3-DIMENSIONAL AFFINE HYPERSURFACES IN \mathbb{R}^{4} WITH PARALLEL CUBIC FORM

FRANKI DILLEN ${ }^{1}$ and LUC VRANCKEN ${ }^{2}$

§ 1. Introduction

In this paper, we study 3 -dimensional locally strongly convex affine hypersurfaces in \mathbb{R}^{4}. Since the publication of Blaschke's book [B] in the early twenties, it is well-known that on a nondegenerate affine hypersurface M there exists a canonical transversal vector field called the affine normal. The second fundamental form associated to the affine normal is called the affine metric. In the special case that M is locally strongly convex, this affine metric is a Riemannian metric. Also, using the affine normal, by the Gauss formula one can introduce an affine connection on M, called the induced connection ∇. So on M, we can consider two connections, namely the induced affine connection ∇ and the Levi Civita connection \hat{V} of the affine metric h.

The cubic form C is defined by $C=\nabla h$. The classical Berwald theorem states that the cubic form vanishes identically if and only if M is an open part of a nondegenerate quadric. Here, we will consider the condition that the cubic form is parallel with respect to Levi Civita connection of the affine metric, i.e. $\hat{V} C=0$. For surfaces, this condition has been studied by M. Magid and K. Nomizu in [MN]. There, they proved the following theorem.

Theorem [MN]. Let M be a Blaschke surface in \mathbb{R}^{3} with $\hat{\nabla} C=0$. Then either M is an open part of a nondegenerate quadric (i.e. $C=0$) or M is affine equivalent to an open part of one of the following surfaces:
(i) $x y z=1$,
(ii) $x\left(y^{2}+z^{2}\right)=1$,

[^0](iii) $z=x y+\frac{1}{3} y^{3}$, (the Cayley surface).

A generalization of this theorem to higher order derivatives of the cubic form is given in [V2]. In this paper, we will extend this theorem to 3 -dimensional affine locally strongly convex hypersurfaces. The Main Theorem that we prove is the following.

Main Theorem. Let M be a 3-dimensional affine locally strongly convex hypersurface in \mathbb{R}^{4} with $\hat{V} C=0$. Then either M is an open part of a locally strongly convex quadric (i.e. $C=0$) or M is affine equivalent to an open part of one of the following two hypersurfaces:
(i) $x y z w=1$,
(ii) $\quad\left(y^{2}-z^{2}-w^{2}\right)^{3} x^{2}=1$.

The condition that C is parallel with respect to the induced affine connection ∇ is treated in [NP2], for surfaces, and in [V1] for 3-dimensional affine hypersurfaces. A partial classification of higher order parallel surfaces, i.e. surfaces which satisfy $\nabla^{n} C=0$, for some integer number n, can be found in [DV].

Finally, the authors would like to thank Professor K. Nomizu, for many valuable lectures and discussions on affine differential geometry. Nomizu's lecture notes [N] are a modern approach to affine differential geometry. We mostly follow his notations. We also thank the referee for his valuable comments.

§ 2. Preliminaries

Let $f: M^{3} \rightarrow \mathbb{R}^{4}$ be an immersion of a connected differentiable 3dimensional manifold into the affine space \mathbb{R}^{4} equipped with its usual flat connection D and a parallel volume element ω and let ξ be an arbitrary local transversal vector field to $f\left(M^{3}\right)$. For any vector fields X, Y, X_{1}, X_{2}, X_{3}, we write

$$
\begin{gather*}
D_{X} f_{*}(Y)=f_{*}\left(\nabla_{X} Y\right)+h(X, Y) \xi \tag{2.1}\\
\theta\left(X_{1}, X_{2}, X_{3}\right)=\omega\left(f_{*} X_{1}, f_{*} X_{2}, f_{*} X_{3}, \xi\right), \tag{2.2}
\end{gather*}
$$

thus defining an affine connection ∇, a symmetric (0,2)-type tensor h, called the second fundamental form, and a volume element θ. We say that f is nondegenerate if h is nondegenerate (and this condition is independent of the choice of transversal vector field ξ). In this case, it is known (see [N], [NP1]) that there is a unique choice (up to sign) of
transversal vector field such that the induced connection ∇, the induced second fundamental form h and the induced volume element θ satisfy the following conditions:

$$
\begin{align*}
\nabla \theta & =0, \tag{i}\\
\theta & =\omega_{h},
\end{align*}
$$

where ω_{h} is the metric volume element induced by h. We call ∇ the induced affine connection, ξ the affine normal and h the affine metric. By combining (i) and (ii), we obtain the apolarity condition which states that $\nabla \omega_{h}=0$. A nondegenerate immersion equipped with this special transversal vector field is called a Blaschke immersion. Throughout this paper, we will always assume that f is a Blaschke immersion. If h is positive (or negative) definite, the immersion is called locally strongly convex. Notice that if h is negative definite, we can always replace ξ by $-\xi$, thus making the new affine metric positive definite. Therefore, if we say that M is locally strongly convex, we will always assume that ξ is chosen so that h is positive definite.

Condition (i) implies that $D_{x} \xi$ is tangent to $f\left(M^{3}\right)$ for any tangent vector X to M. Hence, we can define a (1, 1)-tensor field S, called the affine shape operator by

$$
\begin{equation*}
D_{x} \xi=-f_{*}(S X) . \tag{2.3}
\end{equation*}
$$

M is called an affine sphere if $S=\lambda I$. We define the affine mean curvature H by $H=1 / n$ trace (S). The following fundamental equations of Gauss, Codazzi and Ricci are given by
(2.5) $\quad(\nabla h)(X, Y, Z)=(\nabla h)(Y, X, Z) \quad$ (Equation of Codazzi for h)
(2.6) $\quad\left(\nabla_{X} S\right) Y=\left(\nabla_{Y} S\right) X \quad$ (Equation of Codazzi for S)
(2.7) $\quad h(X, S Y)=h(S X, Y)$

If $\operatorname{dim}(M) \geq 2$ and M is an affine sphere, it follows from (2.6) that λ is constant. If $\lambda \neq 0$, we say that M is a proper affine sphere and if $\lambda=0$, we call M an improper affine sphere. From (2.5) it follows that the cubic form $C(X, Y, Z)=(\nabla h)(X, Y, Z)$ is symmetric in X, Y, Z. The Theorem of Berwald states that C vanishes identically if and only if M is an open part of a nondegenerate quadric.

Let \hat{V} denote the Levi Civita connection of the affine metric h. The difference tensor K is defined by

$$
K(X, Y)=\nabla_{X} Y-\hat{V}_{x} Y
$$

for vector fields X and Y on M. Notice that K is symmetric in X and Y. We also write $K_{X} Y=K(X, Y)$. From [N], we have that

$$
\begin{gather*}
h\left(K_{X} Y, Z\right)=-\frac{1}{2} C(X, Y, Z) \tag{2.8}\\
\hat{R}(X, Y) Z=\frac{1}{2}(h(Y, Z) S X-h(X, Z) S Y+h(S Y, Z) X-h(S X, Z) Y) \tag{2.9}\\
\\
-\left[K_{X}, K_{Y}\right] Z
\end{gather*}
$$

where \hat{R} denotes the curvature tensor of \hat{V}. Notice also that the apolarity condition together with (2.8) implies that trace $K_{x}=0$ for every tangent vector X. In the special case that M is an affine sphere, i.e. $S=\lambda I$, equation (2.9) becomes

$$
\begin{equation*}
\hat{R}(X, Y) Z=\lambda(h(Y, Z) X-h(X, Z) Y)-\left[K_{X}, K_{Y}\right] Z . \tag{2.10}
\end{equation*}
$$

Further, if M is an affine sphere, we have from [N] that

$$
\begin{equation*}
\left(\hat{V}_{Y} K\right)(X, Z)=\left(\hat{V}_{X} K\right)(Y, Z), \tag{2.11}
\end{equation*}
$$

where $\left(\hat{V}_{Y} K\right)(X, Z)=\hat{V}_{Y}(K(X, Z))-K\left(\hat{V}_{Y} X, Z\right)-K\left(X, \hat{V}_{Y} Z\right)$. Finally, we need the following results from [BNS], [Y].

Theorem 2.1 [BNS]. Let M be an n-dimensional Blaschke hypersurface in \mathbb{R}^{n+1}. If $\hat{V} C=0$, then M is an affine sphere.

Theorem 2.2 [Y]. Let M^{3} be a locally strongly convex affine hypersphere in \mathbb{R}^{4} such that the affine metric h has constant sectional curvature. Then M is an open part of a quadric or M is affine equivalent to an open part of $x_{1} x_{2} x_{3} x_{4}=1$

A generalization of this last theorem to arbitrary dimensions is given in [VLS].

§ 3. Proof of the theorem

Throughout this section, we will always assume that M is a 3 -dimensional, locally strongly convex affine hypersurface in \mathbb{R}^{4} which has parallel cubic form, i.e. which satisfies $\hat{F} C=0$. Notice that (2.8) implies that this is equivalent with $\hat{V} K=0$. From Theorem 2.1, we deduce that M is an affine sphere. First, we remark that if the cubic form C vanishes identically, then from the Berwald theorem it follows that M is an open part
of a nondegenerate locally strongly convex quadric. Hence from now on, we will assume that C does not vanish identically. Since C is parallel with respect to \hat{V}, it follows that C vanishes nowhere.

We now choose an orthonormal basis with respect to the affine metric h at the point p in the following way. Let $U M_{p}=\left\{u \in T M_{p} \mid h(u, u)=1\right\}$. Since M is locally strongly convex, $U M_{p}$ is compact. We define a function f on $U M_{p}$ by

$$
f(u)=h\left(K_{u} u, u\right),
$$

for $u \in U M_{p}$. Notice that because of (2.8), the function f does not vanish identically. Let e_{1} be an element of $U M_{p}$ at which the function f attains an absolute maximum. Thus $f\left(e_{1}\right)>0$. Let $v \in U M_{p}$ such that $\left\langle v, e_{1}\right\rangle=0$. Then, we define a real function g by $g(t)=f\left(\cos (t) e_{1}+\sin (t) v\right)$. Since g attains an absolute maximum at $t=0$, we have that $g^{\prime}(0)=0$ and $g^{\prime \prime}(0) \leq 0$. Using (2.8) these equations give

$$
\begin{gather*}
h\left(K_{e_{1}} e_{1}, v\right)=0, \tag{3.1}\\
h\left(K_{e_{1}} e_{1}, e_{1}\right)-2 h\left(K_{e_{1}} v, v\right) \geq 0, \tag{3.2}
\end{gather*}
$$

for all v satisfying $\left\langle v, e_{1}\right\rangle=0$. Hence e_{1} is an eigenvector of $K_{e_{1}}$, say with eigenvalue λ_{1}. Then, we choose e_{2}, e_{3} as the other eigenvectors of $K_{e_{1}}$ with eigenvalues respectively λ_{2} and λ_{3}. Using this, (2.8) and the apolarity we obtain the following formulas for the difference tensor.

$$
\begin{aligned}
& K_{e_{1}} e_{1}=\lambda_{1} e_{1}, \\
& K_{e_{1}} e_{2}=\lambda_{2} e_{2}, \\
& K_{e_{1}} e_{3}=\lambda_{3} e_{3}, \\
& K_{e_{2}} e_{2}=\lambda_{2} e_{1}+a e_{2}+b e_{3}, \\
& K_{e_{2}} e_{3}=b e_{2}-a e_{3}, \\
& K_{e_{3}} e_{3}=\lambda_{3} e_{1}-a e_{2}-b e_{3},
\end{aligned}
$$

where $a, b \in \mathbb{R}$ and, because of apolarity, $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$. Further, since $f\left(e_{1}\right)>0$, we have $\lambda_{1}>0$ and from (3.2) it follows that $\lambda_{1} \geq 2 \lambda_{i}$, where $i=2,3$. Furthermore, by changing the sign of e_{2} or e_{3}, if necessary, we may assume that $a, b \geq 0$. The next two lemmas will improve further our choice of orthonormal basis.

Lemma 3.1. If $\lambda_{2}=\lambda_{3}$, then we can choose e_{2} and e_{3} in such a way that $b=0$.

Proof. If $\lambda_{2}=\lambda_{3}$, then every $u \in U M_{p}$ which is orthogonal to e_{1} is an eigenvector of $K_{e_{1}}$ with eigenvalue $\lambda_{2}=\lambda_{3}$. Hence, the choice of e_{2} and e_{3}, which we made earlier was not unique. So we can still choose e_{2} as a vector in which the function f restricted to $B=\left\{u \in U M_{p} \mid h\left(u, e_{1}\right)=0\right\}$ attains its maximal value. Finally, we pick e_{3} such that $\left\{e_{1}, e_{2}, e_{3}\right\}$ is an h-orthonormal basis. Since, f, restricted to B, attains a maximal value in e_{2} we have $h\left(K_{e_{2}} e_{2}, e_{3}\right)=0$. Hence $b=0$.

Lemma 3.2. For $i=1,2$, we have $\lambda_{1}>2 \lambda_{i}$.
Proof. Let us assume that $\lambda_{1} \leq 2 \lambda_{2}$. We will derive a contradiction. Since then $\lambda_{1}=2 \lambda_{2}$, we have $\lambda_{3}=-\frac{3}{2} \lambda_{1}$. Now, we put $u=(1 / \sqrt{2})\left(-e_{1}-e_{3}\right)$. Then

$$
\begin{aligned}
f(u) & =\frac{1}{2 \sqrt{2}}\left(-f\left(e_{1}\right)-3 h\left(K_{e_{1}} e_{1}, e_{3}\right)-3 h\left(K_{e_{1}} e_{3}, e_{3}\right)-f\left(e_{3}\right)\right. \\
& =\frac{1}{2 \sqrt{2}}\left(-\lambda_{1}+\frac{9}{2} \lambda_{1}+b\right) .
\end{aligned}
$$

Hence we obtain that $f(u)>\lambda_{1}$. This contradicts the fact the function f attains an absolute maximum in e_{1}.

Lemma 3.3. Let M^{3} be a locally strongly convex affine hypersurface in \mathbb{R}^{4} for which $\hat{\nabla} C=0$ but $C \neq 0$. Then M is a hyperbolic affine sphere, i.e. $S=\lambda I$ with $\lambda<0$. Furthermore, let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal basis as defined above. Then either one of the following holds:

$$
\begin{aligned}
& \text { (i) } K\left(e_{1}, e_{2}\right)=\lambda_{1} e_{1} \\
& K\left(e_{1}, e_{2}\right)=-\frac{1}{2} \lambda_{1} e_{2} \\
& K\left(e_{2}, e_{2}\right)=-\frac{1}{2} \lambda_{1}\left(e_{1}-\sqrt{2} e_{2}\right) \quad K\left(e_{1}, e_{3}\right)=-\frac{1}{2} \lambda_{1} e_{3} \\
& K\left(e_{3}, e_{3}\right)=-\frac{1}{2} \lambda_{1}\left(e_{1}+\sqrt{2} e_{2}\right) \quad K\left(e_{2}, e_{3}\right)=-\frac{1}{\sqrt{2}} \lambda_{1} e_{3} \\
& \text { (ii) } K\left(e_{1}, e_{1}\right)=\lambda_{1} e_{1} \\
& K\left(e_{1}, e_{2}\right)=-\frac{1}{2} \lambda_{1} e_{2} \\
& K\left(e_{2}, e_{2}\right)=-\frac{1}{2} \lambda_{1} e_{1} \quad K\left(e_{1}, e_{3}\right)=-\frac{1}{2} \lambda_{1} e_{3} \\
& K\left(e_{3}, e_{3}\right)=-\frac{1}{2} \lambda_{1} e_{1} \quad K\left(e_{2}, e_{3}\right)=0,
\end{aligned}
$$

where $\lambda_{1}=2 \sqrt{-\lambda / 3}$.

Proof. Since $\hat{V} K=0$, we get $\hat{R} \cdot K=0$; we obtain for vector fields X, Y, Z, W that
(3.3) $\quad 0=\hat{R}(X, Y) K(Z, W)-K(\hat{R}(X, Y) Z, W)-K(Z, \hat{R}(X, Y) W)$.

Applying this formula for $X=Z=W=e_{1}, Y=e_{i}, i=2,3$, then gives

$$
\begin{equation*}
0=\hat{R}\left(e_{1}, e_{i}\right) \lambda_{1} e_{1}-2 K\left(\hat{R}\left(e_{1}, e_{i}\right) e_{1}, e_{1}\right) \tag{3.4}
\end{equation*}
$$

By using (2.10), we see that

$$
\begin{aligned}
\hat{R}\left(e_{1}, e_{i}\right) e_{1} & =-\lambda e_{i}-\left[K_{e_{1}}, K_{e_{i}}\right] e_{1} \\
& =-\lambda e_{i}-\lambda_{2}^{2} e_{i}+\lambda_{1} \lambda_{i} e_{i} \\
& =\left(-\lambda-\lambda_{i}^{2}+\lambda_{1} \lambda_{i}\right) e_{i} .
\end{aligned}
$$

By substituting this into (3.4) we see that

$$
\left(\lambda_{1}-2 \lambda_{i}\right)\left(-\lambda-\lambda_{i}^{2}+\lambda_{1} \lambda_{i}\right)=0 .
$$

By applying Lemma 3.2 this gives

$$
\begin{equation*}
-\lambda-\lambda_{i}^{2}+\lambda_{1} \lambda_{i}=0 \tag{3.5}
\end{equation*}
$$

By subtracting the equations obtained for $i=2,3$, we see that

$$
\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{2}-\lambda_{3}\right)=0 .
$$

Since it follows from Lemma 3.2 that $\lambda_{1}-\lambda_{2}-\lambda_{3} \neq 0$, we obtain that $\lambda_{2}=\lambda_{3}$. Hence by Lemma 3.1, we may assume that $b=0$. Since by apolarity also $\lambda_{1}=-\lambda_{2}-\lambda_{3}$, (3.5) becomes

$$
\begin{equation*}
-\lambda-\frac{3}{4} \lambda_{1}^{2}=0 \tag{3.6}
\end{equation*}
$$

Since $\lambda_{1} \neq 0$, we deduce that $\lambda<0$. Hence M is a hyperbolic affine hypersphere. Moreover it then follows from (3.6) that $\lambda_{1}=2 \sqrt{-\lambda / 3}$.

Using the previous results, we find that

$$
\begin{aligned}
\hat{R}\left(e_{2}, e_{3}\right) e_{1} & =-\left[K_{e_{2}}, K_{e_{3}}\right] e_{1} \\
& =-\lambda_{3} K\left(e_{2}, e_{3}\right)+\lambda_{2} K\left(e_{3}, e_{2}\right)=0 \\
\hat{R}\left(e_{2}, e_{3}\right) e_{2} & =-\lambda e_{3}-K_{e_{2}} K_{e_{3}} e_{2}+K_{e_{3}} K_{e_{2}} e_{2} \\
& =\left(-\lambda-2 a^{2}+\lambda_{2} \lambda_{3}\right) e_{3} .
\end{aligned}
$$

So if we then substitute $X=Z=W=e_{2}$ and $Y=e_{3}$ in (3.3), we get

$$
\begin{aligned}
0 & =\hat{R}\left(e_{2}, e_{3}\right)\left(\lambda_{2} e_{1}+a e_{2}\right)-2\left(-\lambda-2 a^{2}+\lambda_{2} \lambda_{3}\right) K\left(e_{2}, e_{3}\right) \\
& =3 a\left(-\lambda-2 a^{2}+\lambda_{2} \lambda_{3}\right) e_{3} \\
& =3 a\left(-\lambda-2 a^{2}+\frac{1}{4} \lambda_{1}^{2}\right) e_{3} \\
& =3 a\left(-2 a^{2}-\frac{4}{3} \lambda\right) e_{3} .
\end{aligned}
$$

Hence $a=0$ or $a=\sqrt{-2 \lambda / 3}$.
Lemma 3.4. If Lemma 3.3 (i) holds at a point p then all sectional curvatures (w.r.t. \hat{R} and h) are zero. Moreover $h(K, K)=6 \lambda^{2}$. If Lemma 3.3 (ii) holds at a point p then $h(K, K)=(10 / 3) \lambda^{2}$.

Proof. From (2.10) and Lemma 3.1, we obtain that

$$
\begin{aligned}
& \hat{R}\left(e_{1}, e_{2}\right) e_{2}=\hat{R}\left(e_{1}, e_{3}\right) e_{3}=\hat{R}\left(e_{2}, e_{3}\right) e_{3}=0, \\
& \hat{R}\left(e_{1}, e_{2}\right) e_{3}=\hat{R}\left(e_{2}, e_{3}\right) e_{1}=\hat{R}\left(e_{3}, e_{1}\right) e_{2}=0 .
\end{aligned}
$$

Linearization then implies that $\hat{R}=0$. The remaining claim follows straightforwardly from Lemma 3.3.

Since $h(K, K)$ is different for the cases (i) and (ii), it follows that Lemma 3.3 (i) holds at every point p of M or Lemma 3.3 (ii) holds at every point p of M. Notice that if Lemma 3.3 (i) holds at every point p of M, then from Lemma 3.4 it follows that M has constant zero sectional curvature. Applying Theorem 2.2 then shows that M is affine equivalent to an open part of $x y z w=1$. So from now on, we will assume that Lemma 3.3 (ii) holds at every point p of M. The following lemma then shows that we can extend the basis we found differentiably to a neighbourhood.

Lemma 3.5. Let M be an affine 3-dimensional locally strongly convex affine hypersurface in \mathbb{R}^{4} with $\hat{V} C=0$. Assume that Lemma 3.3 (ii) holds at every point of M. Then around any point, there exists a local basis $\left\{E_{1}, E_{2}, E_{3}\right\}$, orthonormal with respect to h, such that

$$
\begin{array}{ll}
K\left(E_{1}, E_{1}\right)=\lambda_{1} E_{1}, & K\left(E_{1}, E_{2}\right)=-\frac{1}{2} \lambda_{1} E_{2}, \\
K\left(E_{2}, E_{2}\right)=-\frac{1}{2} \lambda_{1} E_{1}, & K\left(E_{1}, E_{3}\right)=-\frac{1}{2} \lambda_{1} E_{3}, \\
K\left(E_{3}, E_{3}\right)=-\frac{1}{2} \lambda_{1} E_{1}, & K\left(E_{2}, E_{3}\right)=0,
\end{array}
$$

where $\lambda_{1}=2 \sqrt{-\lambda / 3}$.
Proof. Let $p \in M$. We take the orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ given by Lemma 3.3 (ii). We extend this basis, by parallel translation along geodesics (with respect to \hat{V}) through p to a normal neighbourhood around p. By the properties of parallel translation this gives an h-orthonormal basis defined on a neighbourhood of p. Since $\hat{\nabla} K=0$, it also follows that K has the desired form at every point of a normal neighbourhood.

Lemma 3.6. Let M be as in Lemma 3.5, let $p \in M$ and let $\left\{E_{1}, E_{2}, E_{3}\right\}$ be the local orthonormal basis given by Lemma 3.5. Then for any vector field X on M we have that

$$
\hat{\Gamma}_{X} E_{1}=0
$$

Moreover (M, h), considered as a Riemannian manifold, is locally isometric to $\mathbb{R} \times H$, where H is the hyperbolic plane of constant negative curvature $\frac{4}{3} \lambda$. Also, after identification, the local vector field E_{1} is tangent to \mathbb{R}.

Proof. Let $p \in M$. We take the h-orthonormal basis given by Lemma 3.5. Since $\hat{V} K=0$, we have that

$$
\begin{aligned}
0 & =\left(\hat{\nabla}_{E_{i}} K\right)\left(E_{1}, E_{1}\right) \\
& =\lambda_{1} \hat{V}_{E_{i}} E_{1}-2 K\left(\hat{V}_{E_{i}} E_{1}, E_{1}\right),
\end{aligned}
$$

for $i=1,2,3$. Since $\hat{V}_{E_{i}} E_{1}$ is h-orthogonal to E_{1}, this last equation implies that

$$
0=2 \lambda_{1} \hat{\nabla}_{E_{i}} E_{1} .
$$

In order to show that M is locally isometric to $\mathbb{R} \times H$, we define two local distributions T_{0} and T_{1} by

$$
\begin{aligned}
& T_{0}:\left.q \longmapsto T_{0}\right|_{q}=\operatorname{span}\left\{E_{1}(q)\right\}, \\
& T_{1}:\left.q \longmapsto T_{1}\right|_{q}=\left\{v \in T M_{q} \mid h\left(v, E_{1}(q)\right)=0\right\} .
\end{aligned}
$$

Since $\hat{V}_{X} E_{1}=0$, we have $\hat{V}_{T_{0}} T_{0} \subset T_{0}$ and $\hat{V}_{T_{1}} T_{0} \subset T_{0}$. Since T_{0} and T_{1} are h-orthogonal this then implies that also $\hat{V}_{x} T_{1} \subset T_{1}$ for any vector field X. Therefore, it follows from the de Rham decomposition theorem ([KN]) that (M, h) is locally isometric to $\mathbb{R} \times H$, where H is a surface. Moreover since $E_{1} \in T_{0}$, after identification E_{1} is tangent to the \mathbb{R}-component.

Finally, we notice from (2.10) and Lemma 3.5 that

$$
\hat{R}\left(E_{2}, E_{3}\right) E_{3}=\frac{4}{3} \lambda E_{2} .
$$

Hence H has constant negative curvature $\frac{4}{3} \lambda$ and therefore, H is locally isometric to the hyperbolic plane.

Finally, we have the following lemma.
Lemma 3.7. Let M be as in Lemma 3.5. Then, M is affine equivalent to an open part of the affine hypersurface described by

$$
\left(y^{2}-z^{2}-w^{2}\right)^{3} x^{2}=1
$$

Proof. By Lemma 3.3, we know that $\lambda<0$. Hence, by applying a suitable homothetic transformation, we may assume that $\lambda=-1$. Let $p \in M$ and let $\left\{E_{1}, E_{2}, E_{3}\right\}$ be the basis given by Lemma 3.5. First, we notice that if we put $U_{2}=\cos \theta E_{2}+\sin \theta E_{3}$ and $U_{3}=-\sin \theta E_{2}+\cos \theta E_{3}$, then the new h-orthonormal basis $\left\{E_{1}, U_{2}, U_{3}\right\}$ also satisfies Lemma 3.5.

Further, we will denote the immersion of M into \mathbb{R}^{4} by x. Then, after applying a translation, we may assume that $\xi=x$. Next, by Lemma 3.6, we know that M is h-isometric to $\mathbb{R} \times H$, where H is the hyperbolic plane with constant negative curvature $-\frac{4}{3}$, and E_{1} is tangent to the \mathbb{R}-component. So, using the standard parametrization of the hypersphere model of H, we see that there exist local coordinates $\{u, v, w\}$ on M, such that $E_{1}=x_{w}$, and such that x_{u} and $(1 / \sinh (2 / \sqrt{3} u)) x_{v}$, together with x_{w} form an h-orthonormal basis. So by the remark made in the beginning of the proof, we may assume that $E_{2}=x_{u}$ and $\sinh (2 / \sqrt{3} u) E_{3}=x_{v}$. A straightforward computation then also shows that

$$
\begin{aligned}
& \hat{\nabla}_{x_{u}} x_{u}=0 \\
& \hat{\nabla}_{x_{u}} x_{v}=\hat{\nabla}_{x_{v}} x_{u}=\frac{2}{\sqrt{3}} \operatorname{coth}\left(\frac{2}{\sqrt{3}} u\right) x_{v} \\
& \hat{\nabla}_{x_{v}} x_{v}=-\frac{2}{\sqrt{3}} \sinh \left(\frac{2}{\sqrt{3}} u\right) \cosh \left(\frac{2}{\sqrt{3}} u\right) x_{u}
\end{aligned}
$$

So, using the definition of K, we get the following system of differential equations, where in order to simplify the equations, we have put $c=\sqrt{3}$.

$$
\begin{align*}
& x_{w w}=\frac{2}{c} x_{w}+x, \tag{3.7}\\
& x_{u w}=-\frac{1}{c} x_{u} \tag{3.8}
\end{align*}
$$

$$
\begin{gather*}
x_{v u}=-\frac{1}{c} x_{v}, \tag{3.9}\\
x_{u u}=-\frac{1}{c} x_{w}+x, \tag{3.10}\\
x_{u v}=\frac{2}{c} \operatorname{coth}\left(\frac{2}{c} u\right) x_{v}, \tag{3.11}\\
x_{v v}=-\frac{1}{c}\left(\sinh \left(\frac{2}{c} u\right)\right)^{2} x_{w}-\frac{2}{c} \sinh \left(\frac{2}{c} u\right) \cosh \left(\frac{2}{c} u\right) x_{u} \\
+\left(\sinh \left(\frac{2}{c} u\right)\right)^{2} x . \tag{3.12}
\end{gather*}
$$

First, we see from (3.7) that there exist vector valued functions $P_{1}(u, v)$ and $P_{2}(u, v)$ such that

$$
x=P_{1}(u, v) \exp (c w)+P_{2}(u, v) \exp \left(-\frac{1}{c} w\right) .
$$

From (3.8) and (3.9) it then follows that the vector valued function P_{1} is independent of u and v. Hence there exists a constant vector A_{1} such that $P_{1}(u, v)=A_{1}$. Next it follows from (3.10) that P_{2} satisfies the following differential equation:

$$
\left(P_{2}\right)_{u u}=\frac{4}{3} P_{2} .
$$

Hence we can write

$$
P_{2}^{\prime}(u, v)=Q_{1}(v) \cosh \left(\frac{2}{c} u\right)+Q_{2}(v) \sinh \left(\frac{2}{c} u\right) .
$$

From (3.11), we then deduce that there exists a constant vector A_{2} such that $Q_{1}(v)=A_{2}$. Finally, from (3.12), we get the following differential equation for Q_{2} :

$$
\left(Q_{2}\right)_{v b}=-\frac{4}{3} Q_{2} .
$$

This last formula implies that there exist constant vectors A_{3} and A_{4} such that

$$
Q_{2}(v)=A_{3} \cos \left(\frac{2}{c} v\right)+A_{4} \sin \left(\frac{2}{c} v\right) .
$$

Since M is nondegenerate, M lies linearly full in \mathbb{R}^{4}. Hence $A_{1}, A_{2}, A_{3}, A_{1}$
are linearly independent vectors. Thus there exist an affine transformation such that

$$
\begin{aligned}
x= & \left(\exp (c w), \cosh \left(\frac{2}{c} u\right) \exp \left(-\frac{1}{c} w\right)\right. \\
& \left.\cos \left(\frac{2}{c} v\right) \sinh \left(\frac{2}{c} u\right) \exp \left(-\frac{1}{c} w\right), \sin \left(\frac{2}{c} v\right) \sinh \left(\frac{2}{c} u\right) \exp \left(-\frac{1}{c} w\right)\right)
\end{aligned}
$$

So clearly the image of M lies, upto an affine transformation, locally on $\left(y^{2}-z^{2}-w^{2}\right)^{3} x^{2}=1$. The analyticity of this last hypersurface then completes the proof.

So, by combining this lemma with the previous results we see that a 3-dimensional locally strongly convex hypersurface M in \mathbb{R}^{4} with $\hat{V} C=0$ is either a quadric or else satisfies Lemma 3.3 (i) at every point p or satisfies Lemma 3.3 (ii) at every point p. In the second case, we see from Lemma 3.4 that M has constant sectional curvature. So by applying Theorem 2.2, we see that M is affine equivalent to the affine hypersurface given by $x y z w=1$. Finally, in the last case, Lemma 3.7 completes the proof.

References

[B] W. Blaschke, Vorlesungen über Differentialgeometrie II, Affine Differentialgeometrie, Springer, Berlin, 1923.
[BNS] N. Bokan, K. Nomizu and U. Simon, Affine hypersurfaces with parallel cubic forms, Tôhoku Math. J., 42 (1990), 101-108.
[DV] F. Dillen and L. Vrancken, Generalized Cayley surfaces, Proceedings of the Conference on Global Analysis and Global Differential Geometry, Berlin 1990, Lecture Notes in Mathematics, Springer Verlag, Berlin.
[KN] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Volume 1, Interscience Publishers, New York.
[MN] M. Magid and K. Nomizu, On affine surfaces whose cubic forms are parallel relative to the affine metric, Proc. Nat. Acad. Sci. Ser. A, 65 (1989), 215-218.
[N] K. Nomizu, Introduction to affine differential geometry, part I, MPI/88-37, Bonn (1988).
[NP1] K. Nomizu and U. Pinkall, On the geometry of affine immersions, Math. Z., 195 (1987), 165-178.
[NP2] -, Cayley surfaces in affine differential geometry, Tôhoku Math. J., 41 (1989), 589-596.
[V1] L. Vrancken, Affine higher order parallel hypersurfaces, Ann. Fac. Sci. Toulouse, 9 (1988), 341-353.
[V2] -, Affine surfaces with higher order parallel cubic form, Tôhoku Math. J., 43 (1991), 127-139.
[VLS] L. Vrancken, A. M. Li and U. Simon, Affine spheres with constant affine sec-
tional curvature, Math. Z., 206 (1991), 651-658.
[Y] J. H. Yu, Affine hyperspheres with constant sectional curvature in \mathbf{A}^{4}, preprint, Sichuan University.

Departement Wiskunde
Katholieke Universiteit Leuven
Celestijnenlaan 200 B
B-3001 Leuven
Belgium

[^0]: Received August 28, 1990.
 ${ }^{1}$ Supported by a research fellowship of the Research Council of the Katholieke Universiteit Leuven.
 ${ }^{2}$ Research Assistant of the National Fund for Scientific Research (Belgium).

