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Introduction

Let J be a homogeneous ideal of a polynomial ring over a field,

the number of elements of any minimal basis of /, e = e(I) the multiplicity

or degree of R/I, h — h(I) the height or codimension of J, i = indeg (/)

the initial degree of I, i.e. the minimal degree of non zero elements of I.

This paper is mainly devoted to find bounds for ν(Ι) when / ranges

over large classes of ideals. For instance we get bounds when / ranges

over the set of perfect ideals with preassigned codimension and multiplicity

and when / ranges over the set of perfect ideals with preassigned codi-

mension, multiplicity and initial degree. Moreover all the bounds are

sharp since they are attained by suitable ideals. Now let us make some

historical remarks.

It is a classical result of Krull that h(I) < ν(Ι), and Macaulay showed

that there is no upper bound for ν(Ι) when I ranges over the set of perfect

codimension 2 prime ideals of k[x, y, ζ]. But what happens if e(I) is given?

Many authors studied a more general problem, allowing the ambient ring

R to be a Cohen-Macaulay ring. If R is specialized to be a polynomial

ring or a regular local ring, we deduce from their results the following

bounds:

ν < eh'x + h - 1 Sally (1976)

ν < (h\lWM)el-i/h + h - 1 Boratynski-Eisenbud-Rees (1979)

^ < 1 + i(h - lflh]e + (h2 - 1)/Λ - ( J ) Valla (1981)
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Other results of Briangon-Iarrobino (1978) and Berman (1981) deal
with the asymptotic behaviour of ν(1). For some historical background
about this kind of problems, a good reference is the book of Sally (1978).

Now we come to a more detailed description of our paper. In the
first section we collect many properties about binomial representations
and some operations on them. All these results are elementary and more
or less well-known; we included them for the sake of completeness, since
they are used throughout the paper as technical tools.

Then we recall some fundamental theorems, which allow us to study
special ideals called lex-segment ideals. To every given homogeneous
ideal / in the polynomial ring one can associate a suitable lex-segment
ideal J with the same Hubert function, and the first remark is that ν{1)
< v(J) (see Corollary 2.7); the main observation of the second section is
that v{J) can be computed as the sum of the multiplicities of a suitable
chain of hyperplane sections of J (see Theorem 2.9 and Corollary 2.10).

Then after many preparatory Lemmas, we prove Main Lemma 3.9,
from which we deduce Theorem 3.10 and Corollary 3.11. These results
are the technical core of the paper in the following sense: given a family
^ of ideals, they yield a strategy for selecting a suitable lex-segment ideal
J(^) with the maximum number of generators among the members of &'.
When 2F is the family of homogeneous perfect ideals with given e, h, then
the ideal J(^) turns out to be the same as in Berman's paper, but here
we face a more subtle situation when we work with the family of homoge-
neous perfect ideals with given e, h and indeg (see for instance Example
1 of Section 4). We can detect all these "extremal" ideals J and we can
compute v(J) in all cases (see Proposition 4.2, Proposition 4.4 and Pro-
position 4.6) and Section 4 ends with the two main theorems, namely
Theorem 4.7 and Theorem 4.8; they give the answer to the problem of
finding sharp bounds for ν{1) inside many important families of zero-
dimensional ideals in the polynomial ring; moreover such bounds are
explicitly given and many relations among them are described.

Section 5 is devoted to the study of several applications of our results.
The first one deals with the extension of the preceding results to perfect
ideals in regular local rings; it turns out that the same bounds hold.
For codimension 2 ideals we give a simple proof of the well-known ine-
quality ν{1) < indeg (J) + 1, which avoids the use of Hilbert-Burch theorem.
Then we prove that if a zero-dimensional ideal / i n a regular local ring
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(R, m) has the same multiplicity and the same number of generators as
χη\ then / = mi (Proposition 5.3).

Another application is shown to the asymptotic behaviour of v{J)
inside some classes of perfect ideals, when we let e(I) tend to infinity.
Here we generalize Berman's results in many directions (see Theorem 5.4).

In Proposition 5.5 we prove that all the preceding bounds can be
attained by radical ideals, namely by the defining ideals of the scheme
associated to sets of points in the projective space.

We conclude by sketching some applications of our results to the
size of Grobner Bases of zero-dimensional ideals in the polynomial rings.

Finally we enclose two tables at the end of the paper, where some
of the bounds are displayed. All the computations were performed by
CoCoA, a Computational Commutative Algebra System under develop-
ment at the University of Genova.

Index

Introduction
1. Binomial representations and their arithmetic
2. Theorems of Macaulay, Stanley, Green and Lex-segments
3. Main Tools
4. Main Theorems
5. Applications
6. Tables

§ 1. Binomial representations and their arithmetic

We make the following conventions:

j ) = 1 if m > 1, and (™\ = 0 if m < k

We recall that if η and ί are positive integers then η can be uniquely
written as

where η{ί) > η(ί - 1) > > n(j) >j>l.
This is called the i-binomial expansion of η.

PROPERTY 1.1. Let m = £*- p (™^Ά and η = Σί-j (™ψ) be Positive
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integers; then m > η if and only if {m(i), m(i — 1), , rn(p)} > {n(i), η(ί — 1),

• > n(j)} in the lexicographic ordering.

Proof. The assertion is clear from the definition of the i-binomial

expansion of any positive integer •

We let

and we remark that (*) is the (i + l)-binomial expansion of η(ί> while

(**) is the i-binomial expansion of n<iy iff n(j) > j .

PROPERTY 1.2.

if j > 1 we let η(ϊ) = 0.

Proo/. If j > 1 we have

hence

ο . + « » - ( 1 V i J ) + ( " ( i " ? + * ) + • • • + ("f+

+ i χ) + C)
- /ι<*> + 1.

If j == 1, let s be the maximum integer such that n{s) = η(1) + s — 1.

Then 1 < s < ί and we get

• - (f) + (ΐ-',1') + + C W ) + έ Γ V -
. (»<9) + ( - | ' Γ » ) + . . . + (-? + » ) + (•*)

hence

» + 1 - (I") + (I'.-l0) + + ("ίίΐ") +
is the i-binomial expansion of η + 1, since τι(1) + s < n(s + 1). We get



GENERATORS OF IDEALS 43

_ (Mi) + 1\ , , (n(s + 1) + 1
( j + ' + l s + 2

Ml) + *\

+ +(-"ί+ν ν c + i
and

W ι ) + ( 8Η
the conclusion follows Π

PROPERTY 1.3.

_ Κ*>, ifj>l
<ί}~ \ηω + 1, ifj = l.

Proof If j > 1 we get

hence

If jf = 1, let s be the maximum integer such that n(s) = ΛΖ(1) + s — 1. Then

1 < s < i and we get as before

hence

(η +

and

η +

=

1

('

= (ηψ

1 ( 0 - 1

This proves our assertion. Π
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Given positive numbers η and i we let

and we write η.λ if there is no ambiguity.

PROPERTY 1.4.

Proof. We have

which concludes the proof Π

We need also to define 0<ο = 0<ο = 0, Vi>l.

PROPERTY 1.5. If n>m> 0 we have η — η<{> = η_! > m — πιφ = m.j.

Proof. By Property 1.3 it is clear that τι<0 < m<i> + 7Ζ — m, hence the

conclusion follows. •

PROPERTY 1.6. For all non negative integers η we have

( Λ < % + 1 > = ( η < 0 ) < * > = 7 ΐ < < > - η .

Proof. Namely

and also

( η ) < ί + 1 > - [Σ [ k + 1 ))<(+ι> - Σ (k+

Now if n,(j) > j we get

If n(j) = j , let s be the maximum integer such that n(s) = s. Then

j < s < i and if we let b = η — s, we have n<i} = 6< ο + 5, τι^ = b<i} and

6<̂> - fc = (6<.>)<^>. It follows η<*> -η= b<» - 6 = (&«>)<'> - (%)<*> D

PROPERTY 1.7. Foe every ί > 2 and βι β ^ positive integer η we have
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( η η *«-> _ { η

\η — η(ί>ρ —
" it j = l .

Proof. If j > 1, then

- 1\] _ ^ (n(k) - 1

is the (i — l)-th binomial expansion of η — τζω, hence

If j = 1, then η - η < 0 = c + 1, where c := J^k=2 ( ^ J ^ 1 ) - Using

Property 1.2 we get

(Λ - η^ψ-ν = (c + ly*"^ = c<<> + 1 + η(2) - 1 = η - η(ΐ) + η(2)

and the conclusion follows D

PROPERTY 1.8. If η < m<i"1>, then η — nKi> = η.χ < m for every i > 2.

Proof. If j > 1, then η = [η — ΠφΥ'"1* < m^-^ and the conclusion

follows by Property 1.1. If j = 1, then as before we have η — η < ο = c + 1,

where c:= TX-^^Si'X T h u s i f m < c + 1 w e ^ e t by Property 1.1

that πι<ι'ι> < c<i-1> = η — n(V) < η, a contradiction. •

In the following we say that η is ί-regular if n(h) = n(j) + k — j for

every & = , , i.

PROPERTY 1.9. If η is i-regular and η > ί, then ηω is i-regular.

Proof Since η > 1 and η is i-regular, n(j) > j , hence the i-binomial

expansion of η < ο is λΐ<ο = XlLji ,̂~~ )• The conclusion follows •

PROPERTY 1.10. 1/ η is i-regular, then η — η < ο is (i — l)-regular.

Proo/. Since η - ηφ = ΣΙ-j i^^Si^j t h e r e s u l t i t ; c l e a r i f J > h

ηφ = U-^fS^) = EL2
If; = 1, then we have η - ηφ = U^fS^) = EL("(1) " ϋ ^ 1 "

PROPERTY 1.11. Lei jf = 1 and ρ 6e the maximum integer such that
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η(ρ) = η(2) + ρ — 2. Thenρ>2 and we have the following (ί — l)-expansion

of /ζ_!.

„., = „ - η<1) _ (-«_-1) + ... + (-0. + » -

Proo/. We have

n{k)-l

k

This proves our assertion. •

We define δ^ή): = τι(£) — i and remark that ^(rc) > n(k) — k for every

k=j, , L

We define n<<>(0) : = η and inductively η<<>(£) : = (η<ί>(ί-!))<*>•

PROPERTY 1.12. i b r all r > δ^ή) we have

Proof. We have Λ«> = E L , ( η ? )

+

+

1

1 ) a n d Λ<*>(« = Σ ί - ,
Hence we get

as wanted D

P R O P E R T Y 1.13. Let i>2, n>Q, δ:= δ^ή). Then we have

a) If i> 1, X l U ( η - *«>)«-i>(t) = η , for every r>δ

b) Lei j = 1 a n d r > d;

Σ (τι — n< i >)< i_1 > ( i ) = η + η(2) - η(ΐ).
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c) Let j = 1 and ρ the maximum integer such that η(ρ) = η(2) + ρ

- 2; then

« _ in + η(2) - η(ϊ) if ρ < i

h{U " "ο'*-™ " U + η(2) - η(1) - 1 ifp = i.

d) // rc is ί-regular then

e) For every r > δ we have

r

Proo/. If j > 1, it is clear that δ = <5i_i(n — n<i>), hence

r

(ft - ft<i>)<«-i>ct) = (ft — ηφΥ'-1* = ft

where the first equality follows by Property 1.12 and the second by Pro-

perty 1.7. This proves a).

Let j — 1 and r > δ. It is clear that 5<β1 (η — ηφ) < δ + 1, hence

we get

Σ (* ~ Λ Λ - Ϊ Χ Ο = (ft - n<t>Y*-» = η+ η(2) - η(ϊ)
ί = 0

again by the same properties. This proves b).

Let j = 1 and ρ < i. Then it is clear that dt-t (ft — n<i}) = δ, hence

Σ (ft ~ ft<o)<i-ixo = (ft - ft<o)<<-1> = ft + ft(2) - ft(l) .

ί=0

This proves the first case of c).

Now let j = 1 and ρ = i. Then η. , = ^2\+__l{~ 2 ) by Property 1.11.

Hence δ^^η-ι) = η{2) - 1 and δ = η(ΐ) - i = η(2) + i - 2 - i = η(2) - 2,

hence

IKft-iXi-iX*, = (ft-iM*"0 - (ft-i)<i-i>(»(2)-i)
ί=0

7 7
= η + η(2) - η(1) - 1.

This proves the second case of c).
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Finally d) and e) are easy consequences of the previous assertions.

§ 2. Theorems of Macaulay, Stanley, Green and lex-segments

Let A be a standard ^-algebra i.e. A = Rjl — k[xu , xh]/I where

deg (xt) = 1 for i = 1, , h and / is a homogeneous ideal. As usual

HJji) denotes the dimension of the £-vectorspace Αη of elements of degree

η of A and ΗΑ is called the Hilbert function of A. Let TR be the monoid

of terms in xu , χη i.e. TR := {(χ?1 xg*/0t e Ν} and let deglex (short

from for degree-lexicographic ordering) denote the total ordering on TR

defined by the following rule: χ\χ xlh > χ\χ xb

h

h if the first non zero

(from the left) coordinate of Qj* (at — bt), αί — bu , ah — bh) is positive.

For every η, the terms of degree η of R are totally ordered by lex. For

instance if h = 3 and η = 2 we get χ\ > χλχ2 > χχχζ > χ\ > x2x3 > Λ|. It

makes therefore sense to talk about lex-segments. In the following we

only consider segments of terms in Rn starting from the first one i.e. χ?;

for instance x2

u χχχ2, χλχζ is a lex-segment.

DEFINITION. Let I = ®Ιη be a graded ideal of k[xu , ocj. We say

that / is a lex-segment ideal if Ιη is generated as a £-vectorspace by a

lex-segment of terms for every η.

Let us now recall the following theorems of Macaulay, Stanley and

Green.

THEOREM 2.1. Let V be a k-subvectorspace of Rd and let W be the

k-subvectorspace of Rd generated by the lex-segment of length dim V. Then

a) JRJ W is generated by a lex-segment

b)

Proof See Macaulay (1927) •

THEOREM 2.2. Let Η: Ν -> Ν be a function and let k be any field.

The following conditions are equivalent

a) There exists a standard k-algebra A with A^ — k and with Hilbert

function Η.

b) There exists a lex-segment ideal J such that Η = HR/J.

c) H(U) = 1 and for η>1 Η(η + 1) < Η(η)<η>.

Proof See Stanley (1978) •

THEOREM 2.3. Let V be a k-subvectorspace of Rd of codimension c.
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Let Η be a general hyperplane, VH:= (V + Η)/Η i.e. the restriction of V

to Η, and cH the codimension of VH in (R/H)d. Then cH < c<d>.

Proof See Green (1988) •

THEOREM 2.4. Let W be a ksubvectorspace of Rd of codimension c,

which is a lex-segment. Then

a) codim(RlW) = c<d>.

Let Η be a general hyperplane, WH the restriction of W to Η, and cH

the codimension of WH, then

b) c H = c < d > .

Proof These facts are generally attributed to Stanley (1978). An

easy proof can be obtained by suitably using the arguments of Green

(1988) D

Remark. A full detailed proof of the previous theorems will appear

in (Robbiano-Valla).

PROPOSITION 2.5. Let W be a ksubvectorspace of Rd of codimension c,

which is a lex-segment, Η = xh, WH the restriction of W to Η, and cH the

codimension of WH. Then cH = c<d>.

Proof Let L: = αχχχ + + ahxh be an hyperplane satisfying b) of

Theorem 2.4 and let / be the linear automorphism of R given by f{x^) = xt

for i = 1, , h — 1, f(xh) = α^ + + ahxh. Then f~\L) = xh, hence

it suffices to show that it fixes W. Let Τ = xl1 xlh be a term in W;

if ah = 0 then f~\T) = Τ, otherwise f~\T) is a sum of monomials, whose

associated terms are bigger than or equal to Τ, hence they are in W

since W is a lex-segment. We get f~\W) c; W, hence they coincide since

they have the same codimension •

COROLLARY 2.6. Let I be a homogeneous ideal of R, A = R/L Then

a) dim(/n+1//n-fl1) < ΗΑ(η)<η> - ΗΑ(η + 1) for every η.

b) dim(En + 1) - dim ( 1 ^ ) < ΗΑ(η)<η> for every η.

c) ΗΑ(η)<η> = ΗΑ(η + 1) for η » 0.

Proof. It is clear that a) and b) are equivalent, and b) is nothing

but Theorem 2.2 c) applied to the ideal generated by Ιη. c) Let J be

the lex-segment ideal with the same Hubert function of I and let δ be

the maximal degree of a minimal set of generators of J. If η > δ then
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of course JnRi = Jn+i hence

ΗΛ(η)<»> = dim (Rn+i) - dim (J,+ 1) by 2.4 a)

and

dim (Rn+i) - dim (J,+1) = Hs/J(n + 1) = ΗΑ(η + 1).

COROLLARY 2.7. Lei I be a homogeneous ideal of R, and J the cor-

responding lex-segment ideal. Then

a) uU) = j : n dim (InJI.-Rt)

b) v(I)<v(J)

c) v(J) = Σ . ( # » < Β > - ^ ( η + D).

Proof, a) is obvious

b) ν(Ι) = Σ π dim (InJIn-R) = Ση (dim (7η+ί) - dim (Jn Ε,))
1

i?,)) < 2 r e(dim(JM + 1) - dim(J,, R,))

by 2.1 b)

and Ση (dim (J,,,,) - dim (J . Λ,)) = ^(J) by a)
1

c) v(J) = Ση dim (Jn+JJn Rd by a)
1

hence

v{J) = £ ] η (d im(J n + 1 ) - dim(2?n + 1) + ΗΑ(η)<η>) by 2.4 a)
1

and the conclusion follows •

DEFINITION. Given a monomial ideal I in R = £[X, , x j , we denote

by /<r> the image of the ideal / in J?<r> : = k[xu , xr^] under the canon-

ical projection. It is clear that if J is a lex-segment, then J<r> is a lex-

segment too.

DEFINITION. Given a homogeneous ideal / in R — k[xu •••,xj, we

denote by e(R/I) the multiplicity of R/I, i.e. the degree of the associated

projective scheme. We denote by indeg(7) or indeg(i?/7) the minimum s

such that Is Φ 0.

COROLLARY 2.8. Let J be a lex-segment ideal.

Then HR<h>/J<h>(n) = ΗΑ(η)<η> for every η > 1.

Proof. It follows immediately from Proposition 2.5 •
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THEOREM 2.9. Let J be a zero-dimensional lex-segment ideal with

initial degree bigger than one. Then

v(J) = v(J<h>) + e(R<h>/J<h>).

Proof. We have already remarked that J<h> is a lex-segment, hence

we get

= Σ» (Hs^JnY* - Hs<h>/JJn + 1)) by 2.7 c).

= Σ » (HA(n)<m>Y
n> - H R < h > I J < h y ( n + 1)) by 2.8

= Ση (ΗΜ<η> - ΗΛ(ή) - HR<ii>/JJn + 1)) by Property 1.6.

Cleary

Theorefore

v(J<h>) + e(R<h>/J<fl>)

= Σ π \ΗΑ{η) — ΗΑ(η) — HR υ (η + 1) + HR υ

= Σ * {HAW - HAW) + HR<h>/J<h>(l) + 1

= Σ . (HA(n)<n> - ΗΑ(η + 1)) - ΗΑ(ΐ) + HR<h>/JJl) + 1

= ±n(HA(n)<n>-HA(n+l))

since the initial degree of J is bigger than one.

= v(J) by 2.7.C. D

COROLLARY 2.10. Let J be a zero-dimensional lex-segment ideal with

initial degree bigger than one. Then

v(J) = Σ ί e{R<v>IJ<iy).
1

Proof. We remark that J<i} is a lex-segment ideal with the same

initial degree as J for ί > 1, and J<1} — 0 hence we can apply repeatedly

Theorem 2.9 and the conclusion follows D
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§ 3. Main tools

We recall the following well-known notion, which is motivated by
Theorem 2.2 c).

DEFINITION. Let Η: Ν -> Ν be a function. We call it an O-sequence
if Η(0) = 1 and for all η > 1 Η(η + 1) < Η(η)<η>. We call it a zero-
sequence if it is an O-sequence and Η(ή) = 0 for large η.

Theorem 2.2 c) says that O-sequences are those sequences which
occur as Hubert functions of standard ^-algebras and of course zero-
sequences are those which occur as Hubert functions of zero-dimensional
standard ^-algebras.

We observe that if Η is an O-sequences and Η(η) = 0, then H(m) = 0
for every m > η, hence zero-sequences can be represented by sequences
of type (ff(l), ff(2), ., ff(n - 1),0).

DEFINITION. Given an O-sequence Η Φ (1, 0), we denote by indeg (Η): =

min in/ Η(ή) Φ (Η^ +

η

 η ~~ λ\\ and we call it the initial degree of Η.

We remark that indeg (Η) is either οο or a natural number bigger than
1 moreover if if is a zero-sequence, then either Η = (1, 0) or indeg (Η)
< οο.

DEFINITION. Given a zero-sequence if, we denote by socdeg (Η): =
max (η/ H(ri) Φ 0).

LEMMA 3.1. For every zero-sequence Η Φ (1. 0), indeg (Η) < socdeg (Η)

+ 1.

Proof. Let s = : socdeg (Η). Then Η(ί) > 1 and H(s + 1) = 0 Φ
(H(l) + s\ π

V s + 1 ) D

DEFINITION. Given an O-sequence if, we denote by Η< > the sequence
defined by

Η, > ( 0 ) : = 1 , Η< > ( Λ ) : = Η ( η \ η > i f n > l ;

inductively we define Η( >(r) = (Η< >(r-i))< >• We denote by Η_χ the sequence
defined by

#_, := (1,0) if i /=(l ,0) ,

H^n) := Η(η + 1) - Η(η + 1)<Λ+1> = Η(η + 1)_,
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for every η > 0 if Η Φ (1, 0). We remark that we use the symbol Η(η + 1)Μ

instead of Η(η + ϊ)(η + 1)_! for the sake of simplicity.

PROPOSITION 3.2. a) // Η is an O-sequence, then Ηζ > is an O-sequence.

b) If Η is an O-sequence, then Η.χ is an O-sequence.

Proof, a) We need to show that

Η(η + 1)<η+ί> < (Η(ή)<η>)<η> for η > 1.

But

Η(η + 1)<Β+ι> < (Η(ή)<ηΧ+1> by Property 1.3

and

(Η(η)<«>)<η+1> = (Η(ή)<η>)<«> by Property 1.6

b) If Η = (1, 0), there is nothing to be proved. Let Η Φ (1, 0); we

need to show that

Η(η + 2)_! < (Η(η + 1)^)<η> for η > 1.

But

Η(η + 2)_! < Η(η + 1) by Property 1.8

and

Η(η + 1) < (Η(η + 1) - Η(η + 1)<η+ι>)
<η> by Property 1.7 Q

DEFINITION. Let fi be a zero-sequence. We say that Η is a TVS-

sequence (Three Values Suffice) if either

Η = (1, 0) or

indeg (Η) > socdeg (Η) — 1 or

Η(η + 1) = Η(η)<η> for every η = indedg (if), , socdeg (ii) - 2.

The reason for the name is that by its very definition a TVS-sequence is

determined by Η(ϊ), Η(ί), H(s), where ί = indeg (Η), s = socdeg (Η).

DEFINITION. Let Η be a TVS-sequence. We say that Η is a special

sequence if either

Η = (1, 0) or

indeg (Η) > socdeg (Η) or

= (H(D + ί-η+... + (H(i) +j-2j w h e r e . = i

We observe that this is a strong condition of ^-regularity for H(i).
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EXAMPLES. 1) Η = (1, 3, 6, 0) is special since 3 = indeg (if) =

socdeg (if) + 1

2) Η = (1, 3, 4, 0) is special since 2 = indeg (if) = socdeg (Η)

3) Η = (1, 3, 6, 9,12, 7, 0) is special since 3 = indeg (if), socdeg (if)

4) Η = (1, 3, 4,-1, 0) is a TVS-sequence, but it is not special since

4 = if (2) is not of the prescribed type

5) if(1, 3, 5, 6, 2, 0) is not a TVS-sequence, since 6 = if (3) Φ if(2)<2>

= 7

6) Η = (1, 3, 1, 1, 0) is a TVS-sequence, but it is not special since

(*ω + * - 2) = 3.

LEMMA 3.3. Lei Η be a zero-sequence. Then

a) #< > = (1, 0) or indeg (if< >) - indeg (Η)

b) socdeg (if< >) < socdeg (Η)

c) if_! = (1,0) or indeg (if.J > indeg (if) - 1

d) if = (1, 0) or socdeg (if.,) = socdeg (Η) - 1.

Proof, a) and b) are clear.

c) If if _j Φ (1, 0) then indeg (if_0 > 2 hence the result holds trivially

if indeg (if) < 3. Now let indeg (if) > 4; then

Η(2) = (Η^ \ 2 - 1) hence *„,(!) = TO-, = ^ \

It suffices to show that Η.χ(η) = ί^1^ " ^ ^ "" 1 ) ft>r every η < indeg (if)

- 2. And indeed Η_χ(ή) = Η(η + 1)^ = (Η^ +

η

η ~ Χ) since rc + 1 <

indeg ( i f ) - 1.

d) If Η Φ (1, 0), then the conclusion follows from the obvious fact

that d Φ 0 if c Φ 0. •

PROPOSITION 3.4. a) If Η is a TVS-sequence, then Η< > is a TVS-

sequence.

b) If Η is a special sequence, then H<y is a special sequence.

Proof, a) If if = (1, 0), there is nothing to be proved.

Now either Η{ > = (1, 0) or indeg (Η{ >) = indeg (if); we explicitly

remark that for example Η{ > = (1, 0) holds for Η = (1, 1, 1. 1, 0). Moreover
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socdeg (Η
<
 >) < socdeg (Η) hence indeg (Η) > socdeg (if) — 1 is preserved.

Finally let Η(η + 1) = Η(η)
<η>
 for every η = indeg (if), , socdeg (Η) - 2.

Then

Η< y(n + 1) = Η(η + 1)<η+1> =

and the conclusion follows,

b) We have

( rr/-j\ -j I * η\ /ΤΤ(Λ\ 1 7 2\

1 — I — . . . — 1 — I . I

* / V J )
where i = indeg (Η). The conclusion follows since Η< >(1) = if(1) — 1 and

indeg (Η( >) = indeg (Η) •

It is not true that if Η is a TVS-sequence, then Η.χ is a TVS-

sequence as the following example shows.

EXAMPLE. Η = (1, 3, 6, 3, 3,1, 0); Η^ == (1, 3, 3, 1, 0) which is not a

TVS-sequence since indeg (if _0 = 2, socdeg (if ̂ ) = 4, 1 = if ^(3) ψ if_1(2)<2>.

However we have the following

PROPOSITION 3.5. If Η is a special sequence, then Η^χ is a special

sequence.

Proof. If if = (1, 0) there is nothing to prove.

Let now i : = indeg (Η), and s : = socdeg (Η). Let ί > s; if fl^ = (1, 0)

there is nothing to prove. Otherwise by Lemma 3.3 c) we have indeg (if _ι)

> ί — 1> s — 1 = socdeg (if _ι) by Lemma 3.3 d) and the conclusion follows.

So now we may asume that 2 <ί < s hence H(i) = ί w "Μ "~ \

^ ' . J ) where i = indeg (H)y by definition of special zero-

sequence.

CLAIM. Under this assumption H(ri) = Η_χ(ή) for η = 0, , i — 2

and for η = ί, , s — 2.

Namely fl^n) = #(τ* + l)_t = (if(^)<w>)_i since ff is TVS and (Η(η)<η>)_χ

= if(7i). This concludes the proof of the Claim.

We now consider three different cases;

Case 1). j = 1.

Then

- r - 2\ /if(l) + i - 2\) = (^(1), ί i~ 2) - ff(i -
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hence H(ri) = Η^(ή) for η = 0, , s — 2. But s — 2 = socdeg (i7_t) — 1

by Lemma 3.3 d) and the conclusion follows.

Case 2). 2 < i and j > 1.

We show that in this case indeg (Η^) — i — 1. Namely Η^(η) = Η(ή)

for η < i — 2; in particular i?_i(l) = i?(l). Furthermore

. ±\ -

whence indeg (ϋΓ_ι) = i — 1. To show that Η_χ is a TVS-sequenee we

only need to prove that H^(i) = u . ^ i - l)^"^. Indeed H.x{i) = Η(0 by

the Claim, and

) * - 0 = ί ί(0 by Property 1.7.

Finally, since Jff.jil) = Η(ΐ) and

ff-l(i -1)=TO.,=(^ (Η ί i - 3 )+ + Η ί r 3 ) .
we get the required formula for the speciality of Η_χ

Case 3). i = 2 and j > 1 hence j = 2.

We may assume Η(ΐ) > 1 otherwise Η^ = (1, 0). We get #(2) =

( f l21*) h e n c e Ή-^ ^ ί ί ^ 2 ) - 1 = F ( 1 ) - χ > ° B y t h e C l a i m w e ^ e t Η-ι(η)

= Η(η) for η = 2, ., s - 2. Since if is a TVS-sequence and ii(2) =

follows that

+ Λ - 2 ) =

This proves that indeg (Η.χ) > s — 1 = socdeg (ϋΓ_ι) and the conclusion

follows •

DEFINITION. Given a zero-sequence Η, we denote by e(H):= Σ
0

and we call it the multiplicity of Η. We remark that e(H) > 1 for every

Η and equality holds iff Η = (1, 0).

LEMMA 3.6. Let Η be a zero-sequence, Η Φ (1,0). Then e(H) =
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Proof. e(H<>) = ±liH(i)<i>;
0

e(H-r) = ±<H.m = ±<H(i + 1)., = £;<#(*)-!
0 0 1

Hence

β(Ηζ >) + eiH.d = 1 + 2* (Η(ι)φ + Hit).,) = 1 + 2 , ff(0 = e(H) Π
1 1

LEMMA 3.7. Let Η be a zero-sequence. Then δη(Η(ή)) > δη+ί(Η(η + 1))

for every η>0.

Proof. It is an easy consequence of Theorem 2.2 c) and Property 1.1

D

DEFINITION. Let Η, Κ be zero-sequences. We write Η> Κ if Η(η)

> Κ(ή) for every η = 0, , socdeg (Η) — 1.

LEMMA 3.8. Let Η, Κ be zero-sequences. If Η> Κ, then Η^ > Κ_λ

and H<y>K<y

Proof The proof easily follows from Property 1.5 and Property 1.3

D

MAIN LEMMA 3.9. Let Η, Κ be zero-sequences and assume that Η be

special. Let ί : = indeg (Η), s := socdeg (Η) and if s > 0 let

be the s-expansion of H(s). If Η> Κ and e(H) > e(K) then

a) e(i?< >) > e(K, >)

b) If moreover n(j) > j and e(H) > e(K) then e{H{ >) > e(K{ >).

Proof. It is enough to prove a). For, we may assume s > 0, otherwise

b) is empty. So let 71(7) > j and e(H) > e(K). We have

H(s) - 1 = (nf) + (η^Ζ?) +

hence (ff(s) - 1)<S> = (ff(e))<f> - 1.

Let Η':= (1, Η(ϊ), , iT(s - 1), H(s) - 1, 0); then e(#) = β(£Γ0 + 1
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hence e(Hf) > e(K). It is easy to check that Η/ is special and Η' > Κ.

By a) we get e(H{ >) > e(K{ >) and from (H(s) - ΐ)<$> = (H(s))<s> - 1 we get

*(#')< > = e{H, >) - 1.

We now prove the theorem by induction on s. If s — 0 i.e. if = (1, 0),

the conclusion is trivial. Let s > 0. If Κ — (1, 0) there is nothing to

prove. If Κφ (1, 0) we have e(H) = e(ii< >) + e ^ ) and e(if) == e(K( >) +

β(^_!) by Lemma 3.6. Let e := e(H) — e(K); then ε > 0 and a) is equi-

valent to

a') e(H_,) < ε + e(K_,).

Let us assume by contradiction that

(1)

By Proposition 3.5 we have that Η^ is special. By Lemma 3.8 we get

Η_λ>Κ_χ and (i?_i)< >(r) > (Κ_1)< >(r) for every τ > 0. By Lemma 3.3

socdeg (i/_i) = s — 1; by Proposition 3.4 the Osequenees (H^)<>(r) are

special, hence we can apply induction and we get

(2) e((H^)< >(r)) > e((K_1)< >(r)) for every r > 1.

If d is any natural number, we sum (1) and (2) for r = 1 to d and we get

(3) J jr £\("-l)< >(r)) ^ 6 "f /_jr ^(\-^ -ΐ)< >(r))
0 0

By definition

\£l -ι)ζ >(/•) = = V-L) \ " \^/-l/<l>(r)> * * *> V-" \"/-l/<s-l>(r)> ^/

hence

S - l

^((•"-l)< >(r) = = : 1 4" Σ?ι ( - " ( ^ ~f~ l)-l)<w>(r))
1

and the like for (i?^i)< >(r). If ί denotes socdeg (i£) then (3) can be rewrit-

ten as

(4) 1 + d + Ση (ΣΤ (Η(η + 1).
1 \ 0

ί-1

We treat separately two different cases;

Case 1. i > s
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By Lemma 3.1 we get i = s + 1 and this means that Η(ΐ) =

/H(l) + ι - 1\ for . = ^ ^ s a n d ^ = ο for i > s.

Let rf := ^(#(1)) = Η(ί) - 1; If s = 1 then tf(l) > if(l) since e(iJ) >

e(K); If s > 1, then Η(ί) > Κ(ΐ) since Η > if. In any case it is clear

that d = δη(Η(η)) for η = 1, , s and d > δη(Κ(η)) for τι = 1, , t by

Property 1.1 and Lemma 3.7.

Now use (4) and Property 1.13 a) and e); we get

(5) 1 + d + Ση Η(η + 1) > ε + 1 + d + Ση Κ(η + 1)

> ε + 1 + Κ(ΐ) - 1 + Ση Κ(η + 1)
1

hence

(6) e(H) - 1 > e(H) - e(K) + e(K) - 1 a contradiction.

Case 2. ί < s

Let d'.^diiHii)). We observe that d^Hii)) = Η(ΐ) - 2 since if is

special. Being i/ > if we have fl"(i) > if (i) hence d > δη(Η(η)) for 72 =

i, , s and d > δη(Κ(η)) for 72 = i, , t by Property 1.1 and Lemma 3.7.

We treat separately two subcases;

Subcase 2.1. > 1

We put

A := Ση (fir (#(η + l)-iW>) and Β = Ση (ΣΤ (Κ(η + l ) - ^ ) .
ι \d+i / l \d+i /

We know that Η > Κ, hence if(rc + 1) > if(7z + 1 ) for η = 0, , i - 2,

hence A > Β by Property 1.5 and Property 1.3. Adding this inequality

to (4) and subtracting d from both sides, we get

(7a) 1 + Ση (Σ, (Η(η + l^W,) + Σ» (fir (Η(η + l).^^,)
1 \ 0 / ί-1 \ 0 /

> ε + 1 + Ση (Zr (Κ(η + 1).,)«(,)) + Σ . ( i r (Κ(η + l)-,)<,>(r)) .

Now Η is special, hence δπ+1(Η(η + ϊ)) = d = Η(ϊ) — 2 for η + 1 = t, ,

s — 1. We get

Στ (Η(η + !).,)<.>(,) = #(» + 1) for η + 1 = i, • • •, s - 1
0

by Property 1.13 d)

and also
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f]r(H(s).d<s-mr) = H(s), being j > 1, by Property 1.13 a) .
0

Moreover Property 1.13 d) also implies that | ] r (Η(η + l)-i)<n>(r) = Η(η + 1)
0

for η + 1 = 1, ••-,/ — 1 being Η(η + 1) a binomial coefficient.

Therefore the left hand side of (7a) is e(H) - Η(ί), while the right

hand side is greater than or equal to e + e(K) — Κ(ί), again by Property

1.13 e). We deduce e(H) - Η(ί) > e(H) - e(K) + e(K) - Κ(ί). Being

Η(ί) > if (1), we get a contradiction.

Subcase 2.2. j = 1

Let ρ be the maximum integer such that η(ρ) = η(2) + ρ — 2. Then

of course ρ > 2 and

+ + (η(ρ V " V (" ( 2 )/-ΡΓ 2)
by Property 1.11.

By the inductive assumption, we may assume that the theorem holds

for zero-sequences Η', Κ' with socdeg (Η;) < s. By (1) and the equality

<*<».,)<..,„„ = ( φ ) - _ \ - r ) + • + C 0 ' + V 1 " 0

we may apply b) until η(2) + ρ — 2 — r — (ρ — 1) = ra(2) — r — 1 > 0.

We get strict inequalities in formulae (2) i.e.

(20 e{(H.,\ >(r)) - 1 > e((if_1)< >(r;) for every r = 1, - • , η(2) - 1.

Subcase 2.2.1. d > η(2) - 1

We sum (1), (2') for r = 1 to η(2) - 1, (2) for r = η(2), . .., d and we

get

(30 E r e^F^X >< t
0

hence as before

(40 1 + d + Ση (tr (Η(η + l ) . , ) w w ) - «(2) + 1
1 \ 0 /

> β + 1 + d + Ση (tr (Κ(Π +
1 \ 0
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Now we proceed as in subcase 2.1; hence we put

A : = Ση (Στ (Η(η + l ) . ^ , , ) and Β = g« (fir (Κ(η + 1)-ι)<η>(Λ
ι \d+i / l \d + i /

We know that Η- > Κ, hence Η(η + 1) > Κ(η + 1) for η + 1 = 1, ,
ί — 1, hence A > J3 by Property 1.5 and Property 1.3.

Adding this inequality to (40 and subtracting d from both sides, we
get

(7b) 1 + Ση ( Σ Γ (ff(* + l)-iW>) + Σ» ( Σ
1 \ 0 / i-1 \ 0

> β + 1 + τ (Κ(Π + D-l)W(r)) + Ση (fir W » +
/ ί-1 \ 0

Now Η is special, hence δη+1(Η(η + ΐ)) = d = Η(ΐ) - 2 for η + 1 = ί,
s — 1. We use Property 1.13 d) and we get

Σ Γ ( f f ( n + l)-i)<»xr) = Η ( η + ϊ) f o r η + 1 = £ , . - . , s - 1 .
0

Now = 1 and d > η(2) - 1, hence d > η(2) - 2; if d = 3s(H(s)) we cannot
have ρ = i. Therefore

.1)<s-ιχ,) - #00 + Λ(2) - η(1) by Property 1.13 c).
0

Moreover Property 1.13 d) also implies that

Στ(Η(η + l ^ W , ) = Η(η + 1) for η + 1 = 1, , ί - 1,
0

being Η(η + 1) a binomial coefficient. Therefore the left hand side of
(7b) is

e(H) + η{2) - η(ί) - η{2) + 1 - H(l) = e(H) + 1 - η(1) -

while the right hand side is greater than or equal to ε +
again by Property 1.13 e). We deduce

e(H) + 1 - η(ϊ) - Η(ϊ) > e(H) - e(K) + e(K) - K(l).

Being Η(ΐ) > Κ(ϊ) and η(ΐ) > 1, we get a contradiction

Subcase 2.2.2. rf < η(2) - 1

We sum (1), (20 for r = 1 to d and we get

(3") Er e((ii.1)< >Cr)) - d > ε + Στ <{Κ.Χ\ >(r))
0
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hence as before

(4") 1 + d + g . ( Σ Γ (Η(η + 1).,)(,)Μ) - d
1 \ 0 /

> ε + 1 + d + Σ. (Σ- (#(» + D-i)<-xo)

We have η(2) - 2 < 5s(F(s)) < d < ra(2) - 1 hence d = ds(H(s)) = ra(2) - 2.

This implies ρ — i, hence

Στ (»(«)_,)<._,>(,) = Η(β) + η(2) - η(1) - 1 by Property 1.13.
0

Now we proceed as in case 2.2.1 and we get

e(H) - d + η(2) - η(ΐ) - Η(ΐ) - 1 > e(H) - e(K) + e(K) - Κ(ΐ) hence

e(H) - τζ(2) + 2 + η(2) - η{1) - H(l) - 1 > e(H) - e(K) + e(K) - K(l).

As before, being Η(ΐ) > Κ(ΐ) and η(ϊ) > 1, we get a contradiction Π

THEOREM 3.10. Let J be a zero-dimensional lex-segment ideal in R =

k[xu - - , xh], J c (χ1? . . , χΛ)2; Ζβί I be a homogeneous zero-dimensional

ideal in R = k[xu , xh,], I c (χ1? . . ., xh,)\ Let HR/J be special, HR/J>>

HR.IU e(RIJ) > e(R'/I). Then v(J) > ν(Ι).

Proof. The assumptions imply that HR/J(1) = h and ΗΗΊΙ(1) — h'. If

socdeg (HR/J) > 1 then HR/J > HR>/I implies that h > h'. If socdeg (HR/J)

= 1 then J = (xu , xj 2 , hence e(R/J) = Λ + 1 > e(i?77) > Λ7 + 1. Also

in this case we get h > Λ7. By Corollary 2.7 we may assume / to be a

lex-segment.

Now (HR/J)< >(r) is special for every r by Proposition 3.4 b). Moreover

(HR/J)< >(r) > {HR/J)< >(r) for every r, by Lemma 3.8. By repeated application

of Main Lemma 3.9 we get e{(HRlJ\ >(r)) > e((flB7J)< >(r)) for r = 1, . . , h'.

Hence by Lemma 2.8,

, Xhi^h-r + iyl^^h-r + lW Ξ> e(fc[Xlf , ^ ' J ^ ' - r + lV- f̂c'-r

for r = 1,

Therefore

r e(k[xu - , xh]<h,-r+1>/I<h,_r+1>) = ν(Ι) by Corollary 2.10
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COROLLARY 3.11. With the same assumptions as in 3.10, if h > hf or

indeg (R/J) > indeg (R/I), then v(J) > ν{1).

Proof. If h > h\ then

h h'
Σιτ e(k[xl9 ' , Sj< f c-r + l>A/<*-r + l>) > E

1 1

Now let h = h' and indeg (R/J) > indeg (R/I). We know that

indeg (k[xl9 , xJ<2>/J<2>) = indeg (R/J) and

indeg (k[xu , xJ<2>//<2>) = indeg (R/I) by Lemma 3.3 a);

moreover it is clear that

e(k[xu , xJ<2>/J<2>) = indeg(k[xu - , xJ<2>/J<2>) and

e(k[xu , xj<2>/l<2>) = indeg (k[xu , χΛ]<2>//<2>), hence

e(k[xu - -, xJ<2>/J<2>) > e(k[xu , xJ<2>//<2>).

We use again

h h
l>(cJ) = E r e(k[Xl> ' ' '9 Xh]<h~r + i}l^<,h-r + iy) ^ Σ*" e(k[Xi, ' ' ' , Xfi]<h -r + l>A^

1 1

ft.

and we see that one of the inequalities is strict •

§ 4. Main Theorems

DEFINITION. Given two positive integers e, h, with e > h + 1, we

define t = t(e, h) as the unique integer such that

f + ίΓ1)* <(*ί <) - Γ - Κ Μ ) : — ^ 1 ) -
We remark that ί > 2.

LEMMA 4.1. Giuera iw;o positive integers e, h, with e > h + 1, there

exists a unique zero-sequence Η = fl"(e, /ι), si/c/ι that

a) e(H) = e

b) H(l) = h

c) socdeg (Η) = t if r> 0, socdeg (Η) = t - 1 if r = 0

d) indeg ( # ) = ί
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Moreover such Η is special.

Proof. It is clear that

is the unique zero-sequence satisfying all the conditions •

DEFINITION. Given β, h as before, we define J = J(e9 h) as the unique

lex-segment ideal in R = k[xu , xh] such that HR/J = H(e, h).

PROPOSITION 4.2. Given e, h as before, we have

v(J(e, h)) = ( Λ + \ ~ *) - r + r<'>.

Proof We know from Lemma 4.1 that

We use Corollary 2.7 and the conclusion follows immediately •

DEFINITION. Given three positive integers e, h, ί with e > h + 1, i <

t(ey h), we define s = s(e, h, ί) as the unique integer such that

(h + s - 1 \ (h + s ~ i - l \ , p<r (h + s\ (h + s - i\
\ s-1 ) - \ s - i - 1 ) ^ e < { s ) - { s - i ) '

We observe that such s is well defined since the function

is increasing. We define

LEMMA 4.3. Given three positive integers e, h, i with e > h + 1, 2

i < t(e, h), there exists a unique zero-sequence Η = H(e, h, i) such that

a) e(H) = e

b) Η(1) = Α

c) indeg (Η) = i

d)

e) Η is
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Moreover such Η is special.

Proof. We have

Let Η be the zero-sequence defined by

Η(ή):= (h + jj " *) for η = 0, • , i - 1;

#(η. + 1) = #(η)<η> for η = i, • , s - 2

#(β) = r;

Η(ή) = 0 for η > s.

We remark that

hence we have

/Λ + β - 1\ /A + β - i - 1

Therefore e(if) = e and the other properties are clearly satisfied •

DEFINITION. Given e, h, i as before, we define J = J (e, h, i) as the
unique lex-segment ideal in R — k[xu , xh] such that HR/J = H(e, h, ί).

PROPOSITION 4.4. Given e, h> ί as before, we have

Proof. From Lemma 4.3 we know H(e, h, i) hence HR/J. The conclusion
follows again from Corollary 2.7 and a simple computation. •

DEFINITION. Given four integers e, h, i, ρ with e > h + 1, i < t(e, h),

0 <ρ < ( ~ ~ ) , we define ρ as the least i-regular integer which is

bigger than or equal to max (ρ, (h + \ ~ 2)\ Since (
h + \ ~ - 1 >ρ

and it is i-regular, we have ρ < ί . ~" J — 1.
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Let ί ) + • • • + ( ) b e the i-binomial expansion of

ρ and let s = s(e, h, i, ρ) be the unique integer such that

(h + s - 1\ (h + s - i + - 2\ (h + j - 2
V s - 1 ) - { s - i + j - 2 ) + { j-2

(h + 8-i+j-l\ (h+j-2
-{ a-i + j - 1 ) + \ j -s

We observe that such 5 is well defined since the function

is increasing. We define

LEMMA 4.5. Given four integers e, h, i, ρ with e> h + 1, 2 < i < t(e, h),

0 <ρ < / \~ )> there exists α unique zero-sequence Η = H(e, h, i,p)

such that

a) e(H) = e

b) Η(ΐ) = h

c) indeg (Η) = i

d) Η(ΐ) = ρ

e) Η is TVS

Moreover such Η is special.

Proof. We have ρ = (h + j ~ 2 ) + + (h + ; ' ~ 2V Let Η be the

zero-sequence defined by

for η = 0, . . , ΐ - 1 ;

Η(η + 1) = ίί(7ΐ)<Β> for η = i, , β - 2,

ίΓ(β) = r;

Η(η ) = 0 for ra > s.

We remark that

„=,-,...,»-!,
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hence we have

s ^ Η(η) _ψ (Η + η-1\_ψ (h + n-i+j-2\

ψ; (h + η - 1\ _ ψ (h + η - i + j - 2\ ψ (h + η - i + j - 2\
V"V η I ο V n-i+j -1 ) + Vra \ Λ - ί + 7 - 1 j

_ /A + s - 1\ /A + s - ι + j - 2\ (h + j - 2\
- { 8 - 1 ) - { s - i + j - 2 ) + { j - 2 )•

Therefore e(H) = e and the other properties are clearly satisfied •

DEFINITION. Given e, h, i, ρ as before, we define J = J(e, h, i, ρ) as

the unique lex-segment ideal in R = k[xu • • •, χη] such that HK/J = H(e, h,

ί,ρ).

PROPOSITION 4.6. Given e, h, ί, ρ as before, we have

v(J(e, h, i, ρ))

_ (h + j - 2\ (h + s - 1\ (h + s - i + j - 2\ <s>

- { j ) + { ) - { i j ) - r + r

Proof. From Lemma 4.5 we know H(e, h, i, ρ) hence HR/J. The con-

clusion follows again from Corollary 2.7 and a simple computation D

In the following when we say that a homogeneous polynomial ideal

/ has multiplicity e, we mean that / is an ideal of a polynomial ring R

such that R/I has multiplicity e.

DEFINITION. Given a positive integer e we define 3F(e) to be the

family of zero-dimensional homogeneous polynomial ideals with multiplicity

β. Given two positive integers β, h with e > h + 1 we define ^(e, h) to be

the family of zero-dimensional homogeneous ideals / i n R:= k[xu , xh]

with / c: (xu . ., xhf and multiplicity e. Given three positive integers e,

h, ί, with e > / i + l, 2 < ί < t(e, h) (see definition before Lemma 4.1), we

define ^(e, h, ί) to be the family of zero-dimensional homogeneous ideals I

in R := k[xu , xh] with I c: (χί9 . . ., xh)
2

9 multiplicity e and indeg(i?//)

= i. Given four positive integers e, h, ί, ρ, with e > h + 1, 2 < ί < t(e, h)

and 0 < ρ < ( "^"."^ I, we define ^(β, Λ, i, ρ) to be the family of zero-

dimensional homogeneous ideals / in R : = k[xu , xh] with I c (xu . . .,

χΛ)2, multiplicity e, indeg (i?//) = i and HR/I(i) = p.

THEOREM 4.7. 1) 7%e idea/ (xu , xe_i)2 ο/ /?[xl5 , xe_i] is m J^(e)

(7) < ν((Χι, , xe-\f) = (ο) / o r β^Ο' irfeaZ J in ^(e).
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2) The ideal J(e, A) is in ^(e, A) and

ν(/) < v(J(e9 A)) = (h + j ~ λ) - r + r«> /or euerj idea? / in &(β, A).

3) TAe idea/ J(e, A, i) is in ^(e, A, ϊ) and

for every ideal I in ^(e, A, i).

4) The ideal J(e, A, i, ρ) is in ^(e, A, i, ρ) and

γ_ - ̂ ) + (»+ -1) (" + -_ τ; ιΐ -
— r + r<s> /or ei;ery idea/ I ifi ^"(e, h, ί, ρ).

Proof. The ideals (xu , χ ^ ) 2 , J(e, h), J(e, h9 ί) and J(e, h, i,p) have

special Hubert functions by Lemma 4.1, Lemma 4.3, Lemma 4.5. Moreover

HR/J' > ΗΚΊΙ by the very definition of J (here J means (xu , χ ^ ) 2 or

J(e, h) or J(e, h, ϊ) or J(e, h, ί, ρ)). Hence the conclusion follows from

Theorem 3.10 •

THEOREM 4.8. 1) v(J(e, A, ί, ρ)) < ν(J(e, h, i, q)) if ρ <q

2) ν(J(e, A, i, ρ)) < v(J(e, A, i)) < v(J(e, A))

3) v(J(e, A, 0) < Ke7(e, A, i + 1))

4) v(J(e, A)) < v(J(e, A + 1))

5) u(J(e, A, £, ρ)) < v(J(e + 1, A, i, ρ)) v(J(e, h, ΐ)) < v(J(e + 1, A, i))

, h)) < v(J(e + 1, A))

Proof Along the lines of the proof of Theorem 4.7, the conclusions

follow from Theorem 3.10 and Corollary 3.11 •

EXAMPLES 1) Let J = (χ2, xy9 χζ\ y\ y3z2, y2z\ yz\ ζ*); then Η:= HR/J

= (1,3,4,5,4,0). Let I = (χ\ xy, xz2,y\y%fz2,y2z\yz\z*y, then Κ: =

HR/J = (1, 3, 4, 4, 5, 0). Then e(R/J) = e(R/I) = 17 and Η >Κ;Η<> = (1,

2,1,1, 0), #< > = (1, 2,1,1,1, 0), hence e(jff< >) < e(#< >). This shows that in

the Main Lemma 3.9 we cannot delete the assumption of speciality on Η.

Moreover v{J) = 8, υ{1) = 9; this shows that also in Theorem 3.10

we cannot delete the assumption of speciality on Η.

2) Let R :== k[xu χ2, χ3], J = J(64, 3, 2); by Proposition 4.4, v{J) = 18.

Let J 7 = J(64, 3, 3, 4); by Proposition 4.6, v(J') = 17. This shows that

e, A, 0) < ^(^(β, A, i + 1, ρ)) does not hold for every p.
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§ 5. Applications

Perfect ideals in regular local rings

In the following we are going to use some well-known properties of

local algebra, in particular the theory of reductions. All the necessary

details can be found for instance in Herrmann-Ikeda-Orbanz (1988). Let

(R, m, k) be a regular local ring and α an ideal in R. Let / = indeg (α)

be the maximum integer η such that a £ m\

DEFINITION. Given a positive integer e we define

CM(e) to be the family of perfect ideals α in regular local rings

(R, m, k) with e(R/a) = e. Given two positive integers e, h with e > h + 1,

we define

CM(e, h) to be the family of perfect codimension h ideals α in regular

local rings (R, m, k) with a c: m2 and e(R/a) — β. Given three positive

integers e, Λ, i, with e > h + 1, 2 < ί < tie, h) (see definition before Lemma

4.1), we define

CM(£, h, i) to be the family of perfect codimension h ideals a in

regular local rings (i?, m, k) with α c: m2, indeg (α) = i and e(R/a) = e.

Given four positive integers β, h, i, ρ, with β > / ι + 1, 2 <i < t(e, h) and

0 < ρ < (h + \ ~~ ^ we define

CM(e, h, ί, ρ) to be the family of perfect codimension h ideals α in

regular local rings (R, m, k) with a <Ξ πχ2, indeg (α) = i, HR/a(i) = ρ and

= β.

In the following theorem we use the notations of Section 4.

THEOREM 5.1. 1) Let (R, m, ̂ ) 6β a regular local ring of dimension

e — 1. TTie ideal m2 is m CM(e) and ν(ά) < y(m2) = (2) for every i d e a i α

in CM(e).

2) For euery ideal a in CM(e, Λ), ν{α)

3) For every ideal a in CM(e, h, i),

4) For every ideal a in CM(e, h, i, ρ),

; i T

 2 ) + C + β " J ) - (* ί r ; ; i r2) -
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Proof. It is well-known that there exists a minimal reduction χ : =

χ1? , xN-h of m mod α, such that indeg (α) = indeg (α + (x)/(x)) (Elias-

Iarrobino (1987)).

Let R: = R/(x); ά : = α + (χ)/(χ); ffi : = m/(x). Then (#, ffi, &) is a regu-

lar local ring of dimension h and G : = grm/5(22/a) = fefc, , xj/i, where

J = mm(a) is a homogeneous ideal contained in (xu , x j 2 . We get ν(α)

= ν(α) since χ is a regular sequence mod a and ν(α) < ν(Ι), since every

standard basis is a basis. Clearly indeg (a) = indeg (α) = indeg (J), Λ =

codim(J) and e(R/a) = e(Rja) = e(k[xu , χΛ]//).

Hence the conclusions follows from Theorem 4.7 •

Remark 1. It is clear that the conclusions of Theorem 5.1 apply as

well to perfect homogeneous ideals of polynomial rings.

Remark 2. Let R = k[x, y] and I = (χ) f] (χ, y)n. Then e(R/I) = 1

while ν(Ι) = η. This shows that Theorem 5.1 does not extend to non

perfect ideals.

Codimension 2 perfect ideals.

PROPOSITION 5.2. Let (i?, m, k) be a regular local ring and a a perfect

codimension 2 ideal in R. Then ν(ά) < indeg (α) + 1.

Proof As in the proof of Theorem 5.1 we have ν(ά) < ν(Ι), where /

is a homogeneous zero-dimensional ideal of R — k[xu x2l. By Corollary 2.7

we get ρ(Ι) < v{J) where J is a lex-segment ideal of R — k[xu χ2]. We

apply Corollary 2.10 and we get v(J) = e{R<l>IJ<x>) + e(J?<2>/J<2>). But

e(i?<1>/J<1>) = 1 and clearly e(i?<2>/J<2>) = indeg (J).

Since indeg (J) = indeg (a), the conclusion follows •

Powers of maximal ideals.

PROPOSITION 5.3. a) Let I be a perfect codimension h ideal of a

regular local ring (R, m). Assume that ν(Ι) = ( . ~~ ) and e(R/I) =

T h e n i n d e g ( / ) ^ L

b) If moreover dim (R/I) = 0, then I = m*.

Proof, a) If indeg (/) = i < t, then / e CM(e, h, i), hence ν(Ι) < (J(e,

h, i)) by Theorem 5.1 and v(J(e, h, i)) < v(J(e, h, t)) < v(J(e, h)) by Theorem

4.8 2) and 3). Now v(J(e, h)) = (h + * ~ ^ by Proposition 4.2.
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b) By a) we get / c m*. It I c m* then e(i?//) = Ζ(Β//) > Z(fl/m') =

ί ^~_ 7" J, where Ζ denotes length, a contradiction. Π

Asymptotic formulae.

In the following if {αη} and {&„} are sequences of positive real num-

bers, we write {αη} ~ {bn} if l im^^ ajbn = 1. We are interested in the

asymptotic behaviour of the sequences v(J(e, h)) and v(J(e, h, i)), where

we let e tend to infinity, while h and ί are kept fixed.

THEOREM 5.4. a) {v(J(e, h))} ~ {(hjVh^el-1/h).

b) Let k := h - 1; then {J(e, h, ί)} ~ {VTik/Vkly-1'*}.

Proof, a) We first compute the asymptotic behaviour of the subse-

q u e n c e s {vet} of {ve} : = {v(J(e, h))}, w h e r e et:= I J__ ~7 V We k n o w from

Proposition 4.2 that vet = (h + |[ " ^ = ^ "^ ̂  λ\ hence tvet = het.

Since vei is a polynomial in Ζ with leading term th~l\(h — 1)!, it is clear

that {vet} ~ {th-ll(h - 1)!}, hence {vet} ~ {(het)
h-'l(h - l ) !^)*" 1 } which im-

plies {(vet)
h} ~ {(hety->l(h - 1)!} = {λΑβ?-7Λ!}, whence {vet} - p/VMM"1/'1}.

In general, given ^ we let t : = ί(β, Λ) (see Section 4). Proposition 4.2

implies vet <ve< vet+1. Let φβ := (hlVhfye1-1"1; then ^ β ί < φβ < (pet+1 hence

(VeJ<Pet)(<Petl9et + 1) = ^ β ί / ^ β ί + 1 < ^β/^β < Vet + 1 / ^ e t = (^>et + 1!<Pet + 1)(<PetJ<Pet). N O W i t

suffices to prove that {φβί} — {̂ βί+1} For, it is enough to show that {et}

— {βί+1} and this is true since they are polynomials in t with the same

leading term.

b) We first compute the asymptotic behaviour of the subsequence

Κ.} of Κ} : = MJ(e, h, i))}, where es := ( Λ + ^ ~ Χ ) - ( Λ + ^ Γ ^ ~ Χ ) .

We know from Proposition 4.4 that

It is easy to see that es and ves are polynomials in s with leading term

(ίβ*-')/(Λ - 1)! and (ish-2)l(h - 2)! respectively. We get {(Λ - l)es} ~ {»„},

therefore {vej ~ {ί[(Λ - l)es]
ft-2/(/i - 2)!(ν£,)

Α"2}, which implies

ΚΟ*-1} ~ {»[(Λ - l)es]
ft-2/(/i - 2)!} = {i(h - 1)»->β»-ι/(Λ - 1)!},

whence {ν.,} ={V
The general case can be handled as in a) D
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Ideals of points in Ρ \

Let I be the defining ideal of a set Χ\ — {Pu - ,Ρβ} of e distinct

points in Ρ \ In the following proposition we use the notations of sec-

tion 4

PROPOSITION 5.5. a) ν(Ι) < (h + * ~ ^ - r + r<°.

b) If i is the minimal degree of hypersurfaces containing X, then

c) If i is the minimal degree of hypersurfaces containing X and ρ is

the number of independent conditions imposed by X on the linear system

of hypersurfaces of degree i, then

d) All the preceding bounds are sharp.

Proof a), b), c) are immediate consequences of Theorem 5.1 since I

is a perfect codimension h ideal in R: = k[xQ, , xh] such that e(R/I) = e.

d) The bounds are attained by the monomial ideals J(e, h), J(e, h, i),

J(e9 h, ί, ρ) respectively. By a result of Hartshorne (see Geramita-Gregory-

Roberts (1986)) monomial ideals in k[xu , xh] can be lifted to ideals of

distinct points in Fh

f with the same number of generators, same indeg

and multiplicity Π

EXAMPLES. Let h = 3, e = 10. Then J(10, 3) = (xu χ2, χ3)
3 (see Section

4) and v(J(10, 3)) = 10. We construct a set Χ:= {Pu - , Ρ10} of 10 distinct

points in Ρ 3, whose defining ideal has 10 generators.

t / ( l U , ό) = \Χι, Χ2, Χζ) ==: \Xu ^1^2> ^1^3) %ί%2ι Χ\ΧΐΧ%<> ΧχΧζι ΧΊ > X<iX%<i ΧΐΧζ ) #3/

This ideal can be lifted for instance to the following radical ideal / in

This is the defining ideal of the following 10 points

Ρχ = (1, 0, 0, 0); Ρ 2 = (1, 0, 0, 1); Ρ3 = (1, 0, 0, 2); Ρ 4 = (1, 0,1, 0);

Ρ5 = (1, 0,1,1); Ρ6 = (1, 0, 2, 0); Ρ7 = (1,1, 0, 0); Ρ 8 = (1,1, 0,1);
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Ρ9 = (1,1,1,0); Ρ10 = (1, 2, 0, 0).

Let h = 3, e = 10, i = 2. Then J(10, 3, 2) = (χ\, χ,χ\, χ,χ2χζ, χχχ\, χ\, χ\χ,,

χ2ζ|, a£) see section 4) and v(J(10, 3, 2)) = 8. As before we construct a set

Χ:= {Pu , Ρ10} of 10 distinct points on a quadric of Ρ3, whose defining

ideal has 8 generators. The points are

Ρχ = (1, 0, 0, 0); Ρ2 = (1, 0, 0, 1); Ρ3 = (1, 0, 0, 2); Ρ4 = (1, 0, 0, 3);

Ρ 5 = (1, 0, 1, 0); Ρ6 = (1, 0, 1, 1); Ρ 7 = (1, 0, 2, 0); Ρ 8 = (1, 1, 0, 0);

ρ β = ( ΐ , ι , ο , ΐ ) ; Ρ 1 0 = (l, l, l, ο).

They lie on the quadric χ1(χ1 — xQ) = 0.

Grobner Bases of homogeneous Ideals

For an introduction to the subject see for instance Robbiano (1988).

If / is an ideal in k[xu , χη] and a is a term-ordering, then / has a unique

reduced Grobner Basis Ga(I) with respect to σ. The cardinality of Ga(I)

is the same as that of the monomial ideal Lta(I). Therefore, if I is a

zero-dimensional ideal of k[xu , x j , the cardinality of Ga{I) is subjected

to the bounds obtained in Corollary 2.7 and Theorem 4.7.

For example if (/, g, h) is a regular sequence of homogeneous elements

in k[x, yy ζ] such that deg(/) = 2, deg(g) = 3, deg(7i) = 5, and I is the

ideal generated by {/, g, h}, then e(R/I) = 30, the Hubert function is (1, 3,

5, 6, 6, 5, 3,1, 0) and the corresponding lex-segment ideal is

J = (χ\ xy\ xyz\ χζ\ y\ y*z\ y*z\ y2z\ yz\ zs).

Since v{J) — 10, we deduce from Corollary 2.7 that every reduced Grobner

basis of I has cardinality smaller than or equal to 10.

A remark on tangent cones

Let J be a perfect ideal of a regular local ring (R, η). Very often, if

the ring (A = H/I, m = n/I) has numerical characters, which are extremal

with respect to some general inequality, the tangent cone grm(A) is again

Cohen-Macaulay (see Sally (1977), Elias (1986), Elias-Iarrobino (1987),

Rossi-Valla (1988)). We show that this is not the case in our situation.

Let Α : = k[[x, y> ζ, t]]II where I is the defining ideal of the union of

the monomial curves with parametric equations {t*, f, tu, 0} and {0, s, 0, s3}.

Then 7 = ( y — χ2ζ — yw, χΑ — yz, xlyz — ζ2, zw, xw9 yzw — w2) hence ν(Ι) =

6 = v(J(6, 3, 2)). The tangent cone is given by the equations (yw, yz, ζ2,
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zw, xw, ΐί)ζ, χ3ζ, xy5) and the Hubert function is ΗΑ = (1, 4, 4, 5, 5, 6, 6, •)•
Therefore grm(A) is not Cohen-Macaulay since ΗΑ is not strictly increas-
ing up to the multiplicity.

Multiplicity, Codimension, Maximum number of generators

(4,3;6) (5,3;6) (6,3;6) (7,3;7) (8,3;7)
(9,3;8) (10,3;10) (11,3;10) (12,3;10) (13,3;10)

(14,3;11) (15,3;11) (16,3;11) (17,3;12) (18,3;12)
(19,3;13) (20,3;15) (21,S;15) (22,3;15) (23,3;15)
(24,3;15) (25,3;16) (26,3;16) (27,3;16) (28,3;16)
(29,3;17) (30,3;17) (31,3;Γ7) (32,3;18) (33,3;18)
(34,3;19) (35,3;21) (36,3;21) (37,3;21) (38,3;21)
(39,3;21) (40,3;21) (41,3;22) (42,3;22) (43,3;22)
(44,3;22) (45,3;22) (46,3;23) (47,3;23) (48,3;23)
(49,3;23) (50,3,-24) (51,3;24) (52,3;24) (53,3;25)
(54,3;25) (55,3;26) (56,3;28) (57,3;28) (58,3;28)
(59,3;28) (60,3;28) (61,3;28) (62,3;28) (63,3;29)
(64,3;29) (65,3;29) (66,3;29) (67,3;29) (68,3;29)
(69,3;30) (70,3;30) (71,3;30) (72,3;30) (73,3;30)
(74,3;31) (75,3;31) (76,3;31) (77,3;31) (78,3;32)
(79,3;32) (80,3;32) (81,3;33) (82,3;33) (83,3;34)
(84,3;36) (85,3;36) (86,3;36) (87,3;36) (88,3;36)
(89,3;36) (90,3;36) (91,3;36) (92,3;37) (93,3;37)
(94,3;37) (95,3;37) (96,3;37) (97,3;37) (98,3;37)
(99,3;38) (100,3;38) (101,3;38) (102,3;38) (103,3;38)

(104,3;38) (105,3;39) (106,3;39) (107,3;39) (108,3;39)
(109,3;39) (110,3;40) (111,3;40) (112,3;40) (113,3;40)
(114,3;41) (115,3;41) (116,3;41) (117,3;42) (118,3;42)
(119,3;45) (120,3;45) (121,3;45) (122,3;45) (123,3;45)
(124,3;45) (125,3;45) (126,3;45) (127,3;45) (128,3;45)
(129,3;46) (130,3;46) (131,3;46) (132,3;46) (133,3;46)
(134,3;46) (135,3;46) (136,3;46) (137,3;47) (138,3;47)
(139,3;47) (140,3;47) (141,3;47) (142,3;47) (143,3;47)
(144,3;48) (145,3;48) (146,3;48) (147,3,48) (148,3;48)
(149,3;48) (150,3;49) (151,3;49) (152,3;49) (153,3;49)
(154,3;49) (155,3;50) (156,3;50) (157,3;50) (158,3;50)
(159,3;51) (160,3;51) (161,3;51) (162,3;52) (163,3;52)
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Multiplicity, Codimension, Initial degree, Maximum number of generators

(4,3,2;6) (5,3,2;6) (6,3,2;6) (7,3,2;7) (8,3,2;7)
(9,3,2;8) (10,3,2;8) (11,3,2;8) (12,3 2 ;8) (13,3,2;9)

(14,3,2;9) (15,3,2;9) (16,3,2;10) (17,3,2;10) (18,3,2;10)
(19,3,2;10) (20,3,2;10) (21,3,2 ;11) (22,3,2;11) (23,3,2;11)
(23,3,2;11) (25,3,2;12) (26,3,2;12) (27,3,2;12) (28,3,2;12)
(29,3,2;12) (30,3,2;12) (31,3,2;13) (32,3,2;13) (33,3,2;13)
(34,3,2;13) (35,3,2;13) (36,3,2;14) (37,3,2;14) (38,3,2;14)
(39,3,2;14) (40,3,2;14) (41,3,2;14) (42,3,2;14) (43,3,2;15)
(44,3,2;15) (45,3,2;15) (46,3,2;15) (47,3,2;15) (48,3,2;15)
(49,3,2;16) (50,3,2;16) (51,3,2;16) (52,3,2;16) (53,3,2;16)
(54,3,2,16) (55,3,2;16) (56,3,2;16) (57,3,2,-17) (58,3,2;17)
(59,3,2;17) (60,3,2;17) (61,3,2;17) (62,3,2;17) (63,3,2;Γ7)
(64,3,2;18) (65,3,2;18) (66, 3, 2 ;18) (67, 3, 2 ;18) (68,8,2;18)
(69,3,2;18) (70,3,2;18) (71,3,2;18) (72,3,2;18) (73,3,2;19)
(74,3,2;19) (75,3,2;19) (76,3,2;19) (77,3,2;19) (78,3,2;19)
(79,3,2;19) (80,3,2;19) (81,3,2;20) (82,3,2 ;20) (83,3,2;20)
(84,3,2;20) (85, 3, 2 ;20) (86, 3, 2 ;20) (87, 3,2;20) (88,3,2;20)
(89,3,2;20) (90,3,2 ;20) (91,3,2;21) (92,3,2;21) (93,3,2;21)
(94,3,2;21) (95,3,2;21) (96,3,2;21) (97,3,2;21) (98,3,2;21)
(99,3,2;21) (100,3,2;22) (101,3,2;22) (102,3,2 ;22) (103,3,2;22)

(104,3,2;22) (105,3,2;22) (106,3,2;22) (107,3,2;22) (108,3,2;22)
(109,3,2;22) (110,3,2;22) (111,3,2;23) (112,3,2;23) (113,3,2;23)
(114,3,2;23) (115,3,2;23) (116,3,2;23) (117,3,2;23) (118,3,2;23)
(119,3,2;23) (120,3,2;23) (121,3,2;24) (122,3,2;24) (123,3,2;24)
(124,3,2;24) (125, 3, 2 ;24) (126, 3, 2 ;24) (127,3,2;24) (128, 3, 2 ;24)
(129,3,2;24) (130,3,2;24) (131,3,2;24) (132,3,2;24) (133,3,2;25)
(134,3,2;25) (135,3,2;25) (136,3,2;25) (137,3,2;25) (139,3,2;25)
(139,3,2;25) (140,3,2;25) (141,3,2 ;25) (142,3,2;25) (143,3,2;25)
(144,3,2;26) (145,3,2;26) (146,3,2 ;26) (147,3,2;26) (148,3,2;26)
(149,3,2;26) (150,3,2;26) (151,3,2;26) (152,3,2;26) (153,3,2;26)
(154,3,2;26) (155,3,2;26) (156,3,2;26) (157,3,2;27) (158,3,2;27)
(159,3,2;27) (160,3,2;27) (161,3,2;27) (162,3,2;27) (163,3,2;27)
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