2A* is never equal to /m(s)/(2A0, since the contrary implies

gt(u) = AAι or g[(u) = 4Af; now ^X^) > 4A* since the inequality A2^* +

2αAfc-' > ( 4 + u2)Aι + 2u(a + 1) holds true for u = Ak~ι -2, the greatest

value of u such that ^ = 1 (mod 2). Similarly g't(u) > 4Af. Finally when

s runs through S, we let n5 stand for the number of divisors of the four

types, so that there are n, = 2(k + 1) + 2(k + 2) + 2 = 4k + 8 divisors of

the four types.

Therefore we obtain for k > 1,

Tyίii/ — o J — ίh\ " | At'2 "T" *^5 i" / ι I^Zy ) ~ι '^fi\*//

s=0 ί = l

= SCA11 + α - 2) + (1 - δ) + 4k + 8 + 2 Σ 3(A*-' - 1)
ί = l

= 3Afc + 3α - 2Λ + 3 - a + 61] A ' .

In conclusion we have that c + X ^ α * is equal to ]ζts>o ̂ (/n — ί2) if



164 EUGENE DUBOIS AND CLAUDE LEVESQUE

and only if λ^πi) = 0 and the only divisors of m — f are those of either

type (i), (ii), (iii) or (iv). We can now state the following theorem in

which m is defined at the beginning of the chapter, gt(u) and g[(u) are

as before, P stands for the set of prime numbers and 2P: = {2p :peP}.

THEOREM 2.2. h(m) = 1 £3 the following conditions are satisfied:

( 1 ) A e P, Ak + 2a e P;

( 2 ) g[(u) and gt(u) e P\J2P for 1 < t < k - 1, l<u< A k ~ ι - 1 and

u^O (modA);
( 3) m - v2 e PU2P for 0 < υ < Ak + a - 1, υ Ξ£ ± (a + l)(mod A);

(4) m is not the sum of two squares.

Moreover, this last equivalence holds true for (k, a) e {(1,1), (1, 3), (2,1),

(2, 2), (3,1)}, i.e., for m e {19, 103, 107, 734, 787} and at most for one extra

case {ruled out by GRH).

Proof, It remains to prove the last assertion, i.e., to find all the

pairs (k, a) for which h(m) = 1. Like a few authors we will use the

theorem of Tatuzawa [T] which states that with at most one possible

exception

- > δ > 0 and Δ > Max(e^, e112) = > L(l, 1) > 0.655<5zf-*.

(By the way, J. Hoffstein [Ho] gives better bounds but the theorem of

Tatuzawa is easier to use.) Recall that

h(m) = ΛΛJL(1, X)I(2R),

where R is the regulator of Q(Λ/ίn), i.e., the logarithm of the absolute

value of

- ( •

Ak + a + Vm Y* (Ak + a + 1 +

We need use an upper bound, εUί for ε (hence for R) and a lower

bound, Δu for Δ. Since we have Ak + a < jm < Ak + a + 1, we deduce:

Δ > Λ : = 4A2fc and ε < εu := 22fc+1A2(Afc"1 + l)2 f e + 2.

By Tatuzawa's theorem with δ = 1/15, we know that if Δt > 4A2fc > e15,

then h > 0.655Jf/30/(301og(εJ). Now this last term is > 1 for h > x and

a > y with (x,y) = (1,625), (2,25), (3,8), (4,4), (5,3), (6,2), (9,1) respectively.

We conclude that with one possible exception, h > 1 for the above con-
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sidered values of k and a under consideration, since the lower bound
Δ > e15 is secured in each case. To determine the candidates for the
triviality of the class number among the remaining values left aside by
the restrictions k > x and a > y, one uses either Theorem 2.1 or the con-
ditions (i) to (iv) of Theorem 2.2, or a table of class numbers. In the case
k = 1 for instance, only ten values of a (namely 1, 3,18, 69, 78, 99,168, 309,
330) satisfy 2a + 1, 4a + 1 e P and m e PU2P. Hence the conclusion.

EXAMPLE. Let k = 1, i.e., m = 9α2 + 8α + 2 with α e N and m square-
free. Then h(m) = l ^ α = l o r 3 (or one extra value ruled out by GRH)
^Φthe following conditions hold:

(1) 2a + 1 and 4a + 1 e P;
( 2) m — ι>2 e 2P for every υ with 0 < i; < 3α — 1, v = a (mod 2), v Φ a;
( 3 ) m — f2 e P for every i; with 0 < ϋ < 3α — 1, υ Ξ£ α (mod 2),

i; ^ α + 1;
( 4) m is not a sum of two squares.

§ 3. Other parametric families

In this chapter we shall deal with 15 other parametric families of
real quadratic fields Q(y^) for which it is always ASSUMED m ΈJΞ. 1
(mod 4) and m square-free. To save space we will refer to the original
papers for the α/s and the Q/s. The letter / is saved for the primitive
length of the continued fraction expansion of */m, c is defined in Lu's
theorem and ε will denote the fundamental unit of Q(Λ/m). The proofs
follow the pattern of the last chapter, the integers nu n2, nz, nk and n5

have a meaning similar to that of Chapter 2, and the details are left to
the reader. Unless otherwise specified, a, k e N, A : = 2a + 1, E: = 4a — 1,
B : = 2 α - 1 .

3.1. Let us consider the case considered by N. Nyberg [N] and L.
Bernstein [Bel, Be2]:

m : = (Ak - a)2 + A .

We have

m = a (mod 2), I = 6k — 2 and

Ak - a + *Jm \2k(Ak - a - 1 + </mf
- ( •

We easily find:
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£(m) = {1, 2, A\ A\ 2Aι: 1 < t < k - 1}, c = 2 -a;

S:={a + l } U { - α - 1 + A\ - a + Afc}, T : = {0,1, -",A f c - a}\S;

Gt : = {α + 1 + wA<; l<w<A f c- e - 1, uφA*'1 - 1 when t = 1},

G; : = {- α - 1 + uAι: 1 < a < Ak~ι - 1},

&(M) : = A2*-' - 2aAk~t - u2Aι - 2u(a + 1),

g&u) : = A(w) + 4^(α + 1), (1 < ί < k - 1);

Fi! = 2(Afc - α - 2) for k>2, nx = 2α for A = 1, ra2 = A;ί - α - 1 - α,

n,(ί) = 4Afc-έ - 4 (ί > 1), Λ,(1) = 4A*"1 - 6, τι4ft) = 2Afc"έ - 2,

n5 = 4k + 6 for k > 2, n5 = 6 for k = 1;

Σ f(m - s2) = 3Afe - 3α - 2A - 1 - a + 6 ̂  A* = c + Σ αi

THEOREM 3.1.1.

( i ) ί / α = 2 (mod 3) with k even or if a = 1 (mod 3) w£Z/ι α > 4, £/ιeτι

A(m) > 1.

(ii) If A is not prime, then h(m) > 1.

Proof.

( i ) In the former case, m = 0 (mod 3), 3 is ramified and 3 g ϋJ(m) as

seen in [Bel], so Λ(m) > 1. In the latter case, m = 1 (mod 3), 3

is split and 3 g -E(m), whence /ι(m) > 1.

(ii) As for Theorem 2.1 (ii).

THEOREM 3.1.2. h(m) = 1 Φ3 ίAβ following conditions are satisfied:

( 1 ) A e P ami /or k > 1, Afc - 2a e P;

( 2) gt(w) and ̂ ( M ) e P U 2 P for 1 < * < £ - 1, 1 < w < Afc-f - 1 (though

uφAk~ι — 1 if gι(u) is considered) and u^O (modA);

( 3) m - v2 e P U 2 P for 0 < i; < Afc - a - 1, u ̂  ± (a + 1) (mod A);

( 4 ) m is not the sum of two squares.

Moreover this last equivalence holds true for (k, a) e {(1,1), (1, 2), (1, 3),

(1, 5), (1, 6), (1,11), (1,18), (2,1)}, i.e., for me {7, 14, 23, 47, 62, 67, 167, 398}

and at most for one extra case (ruled out by GRH).

Proof. We proceed as for Theorem 2,2. By [T] with δ = 1/15 we have

h > 1 for k > x and a > y with (x, y) = (1, 900), (2, 25), (3, 8), (4, 4), (5, 3),

(6, 2), (9,1) respectively and we have only eight (or nine) cases for which

h(m) = 1. For these eight values of m the quadratic field is of Richaud-

Degert type [M-W].

3.2. In [Bel, Be2], L. Bernstein dealt with the case
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m: = (Ak + a + I)2 - A,

for which we know

m Ξ£ a (mod 2), I = 4k + 2 and

_ (Ak + a + 1 + <Jm\2k(Ak + a + Jm)2

ε~\ A ) 2

Here we get:

E(m) = {1, 2, A\ A\ 2Aι\ 1 < t < k - 1}, c = 1 + a;

S:= {a, -a + A\a + A\ Γ :={0, l , •• , A * + a]\S;

Gt:= {a + uAι: l<u<Ak-1 -1} , G't : = {- α + uAι: 1 < w< Afc"ί - 1},

ft(M) : = A2fc-' + 2(α + l)Au-1 - u2Aι - 2au,

+ 4αι/5 (1 < t < k - 1);

= 2Afc + 2a - 4, n2 = Afc + α - 3 + α, n5 = 6^ + 8,

-* - 1), Λ4(0 =

f] τ(m - s2) = SAk + 3α + 1 + a + 6 2 A* = c + 2 α<.

THEOREM 3.2.1.

( i ) If a Ξ£ 2 (mod 3) and a > 2, then h(m) > 1.

(ii) If A is not prime, then h(m) > 1.

Proof.

( i ) If a = 1 (mod 3), then m = 1 (mod 3), 3 is split whence the con-

clusion since 3 β S(m) (as seen in [Bel]). If a = 0 (mod 3), then

m = 0 (mod 3), i.e., 3 is ramified, whereupon /ι(m) > 1 since

(ii) As before.

THEOREM 3.2.2. h(m) = 1 ζ=$ the following conditions are satisfied:

( 1 ) A e P, Ak + 2a + 2 e P;

(2) gXu) and gfta) e P U 2 P /or 1 < t < k - 1, l<u< Ak-C - 1,

u ^ 0 (mod A)

( 3 ) m - u2 e P U 2 P /or 0 < <; < Afc + a - 1, u ^ ± a (mod A);

( 4 ) m is not the sum of two squares.

Moreover this last equivalence holds true for (k, a) e {(1, 1), (1, 2), (1, 5), (2,1),

(3,1)}, i.e., for m e {22, 59, 118, 278, 838} and at most for one extra case

(ruled out by GRH).



168 EUGENE DUBOIS AND CLAUDE LEVESQUE

Proof. As for Theorem 2.2. By [T] we have h > 1 for k> x and

a > y with (*, y) = (1, 355), (2, 25), (3, 8), (4, 4), (5, 3), (6, 2), (9, 1) respectively

and we have only five (or six) cases for which h(m) = 1.

3.3. Let us now concentrate on the following family of L. Bernstein
[Bel, Be2]:

m : = (Afc - a - I)2 - A, a > 2, k > 2.

We have

m =jέ α (mod 2), Z = 8A — 4 and

* ~ a - 1 + V"* \2*(Afc - α

We easily find:

= {1, 2, Af, 2A f: 1 < ί < fe - 1}, c = 1 + a;

S:={a}> Γ :={0, l , . . ., Afc - α - 2}\S;

G, : = {α + i/A*: 1 < w < Afc"£ - 1, M ̂  Ak~ι - 1 when ί = 1},

Git- {- α + uAι'Λ< u < Ak~ι - 1},

gt(u) := A2fe-ί - 2(α + 1)4*-' - u2A£ - 2ι/α,

A'(w) : = ft(w) + 4aα, (1 < ί < h - 1);

nj = 2A* - 2a - 4, n2 = Afc - α - 1 + ά, τι5 = 2fe + 2,

= 4Afe-ί - 4 (except n,(l) = 4Afc'1 - .6), n4(ί) = 2Afe"ί - 2

(1 < t < k - 1);

s2) = 3A* - 3α - 4^ - 5 + δ 4- 6 Σ A* = c + Σ
i l

THEOREM 3.3.1.

( i ) If a ~ 1 (mod 3) M ^/I α > 4 (απ,d k > 2), ί/ιeτι /ι(m) > 1.

(ii) // A is not prime, then h(m) > 1.

Proof

1 i ) We have that m = 1 (mod 3) and 3 is split. By [Bel], 3 g JE(m),

whence the conclusion.

(ii) As before.

THEOREM 3.3.2. h(m) = l^the following conditions are satisfied:

(1 ) A e P, Afe - 2α - 2 € P ;
( 2 ) gt(M) and g[(u) e P U 2 P for 1 £ t £ k - 1, l<u< A k - C - 1

(though u Φ A k ~ ι — 1 if gλ(u) is considered) and u ^Ξ 0 (mod A);
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( 3 ) m - υ* e PΌ2P for 0 ^ v ^ Ak - a - 2, v Ξ£ ± a (mod A);

( 4 ) m is not the sum of two squares.

This last equivalence holds true for (k, a) e {(2, 1), (2, 2), (3, 1)}, i.e., for m

e {46, 479, 622} and at most for one extra case (ruled out by GRH).

Proof. We proceed as for Theorem 2.2. By [T] we have h(m) > 1

ίov k>x and a>y with (x, y) e (2,25), (3,8), (4,4), (5,3), (6,2), (9,1)

respectively and we have only three (or four) cases for which h(m) = 1.

Remark. The case where k — 1 and m = (a — I)2 — 2 is a Richaud-

Degert case already considered by R. Mollin [Ml] and S. Louboutin [Lol].

Here h(m) = 1 & m - v2 e P U 2 P for 0 < v < a - 2 φ m 6 {2, 7,14, 23, 47,

62,167, 398} and at most for one extra value (ruled out by GRH).

3.4. Let us concentrate now on a parametric family considered by

C. Levesque and G. Rhin [Le-R]:

m : = (2aEk + a)2 — 2aEk, 25: = 4α — 1, a odd and square-free.

It is known that

/ = 6* + 4 and e = figff' + 2 α - 1 + V
2α

Here we have:

E(m) : = {1, 2α, JS4, 2αίJ ί: 1 < t < k), m == 3 (mod 4), c = 1;

S : = {α, - a + 2aE\ a + (2a - l)Ek}, T:= {0,1, . . , 2α£fc + a - 1}\S;

G, : = {α + wE f: 1 < u < 2aEk~t - 1},

Gf

t : = {- a + uE<: 1 < u < 2aEk~t - 1},

gt(u) := 4a2E2t't + ±a2Ek-1 - 2aE*-' - uιEι - 2ua,

gt(u) ΞΞ 0 (mod 2a)^u~0 (mod 2a) & g't(u) = 0 (mod 2α).

Let us look at the contribution of the elements of j£(m) as divisors of

m — s2: when s runs through T, there are nx = 2 card (ϊ7) = 4α£Jfc — 2α — 6

divisors of m — s2 of the type (i) (i.e., of the form 1, m — s2), and there

are n2 = 2[(2α#fc + α - l)/2α] = 2iEfc divisors of the type (ii) (i.e., of the

form 2α, (m — s2)/(2α)). When s runs through Gt U Ĝ , there are n^t) = 2

card (GίUGO = 8α£k-fc - 4 divisors of the type (iii) (i.e., of the form E\

(m - s2)IEι) and there are n<(t) = 4[(2αJ5fc"ί - l)/(2α)] = 4£ f t" ί - 4 divisors

of the type (iv) (i.e., of the form 2aE\ (m - s2)l(2aEι). The set S contri-



170 EUGENE DUBOIS AND CLAUDE LEVESQUE

butes to n5 = 6ft + 8 divisors. So we obtain

α 0 fc-1 i

Σ #(m - s2) = (4α + 2)£* + 2α - 2k + (8a + 4) Σ # ' = c + Σ <*<

THEOREM 3.4.1. If a>l, then him) > 1.

Proof. For g, a prime dividing α, we have g | m, q<. *Jm and <? g 25(ra).

(Another reason is that for α > 1, 2 is ramified and 2 € E(m).)

THEOREM 3.4.2. Let a = 1. TTieπ /ι(m) = l^the following conditions

are satisfied:

(1) 2 3 f c + l e P ;

(2) /or 1 < ί < ft, 1 < u < 2.2>k-1 - 1 and u Ξ£ 0 (mod3), g£(w) and

g't(u)ePΌ2P;
(3) m _ u 2ePU2P/or 0 < u < 2 3fc, u ̂  + 1 (mod 3).

Moreover this last equivalence holds true for k = 1 (m = 43) and aί most

for one extra case (ruled out by GRH).

Proof. As for Theorem 2.2, we use [T] to get h > 1 for k > 9; then

we find h = 1 for one case (or two).

Remark. If we had stated Theorem 3.4.2 for arbitrary α, one of the

conditions would read gt(u)e PΌ2P, which clearly cannot always be

fulfilled for ft > 2 and a > 2, since 2α|^(2α).

3.5. We want to concentrate on this family:

m := (2aEk — α)2 + 2aEk, E:= 4a — 1, α odd and square-free.

It was shown in [Le-R] that

l = 6k + 2 and « = (4 α £* ~ 2 α + 1 + V ^ g ^ * - α + 0*? .

Here we get

^(m) : = {1, 2a, E", E\ 2aEι :1 < t < k - 1}, m = 3 (mod 4), c = 1;

S:= {a,- a + 2aE", - a + (2a - 1)E*}, T:= {0,1, , 2aE" - a]\S;

Gt:= {a + uEl:l<u< 2aE"-t - 1, u ψ 2a - 1 if t = k),

G't := {- a + uEι: 1 < u < 2aE»-1 - 1},

gt(u) : = 4α«JS**-' - 4α2£*-t + 20^"-' - «'£' - 2«α,

ίί(u) := gt(u) + 4ua, (l<t<k);

gt(u) = 0 (mod 2a) & u = 0 (mod 2α) Φ̂  ̂ '(w) = 0 (mod 2a);
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n, = 4aEk - 2a - 4, n2 = 2E\ rc5 = 6k + 6,

*-* - 4 (t > 1), n8(l) = 8α - 6, njfi) = 4£ fc- ί - 4;
OQ

2
8 = 1

- s2) = (4a + 2)£fc - 2α - 2fc + (8α + 4) 2] # ' = c
ί 0

THEOREM 3.5.1. If a>l, then h(m) > 1.

Proof One proceeds as for Theorem 3.4.1.

THEOREM 3.5.2. Let a = 1. ΪTien Mm) = 1 & the following conditions

are satisfied:

(1) 2 - 3 * - l e P ;

(2) /or 1 < t < k, 1 < u < 2 3*-t - 1 αrad M = 0 (mod 3), gt(u) and

gί(u)ePU2P;

( 3 ) m - υ 2 e P U 2 P /or 0 < u < 2 3fc - l , u ΐ + l (mod 3).

Γ/iis last equivalence holds true for k e {1, 2}, i.e., for m e {31, 307}, and at

most for one extra case (ruled out by GRH).

Proof. As for Theorem 2.2, we have h(m) > 1 if k > 7.

3.6. This section is devoted to this family:

m : = (α#fc + α)2 - α#*, E:= 4a - 1, α square-free > 1.

It was proved in [Le-R] that

+ 2a ' l + Vand z - (V

If α = 2 (mod 4) then m = 2 (mod 4). If α = 1 (mod 4) with k even or

if α = 3 (mod 4) with k odd, then m = 3 (mod 4). Moreover

£(m) : = {1, α, ίJ4, α ^ : 1 < t < k], c = 2;

S: ={a,-a + aEk], T:= {0,1, ., aEk + a - 1}\S;

G£ : = {a + uEt: 1 < u < α E ^ ' - 1},

G[ : = {- α + uEι: 1 < u < aEh'1 - 1},

gt(u) := a'E216-' + 2a1Ek-t - aEk~ι - u2E' - 2ua,

g't(u): = gt(u) + 4uay (1 < t < k)

n, = 2α£ f c + 2α - 6, n2 = 2αίJfc, n5 = 6k + 8,

n3(ί) = 4aEu-1 - 4, n4(ί) = 4J5fc"ί - 4, (1 < t < k);

Σ τ(m - s2) = (2α + 2)Ek + 2a - 2^ + 2 + (4α + 4) Σ Eι = c + £ ^
i0 ί l
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THEOREM 3.6.1. If a Φ 2, then h(m) > 1.

Proof. If a Φ 2, then 2 g E(m) and 2 is ramified. Hence h(m) > 1.

THEOREM 3.6.2. Let a = 2. 7%en Λ(m) = 1 φ ί/ie following conditions

are satisfied:

( 1 ) 2 7fc + 3 e P ;

( 2) gXtt) and gt'(w) e P U 2 P for 1 < t < k, l<u< 2-T~l - 1 and

M ^ 0 (mod 7);

( 3 ) m - v2ePU2P for 0 < ι ; < 2 7fc + 1, υ φ 0 (mod 7);

( 4 ) m is not the sum of two squares.

In fact, those conditions hold simultaneously for at most one value of k

(ruled out by GRH).

Proof By [T], we have h > 1 for k > 7. No k < 6 gives h = 1.

3.7. In this section we deal with the family [Le-R]:

m : = (α£* - a)2 + α# fc, 25 : = 4α — 1, α square-free > 1.

We know that

( 2E* ^ + ^ + Vγ(E> - aand « =
E

If a = 2 (mod 4) then m = 2 (mod 4). If α = 1 (mod 4) with ^ even or if

a Ξ 3 (mod 4) with £ odd, then m = 3 (mod 4). Moreover

£(m) : = {1, α, ̂ fc, £ ' , αί : £ : 1 < t < Tz - 1}, c = 2;

S : = {o, - α + α£fc}, Γ : = {0,1, •• ,α£;fc - a]\S;

Gt:= {α + uEι\l<u< aEk~ι - 1},

Gί : = {- a + MJE*: 1 < u < aE«-1 - 1},

gt(u):= a'E™-* - 2α22S*-t + aEh'1 - u2Eι - 2ua,

- 2a - 2, n2 = 2Ek - 2, n5 = 6k + 6,

-1 - 4, n4(ί) = 4£τfc"ί - 4;

Σ τ(m - s2) = (2α + 2)£fc - 2α - 2k + (4a + 4) ΣE* = c + Σ α*.
s = 0 i = l i = l

THEOREM 3.7.1. If a Φ 2, ί/iβn Λ(m) > 1.

Proof. It a Φ 2, 2g E(m) and 2 is ramified. Hence h(m) > 1.

THEOREM 3.7.2. Let a = 2. J%en Λ(m) = 1 ̂  ίΛe following conditions
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are satisfied:
(1) 2 7 f c - 3 e P ;
(2) g(u) and g[(u) e P U 2P for 1 < t < k, l<u<2Ίlc't -1 and

UΈ£O (mod?);

( 3 ) m - v2eP\J2P for 0<υ<2Ίk - 2, v Έ£ 0 (mod 7);

( 4 ) m is not the sum of two squares.

In fact, those conditions hold simultaneously for k = 1, i.e., for m = 158,

and at most for one extra case (ruled out by GRH).

Proof. By [T] we have h > 1 for k > 5.

3.8. Let us concentrate on this family considered by C. Levesque

and G. Rhin [Le-R]:

m = (aFk + af - Fk, F: = 4α2 - 1 and k even, m = 3 (mod 4).

It is known that

/ = 3* + 2 and « ,

We come up with:

β(m) = {l,Ft:l<t<k}, c = 1;

S : = {α, - α + αF*}, Γ : = {0,1, . , aF* + a - 1}\S;

G£ : = {α + uFι: 1 < u < aF^1 - 1},

G't : = {- α + uFι: 1 < w < αF*" 4 - 1},

nx = 2aFk + 2a - 4, n5 = 3k + 4, n3(£) = AaFk-1 - 4,

(no need of n2 = 0, n+(ί) = 0);

+ 2a - k + 4a J F = c + Σ σt.

THEOREM 3.8.1. Λ(m) > 1.

Proo/. By Lu's theorem, to have h = 1 forces F = (2a + l)(2α — 1)

to be prime, i.e., a = 1. Moreover it forces a2Fk + 2a2 — 1 = 3fe + 1 to

be prime, which never happens. Another argument comes from the fact

that 2 is ramified and 2 g E(m).

3.9. Another family of C. Levesque and G. Rhin [Le-R] for which

F:= 4α2 - 1, is:
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m : = (aF* - of + F", k odd, m = 3 (mod4).

It was proved that

, oh, i J / 2aΨk - 2α2 + 1 + 2a Jm \*y „* .

/ = 3« + 1 and ε = I -j %—I (aF" — a +

We then find:

£(m) = {1, F': 1 < ί < k - 1}, c = 1;

S : = {α, - α + σF*}, Γ : = {0,1, , aF" - a}\S;

Gt := {a + uF>: 1 < u < aFk-1 - 1},

G't : = {- a + uFι: 1 < u < aFk-> - 1},

gt(u) : = aΨ2"-' + 2aΨ*-' + Fk~ι - u l P

n, = 2aF* - 2a - 2, n5 = 3έ + 3, n3(t) = 4αF k-' - 4;

2 #(m - s2) = 2αFl; - 2α - k + 1 + 4a Σ F£ = c + £ o,.
s = 0 ϊ = 0 ΐ = l

THEOREM 3.9.1. // w > 7, ί/iβn Λ(τn) > 1.

Proof, By Lu's theorem, to have h = 1 forces F to be prime, i.e.,

a = 1. Moreover it forces m — a? = a2Fk — 2α2 + 1 = 3& — 1 to be prime,

which is possible only for k = 1. Note also that 2 is ramified and that

2 £ JS(m) for (α, A) =£ (1,1).

3.10. C. Levesque [Le] took B = 2α — 1 with α > 1 in the following

parametric family:

m : = (αJBfc — α)2 + 2αSfc, α odd and square-free ,

and proved that

l = 6k-2 and £ ^ (aB* - a + I + ̂ ϊn γ (aB* - a + ,/mf
B I 2a

Let us illustrate Theorem 1.5. Here we have (cf. Section 3.4 for the

details of the argument):

£(m) : = {1, 2a, B\ B\ 2aBι: 1 < t < k - 1}, c = 2;

S:={a, -a+ aB*,aBk-a+ 1}, Γ : = {0,1, ,αJB f c- α + 1}\S;

Gt : = {α + MS* : 1 < M < αB""' - 1, w ̂  ^S*"1 — 1 if ί = 1},

Gί : = {- a + uBι: 1 < u < aBk~ι - 1},
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gt(u) : = α 2 ^ " - ' - 2a2B"-t + 2aBk-1 - u2Bι - 2ua,

g't(u) = gt(u) + 4ua, (l<t<k);

gt(u) = 0 (mod 2a) <=> a \ u with odd u φ g't{u) = 0 (mod 2α);

n, = 205* - 2o - 2, n2 = B" - 1, n5 = 4& + 6, ns(l) = 4αB>:-1 - 6,

rφ) = AaB"-' - 4 (2 < ί < k), n«(ί) = 2B*-4 - 2 (1 < ί < k).

2 #(ι» - s2) = (2a + 1)B* - 2a - 2& + 1 + (4α + 2) £ JB4.

THEOREM 3.10.1. Λ(m) > 1.

Proof. By Lu's theorem, to have h = 1 forces 2α to be prime, a

contradiction since α > 1. Another argument is that 2 g S(m) and 2|2α

3.11. The following family was also considered in [Le]:

m : = (αBΛ + a)2 - 2αBfc, 5 = 2a - 1, α > 1 odd and square-free.

It was proved that

Z = β* and ε = / ^ f c + α - l + ^ f ( ^ + α + Vm)2

V B / 2a

As before, we will only illustrate Theorem 1.5. Here

E(m) : = {1, 2o, J3fc, B', 2αβ f : 1 < t < k - 1}, c = 2;

S : = {α, - α + αSΛ, αβfc + α - 1}, T = {0,1, , αΰ fc + a - 1}\S;

Gt:= {a + uBl\l<u< aBk-1 - 1},

G[ := {- a + uBι: 1 < u < aB*-' - 1},

gt(u):- <ΛB"-' + 2^5*" '

gt(u) = 0 (mod 2a) & a \ u with odd u (=} g't(u) = 0 (mod 2a)

JZ at = (2o + 1)B* + 2a - 1 - 2k + 2(2a + 1) £ B*.

As in Section 3.4, we find

Λj = 2aBk + 2a - 6, n2 = Bk - 1, n3(ί) = 4αJB*-ί - 4,

M4(ί) = 2Bkt - 2, M5 - 4fe + 8,

Σ τ(m - s2) = (2α + 1)5* + 2α - 2k - 1 + (4α + 2) ^ S * .
s=0 i=0

THEOREM 3.11.1. him) > 1.
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Proof. This follows from 2 g E(m), 212a = Q3fc, or from Lu's theorem

as before.

3.12. We take from [Le] the case:

m := (aAk + α)2 + 2aAk, a odd and square-free,

for which

l = 4k + 2 and ε = ( "A* + a - 1 + </m γ(aA> + a + Jnϊ)\
\ A / 2a

To illustrate Theorem 1.5, one finds

£(m) : = {1, 2σ, A&, A', 2αA<: 1 < * < k - 1}, c = 2;

S : = {α, - α + αA*, α + αAfc}, Γ : = {0,1, . , αAfc + α}\S;

G, : = {α + uAc: 1 < u < aAk~ι - 1},

G[ : = {- α + uAι: 1 < M < αAfc-f - 1},

^ : = a*Alk-1 + 2α2Afc-ί + 2αAfc"£ - u2A' - 2au,

g't(u) := gt(u) + Aau, (l<t<h);

n, = 2aAk + 2a - 4, n2 = Ak - 1, rc5 = 6k + 8,

n,(<) = 4αAfc-t - 4, Λ4(ί) = 2Afc~t - 2;

α0

c + Σ ai = (2a + i)^* + 2α + 3 + 2(2α + 1 ) Σ ^ = Σ ^ - *2)-
i=l i=0 s=0

THEOREM 3.12.1. If a > 1, tfien /ι(m) > 1.

Proof. For α > 1, 2|2α = Q2k+1 and 2eE(m).

When a = 1, the integer m of this section is the same m as in Section

3.2, whereupon we see from Theorem 3.2.2 that only m = 22, 118 and 838

have to be considered.

3.13. The next family is taken from [Le]:

m : = (aAk — a)2 — 2aAk, a odd and square-free (here a > 1 if k = 1).

It was proved that

I = 8k if a > 3, Z = 8£ - 4 if a = 1 and k > 2,
fc(αAfc - α + Vm)2

= f αA* "" a "" 1 + v ^ V
2α

To illustrate Theorem 1.5, one finds c, ίl(m) as in Section 3.12 and obtains
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S:={a}, T={0,l,---,aA*-a-2}\S;

Gt : = {a + uAι: 1 < u < aAk'1 - 1},

G[ = {- a + uAι: 1 < u < αA*-J - 1},

A : = α2Au-J - 2α(α + l)A*- - u2A< - 2αu,

£(») : = &(«) + 4αu, (1 < t < k)\

nx = 2aAk - 2a - 4, n2 = A s - 3, ?z5 = 2/ί + 2,

n,(ί) = 4αAfc-£ - 4 (ί > 1), n,(l) = 4αA*-1 - 6, n4(ί) = 2A1"1 - 2;

c + Σ ai = c + (2a + 1 ) A " : - 2α - 4^ - 7 + 2(2α + 1) Σ A4

0

THEOREM 3.13.1. If a > 1, £/zerc A(m) > 1.

Proof. For α > 1, 2|2α = QAk and 2 e £(m).

When α = 1, the integer m is the same as in Theorem 3.3.2, so only

m = 46 and 622 have to be considered.

3.14. We now want to consider the case [Le]:

m : = (2aFk + a)2 - aF\ F:= 8a - 1, a square-free > 1,

for which

+ 4 a 1 + V ^ 2
and « =

Here

S(m):={l,a,Ft,aFt:l^t^k}, c = 2;

S : = {o, - α + 2OF*}, Γ : = {0,1, , 2αF* + o - 1}\S,

G, : = {α + uFι: 1 < u < 2aFk'1 - 1},

G; : = {- a + uFι: 1 < u < 2aFk-t - 1},

gt(u) : = 4aΨik-' + AaΨ*-* - o F 1 " 1 - w2F' - 2ωα,

ίί(B) = gt(u) + 4ua, (l<t<k);

a\gt(u) & a\u & a\g't(u);

ra, = 4αF* + 2a - 4, n2 = 4F* - 2, τz5 = 6/ί + 8,

n,(ί) = δαF^-' - 4, n«(ί) = 8F*- ( - 4;

- s2) = (4o + 4)Ffc + 2α - 2^ + 2 + (8a + 8) Σ F* = c + Σ α4.
0 i l

Σ
i = l



178 EUGENE DUBOIS AND CLAUDE LEVESQUE

THEOREM 3.14.1. h(m) > 1.

Proof. If a is odd, then 2|Q, = 3aFk + 2σ — 1 and h(m) > 1 since

2&E{m). If α is even with aφ2, then 2|Q3fc+2 = α, and 2g2?(m), so

Λ(m) > 1. If a = 2, i*1 = 15 is not prime and as for Theorem 2.1 (ii) we

have h(m) > 1.

3.15. Let us conclude with this family [Le]:

m : = (2αF* - α)2 + αί1*, F = Sa - 1, α square-free > 1,

for which

Z = 6fe + 2 and « =

Here we have that c = 2 and E(m), S, Gt, Ĝ  are the same as in Section

3.14. This time,

T = {0,1, - , 2aFk - a]\S and

gt(u):- 4α1ί12*-1 - 4α*F»-f + aFk'1 - w2F' - 2ua, g[(u): - ft(w) + 4ua;

nx = 4αFfc - 2a - 2, rc2 = 4Fk - 4, n5 = 6^ + 6,

n3(t) = 8αFfc-f - 4, n4(*) = δ F 6 - ' - 4;

c + Σ ^ = c + 4(α + l)F f c - 2α - 2fe - 2 + 8(α + 1) Σ ί "
i0

With the same proof as in 3.14 we have:

THEOREM 3.15.1. h(m) > 1.

In a forthcoming paper the families of continued fractions obtained

by F. Halter-Koch [H-K] and by H. Williams will be investigated along

the lines of this work.
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