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FIBRATIONS WITH MOVING CUSPIDAL SINGULARITIES

YOSHIFUMI TAKEDA

Let /: V—> C be a fibration from a smooth projective surface onto a
smooth projective curve over an algebraically closed field k. In the case
of characteristic zero, almost all fibres of / are nonsingular. In the case
of positive characteristic, it is, however, known that there exist fibrations
whose general fibres have singularities. Moreover, it seems that such
fibrations often have pathological phenomena of algebraic geometry in
positive characteristic (see M. Raynaud [7], W. Lang [4]).

In the present article, we consider the surfaces with cuspidal fibration
which are obtained as the quotients of surfaces with smooth fibration by
p-closed rational vector fields. In particular, we shall give a construction
of generalized Raynaud surfaces and give a dimensional estimate of the
nonzero first cohomology group which appears in counter-examples to the
Kodaira Vanishing Theorem in positive characteristic.

The author would like to express his gratitude to Professors M.
Miyanishi and S. Tsunoda for their advice and encouragement.

§ 1. Preliminaries

Throughout this article, we assume that k is an algebraically closed
field of characteristic p > 3. Let V be a smooth projective surface over
k and let D be a ^-derivation of the function field k{V). Then we say
that D is a rational vector field on V. We call D a p-closed rational
vector field if there exists a rational function h on V such that Dp = hD.
For a rational vector field D, let VD be the scheme whose underlying
space is the same as V and whose structure sheaf consists of the germs
of sections of Θv killed by D. We call VD the quotient of V by D. Then
the quotient VD is normal and the canonical projection π: V—> VD is a
purely inseparable morphism. Moreover, if D is p-closed, then the degree
of 7r is p. Let (x, y) be a local coordinate system at a point P of V.
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Then D can be written as

D = hJfPJ- + gJ-) ,
\ dx dy /dy

where hP is a rational function on V and where fP and gP are regular

functions at P which are relatively prime. The functions {hP}Pev determine

a divisor on V, which we call the divisor of D and which we denote by

(D). Therefore, the invertible sheaf Θ((D)) is generated locally by hP\

If Π is a rational vector field on V such that Π = hD, where h is a

non-zero rational function, then we say that the rational vector fields D

and Π are equivalent. When one of these equivalent rational vector

fields is p-closed, so is the other. Moreover, the quotients VD and VD'

are isomorphic to each other. Consider the rational vector field (ljhP)D

= fPdjdx + gPdjdy, where hP, fP and gP are the same as above. Then

(l/hP)D is equivalent to D and is a /^-derivation of the local ring ΘVtP. If

fP(P) = gP(P) = 0, then we say that P is an isolated singularity of Zλ If

the ideal (/P, gP) in ΘVtP contains the unity, then we say that D has only

diυisorial singularities in a neighbourhood of P. When D has only divi-

sorial singularities in a neighbourhood of any point of V, we say that

D has only divisorial singularities on V.

LEMMA 1.1. Let V be a smooth surface, let D be a p-closed rational

vector field on V and let P be a point of V. Then we have the following:

(1) The quotient VD is nonsingular at π(P) if and only if D has only

divisorial singularities in a neighbourhood of P.

(2) Suppose that D has only divisorial singularities in a neighbourhood

of P. Then we can choose a local prarameter system {x, y) in the completion

ΘVfP such that D is equivalent to d/dx. Moreover, (xp,y) is a local para-

meter system in the completion ΘVD,K(P).

For the proof of this lemma, we refer to Seshadri [9]. Next, we shall

define the notion of integral curves of a rational vector field D. Let Γ

be a curve on V and let P be a point of Γ. Denote (l/hP)D by DP, where

hP is a local equation of the divisor (D) at P. We call Γ an integral curve

of D if DP(f) = 0 modulo (/) in ΘVtP for any point P of Γ, where / is a

local equation of Γ at P.

LEMMA 1.2. Let D be a p-closed rational vector field on V, let π: V

-> VD be the canonical projection and let Γ be a curve on V. Denote by
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Γ' the image of Γ by π. Then we have the following:

(1) If Γ is an integral curve of D, then π*Γ — pΓ' and π*Γ' = Γ as

divisors

(2) // Γ is not an integral curve of D, then π*Γ = Γ' and π*Γ' = pΓ

as divisors.

For the proof of this lemma and more detailed discussions on rational

vector fields, see Rudakov-Shafarevich [8].

§ 2. / -closed rational vector fields and cuspidal fibrations

Let φ: Z—>B be a fibration from a smooth protective surface onto a

smooth projective curve such that general fibres of φ are smooth curves.

Let D be a p-closed rational vector field on Z. Suppose that k(B) is not

contained in the invariant field k(Z)D = {h e k(Z) \ D(h) = 0}. Then at most

finitely many fibres are integral curves of the rational vector field D.

Indeed, let P be a general point of Z. We may assume that φ is smooth

in a neighbourhood of P. Take a local coordinate t on an open neigh-

bourhood of φ(P). By the smoothness of φ near P, the image of t in Θz

by ψ% forms part of a local coordinate system near P. So, let (z, t) be a

local coordinate system on an open neighbourhood W of P. Then, cho-

osing W small enough, we can express D on W as D = h(fd/dz + gd/dt),

where h is a local equation of the divisor of D and where f and g are

regular functions on W. Let Q be a point of φ(W). By the definition

of integral curves, we know that the fibre φ~\Q) is an integral curve of

D if and only if g is zero on <p~\Q). Hence either at most finitely many

fibres over φ(W) are integral curves or g = 0 in Θz, i.e., D(t) = 0. The

latter case implies that k(B) c k{Z)D.

We can regard the rational vector field D as a global section of

ΘZ®Θ( — (D)), where Θz is the tangent bundle of Z. So, we have an

injection a: Θ{(D)) -> Θz. Meanwhile, there is a natural homomorphism

β: Θz—>φ*ΘB. Consider the composite of these homomorphisms βoa: Θ((D))

—• φ*ΘB. We have

LEMMA 2.1. Under the above assumptions and notations, the homomor-

phism βoa: Θ{(D)) -> φ*ΘB is ίnjective.

Proof. Let P be a general point of Z and take a local coordinate t

at φ{P). Let (£, η) be a local coordinate system at P. Then we can write

D as D = h(fd/dξ + gd/dη), where h is a rational function on Z and where
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/ and g are regular functions at P and they are relatively prime. Hence

the image of a in ΘZ>P is ΘZiP(fdldξ + gd/drj) over P. Denote the regular

function φ*{t) by u(ξ, η). Then the images of d/dξ and djdη by β are

(du/dξ)φ*(dldt) and (duldη)φ*(dldt) respectively. Hence the image of βoa is

@z,p(fduldξ + gduldη)φ*(dldt). Since k(B) is not contained in k(Z)D, we

know that fdujdξ + gdujdη is not zero in k(Z). So, β o a is not a zero-

map. Therefore, it follows that βoa is injective. Π

Let 0ί be the cokernel of βoa. Then we have an exact sequence on

Z\

0 > Θ({D)) > φ*ΘB > » > 0.

at has the support of dimension 1. Write Supp at = Tx + + Tr + I,

+ - - - + ls, where Tt'& and Z/s are the irreducible components of Supp 0ί

such that Ti's are horizontal components, i.e., JΓ/S meet general fibres

transversally, and each l5 is a component contained in fibres of φ. By

tensoring Θ(φ*KB) to the above exact sequence, we have

0 • Θ{{D) + φ*KB) > Θz • 01® Θ{φ*KB) • 0 .

Hence there are positive integers αί9 , αr, bu , bs such that αxTx +

• + αrTr + bJi + + bsl8 is linearly equivalent to — (D) — φ*KB. We

call this divisor ĉ TΊ + + αrTr + bjt + - + bsl8 the tangent locus

of the rational vector field D with respect to the fibration ψ and we call

axTx+ + arTr the horizontal part of the tangent locus. Let X be the

quotient of Z by D and denote the canonical projection Z—> X by π. Let

F β : B-+ Έ! be the β-Frobenius morphism of B, namely, ΘB, — ΘB®k{k, [p])

with [p]: k -> k defined by [p]{λ) = λp for ^ e k and Ff: ^ = ΘB®k(k, [p])

->ΘB given by f®λ »-> fpλ. Then there is a natural morphism ψ: X-^B'

so that the following diagram is commutative:

Moreover, we have the following fundamental lemma:

LEMMA 2.2. With the same assumptions and notations as above, we

have:
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(1) ψ is a fibratίon, i.e., almost all fibres of ψ are reduced and irre-

ducible curves. Moreover, the fibres of ψ are the images of the fibres of φ

by π.

(2) Let F be a smooth fibre of ψ which does not contain any l5 and

let P be a point of F. Suppose, furthermore, X is nonsingular at π(P).

Then π(F) is singular at π(P) if and only if P is contained in the horizontal

part of the tangent locus of D.

(3) The fibres of ψ have the arithmetic genus pa(F) - (p - 1)(F, (D))/2,

where F is a general fibre of φ.

Proof. (1) Let Qf be a general point of B\ Write ψ*(Q') = nF\

where n is an integer and F' is the set-theoretic inverse image of Qf by

ψ. Let Q be a point of B such that FB(Q) = Q' and let F be a fibre of

φ over Q. Then φ* o F|(Q') = φ*(pQ) = pF as divisors and F is the set-

theoretic inverse image of F\ Since F is not an integral curve of D, we

have π*(F') = pF by Lemma 1.2.(2). So, we have π* o ψ*(Q') = rapF as

divisors. Hence we obtain npF = pF. This implies n = 1. Therefore, it

follows that ψ is a fibration. Now, the second assertion is clear.

(2) Since D is p-closed and X is nonsingular at π(P), D has only

divisorial singularities in a neighbourhood of P. Hence, by Lemma 1.1,

we can choose a local parameter system (ξ, η) at P in the completion

Θz,p such that D is equivalent to 3/3f. The quotient X is locally at π{P)

the same as the quotient of Z by djdξ. So, we may assume that D = 9/3f.

Let ί be a local parameter at <p(P) on B and write φ*(t) = ^(f, 57). Then

the image of the injection Θ((D)) -> φ*θB at P is <9P(duldξ)φ*(dldt). Hence

P is lying on Supp ^ if and only if dujdξ(P) = 0. On the other hand,

(ξp, η) forms a local parameter at π(P) on X and π(F) is defined by up = 0.

We know d(up)/d(ξp) = (da/3f)p and 3(MP)/3^ = 0. Therefore, π(F) is singular

at τr(P) if and only if 3u/dξ(P) = 0. So, we have the stated result.

(3) Since F is not an integral curve of D, we obtain that π*{Ff) —

pF as divisors by Lemma 1.2.(2), where F' is the set-theoretic image of

F by π. Meanwhile, by the canonical divisor formula due to Rudakov

and Shafarevich, we have π*Kx = Kz - (p - ΐ)(D) (see [8, §2]). So, we

compute as (F\ Kx) = (l/p)(π*F', v*Kx) = (F, Kz - (p - 1)(D)). This im-

plies the stated formula. Π

In order to specify the singularities of fibres of ψ: X-+B', we shall

consider the vector field and the fibres locally. Let P be a point of Z
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which is not an isolated singular point of D and is not lying on any

singular fibre of φ. Take a local parameter system (ξ, rj) at P such that

D is equivalent to d/dξ. Then the curve C defined by the equation η = 0

is an integral curve of D through P. Let ί be a local coordinate on B

at φ(P) and write φ*(i) = u e 0#,p Let ϊ 7 be the closed subscheme defined

by the equation dujdξ = 0, which is none other than the tangent locus

of D at P. We have the following lemma:

LEMMA 2.3. In addition to the above assumptions and notations, we

suppose, furthermore, that the reduced scheme Treά associated to T is non-

singular at P and meets the integral curve C at P transversally and that

T = n(Tΐeά) as divisors, where n is a positive integer with n ^ p — 1 (modp).

Then we have the following:

(1) There exists a local parameter system (x, z) in the completion ΘZ>P

such that D is equivalent to d/dz and u = x + zn + 1.

(2) The fibre ^ ' ( F ^ ^ P ) ) is defined by the equation xp + yn+1 = 0

at π(P).

Proof (1) By the assumptions for T, we can choose a local param-

eter ξ in the completion ΘZ,P such that (ξ, rj) forms a local parameter

system at P and Γred is defined by ξ = 0. Write u = a^η) + ξafy) +

fW^) + * * > where afy) e k[[rj\] and a0(0) — 0. Since D is equivalent to

d/dξ, we have du/dξ(P) = 0. So, ^(0) = 0. By the assumption that the

fibre {u = 0} is nonsingular, we have da^dη{P) Φ 0. Changing J? to α0,

we may assume that u = η + ξa^irj) + ξ2a2(η) + and ^(0) = 0. From

Γ = n(Tτed), it follows that ξn divides 3M/3£ and (llξn)du/dξ is a unit.

Therefore, we can write u = η + ξn+1β(ξ, η) with β(ξ, rj) e k[[ξ, η\] and β(0, 0)

:£ 0. Since n + 1 Ξ£ 0 (modp), there exists r(?, rj) e £[[f, ^]] such that

γ(ξ9 η)n+ί = /3(f, ^). Set x = 27 and 2 = fr(f, 37). Then we have the required

expression.

(2) Let y = zp. Then (x, j/) forms a local parameter system at π(P)

on X Meanwhile, £p is a local parameter at FBo <p(P) on β7. Hence the

fibre ψ-ι{¥Boψ{P)) is defined by tp = 0, i.e., x̂  + y + 1 = 0. Q

Remark 2.4. Keep the same assumptions and notations as above.

Since φ*(t) — u = x + 2n + 1, we can regard (2, ί) as a local parameter sys-

tem at P on Z. Then Z) is equivalent to
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(n
dz dt

By virtue of the above lemmas, we conclude the following:

THEOREM 2.5. Let Z, B, φ, D, ψ and E be as above and let nγTx +

• + nrTr be the horizontal part of the tangent locus of D. Then the

following assertions hold:

(1) ψ is a fibratίon whose general fibres have the arithmetic genus

Pa(F) - (p - 1)(F, (D))/2, where F is a general fibre of φ.

(2) The singular loci of the generic fibre of ψ consist of the images

of all Tt's.

(3) Let G be a general fibre of ψ and let Q be a point of G. If Q

is lying on π(T^) and nt ^ p — 1 (mod p), then G has a cusp at Q of type

§ 3. Construction of generalized Raynaud surfaces

In this section, we shall construct fibrations whose fibres are all

irreducible rational curves with one cusp. Certain surfaces with such

fibration were constructed by M. Raynaud for the case of index 2 in our

terms, and by P. Russell, H. Kurke and W. Lang for the case of index

mp — 1 (m e N). Our construction is based on their methods, especially

the one by Russell and Kurke. To begin with, we recall generalized

Tango curves. Let C be a smooth projective curve over k and let Jί be

an invertible sheaf on C with positive degree. Suppose that there exist

local sections {ζteΓ(Ui9Φc)}iei whose differentials {dζt} Rice local gen-

erators of Ωx

c satisfying dζt = af dζ^ where {aiS} are transition functions

of Jί for an affine open covering {Ui}iGI and where n is a positive integer

with n ξέ 0 (mod p) and n>l. Then we call the triplet (C, JΓ, {dζt}) a

generalized Tango curve of index n. The following lemma is useful for

constructing generalized Tango curves.

LEMMA 3.1 (Kurke [2]). Let ω be an exact differential on a smooth

projective curve C. Suppose that the divisor of ω has the form pnH, where

H is a non-zero effective divisor and n is a positive integer. Then there

exist an affine open covering {C/Jίe/ of C and local sections {ζ̂  e Γ(Ut9 &c)}iei

such that dζi = af dζ5 on UiOUj, where {aij}itjeI are transition functions

of ΘC(H). In other words, (C, ΘC(H), {dζt}) is a generalized Tango curve

provided nφO (mod p) and n > 1.
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Proof. Since ω is exact, we can write ω = rfζ0 with, a rational func-

tion ζo on C. Let Vo be an affine open subset of C such that dζ0 is

nonzero everywhere on Vo and Supp(i/)n Vo = 0. Then we have Ω1

C\VQ =

ΘVodζ0. Write H = rxPx + + rtPl9 where P/s are points of C and r/s

are positive integers. For 1 < λ < /, let ^ be a local coordinate at Pλ

and let V̂  be an affine open subset such that dηλ is nonzero everywhere

on Vλ and Supp(ίf - rxPλ) Γ\Vι = 0. Then we have Ω1

c\Vχ = ΘVλdηλ =

(PvfiUy?*71- Hence it follows that εληVvndηx = dζ0, where ^ e Γ ( l / h ^ ) * .

Consider the derivation d/9?̂ . We know that (dldηx)
p = 0 and that dζo/dηλ

= ^xVrχλpn' Therefore, we have (dldηx)
p~ι{ex) = 0. So, we can write ε̂  = α?>0

+ < i ^ + + <p-2^?"2, where aλtV e Γ(Vλy ΘG) and aλt0 Φ 0. Let ζλ = < 0 ^

+ α?fl^/2 + + <p-2^ΓV(P — 1). Then ζ̂  is a local coordinate at Pλ

and dζ; = ελdηλ, so, ηr

λ

λVndζλ = dζ0. Since {^^Γ7^} are transition functions

of ΘC(H), we have the required result. •

Remark 3.2. By the proof of the previous lemma, we can choose

local sections {ζt}ieI so that each ζt is a local coordinate on Ut.

We shall give two examples of generalized Tango curves.

EXAMPLE 3.3 ([7]). Let C be an affine plane curve defined by an

equation ynp — y = xnp~ι, where n is a positive integer with n ^ 0 (modp)

and n > 1. Since the genus of C is (np — l)(np — 2)/2, the divisor of an

exact differential dx is np(np — 3)PCO, where P^ is the point at infinity.

By Lemma 3.1, we know that (C, Θ{{np — 3)P00), dx) is a generalized Tango

curve of index n.

EXAMPLE 3.4. ([4]). Consider an affine plane curve C defined by an

equation y2 — xm — 1, where m is an odd integer. Suppose that p does

not divide m. Then C is a hyperelliptic curve of genus (m — l)/2. The

divisor associated to a differential (χ\y)dx is (m — 3)POO, where P^ is the

point at infinity. Let m = pn + 3, where n is a positive integer with

n φ 0 (modp) and ra > 1. By virtue of Lemma 3.1, if (l/y)dx is exact,

then (C, (̂Poo), (ljy)dx) is a generalized Tango curve of index 72. We shall

compute ^((l/yjdx), where # is the Cartier operator. Note that

Meanwhile, by the definition of the Cartier operator, we have ^(xvdx) — 0

unless v = p — 1 (mod p). Hence it is easy to verify that ^((lly)dx) = 0
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if and only if p = 2 (mod 3). Therefore, we obtain a generalized Tango

curve (C, 0(P«,), 0-/y)dx) of index n provided p = 2 (mod 3).

Now, we shall construct a generalized Raynaud surface. Let (B\ Jf, η)

be a generalized Tango curve of index n. Then there exist an affine open

covering {t/ } ί€/ of Br and local sections ηteΓ(U'i9 ΘB.) satisfying dηt =
aijdy]j, where aij is the transition function of Jf on U'iΠU'j. Consider

the β-Frobenius morphism FB: B-+B' (see §2). We know F%Jfn ̂  ΩB.

Moreover, there exist local sections ξte Γ(UU ΘB) such that ff = ¥%{%)

and dξt = ajjdξj, where L̂  is the inverse image of U^ by FB and άi3 =

Fί(atJ). Let £ = ΘB®F%Jf and consider the F-fibration ^: P(<^)-> B.

Denote P(^) by Z. Set 24 = eje and wi = e/ei9 where et is a generator

of Ff./ΓICT, and e is the image of leΘB in if. Then, by Remark 3.2, (zi9 ξt)

and (wu ξi) are inhomogeneous coordinate systems on ψ~ι{U^ = P1 X C/̂

such that 2̂  = 1/^ and ^ = άi}z3. Choose one arbitrary open set Ui0

among {CΛ}ίGz Consider a p-closed rational vector field

on φ'KU^) (cf. Remark 2.4). Then D is regarded as a rational vector

field on Z. Namely, we have

and

Note that D has only divisorial singularities. Wd see that ΘZ((D)) =

Θz(—(n — ϊ)S)®φ* oFI yf""1, where S is a cross-section defined locally by

Wi = 0 and (^(S) is the tautological line bundle 0P(^(1). Moreover, S is

an integral curve of D. Meanwhile, since Φ(S) = Θz{T)®φ* oJP^Jf, W e

know that the tangent locus is (n — 1)T, where T is a cross-section defined

locally by zi = 0. Let X be the quotient of Z by D. Then X is non-

singular and, by virtue of Theorem 2.5, there exists a fibration ψ: X-+B'

such that all fibres are rational curves with one cusp of type xp + yn = 0

and that the arithmetic genus of a fibre is (p — ϊ)(n — l)/2. Furthermore,

the locus of cusps is the image of T7. We call this surface X a generalized

Raynaud surface over a generalized Tango curve (B\ JV\ η). Let Sr =
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and let Zf = P(<?') Denote by ψ the canonical projection Zr ->

B\ We know that Zf is the image of 7J by the £-Frobenius morphism

Fz of Z which is defined similarly to the case of curves. Hence there

exists a natural projection p: X^Z' such that the composite poπ: Z-> Zf

is the £-Frobenius morphism Fz. We have the following commutative

diagram:

From now on, we regard X as a purely inseparable covering of Z'.

Set ¥%{ji) = z\ and F|(ί4) = w?. Then (yt, ̂ t) and (ίt, ηt) are inhomogeneous

coordinate system on <p'~\U$ such that j ^ = 1/^ and ^ = a^yy Let g

and /ι be positive integers such that n + q — hp and 0 < q < p. Consider

the line bundle L on Zf which is associated to &(hSr)®^^jV~n, i.e., L

is the spectrum of the symmetric Θz.-algebra generated by the dual of

Θ{hS')®φ*Jf~ni where Sf is the cross-section of φ defined locally by

tt = 0, and 0z.{S') is the tautological line bundle 0p(/O(l). Let F L : L->L P

be the Frobenius homomorphism of a group scheme L over Z' and

let ah be the kernel of Fh. Set Vi = Spec Γ(U't, ̂ ) M and set Wi =

Spec^C/i, ^B/)[ίJ. Then {Vi9 Wi}ieI is an afBne open covering of Z'.

Consider the following trivialization of L:

where ^ = tϊhτi9 θt — a^jθj and τt — aϊ/Tj. Similarly, we can express

as

^\Vi = Spec ΓiU^Θ^y^θn,

where ^ and τt are the same as above. Consider the local sections:

I/Ίπ => {0? - tf + ft = 0}, I ^ k ^ {rf-*? + # % = 0}, in terms of the

above expression of Lp. Take the pull-backs of these local sections by F L .

Then they glue together to define an #L-torsor a: Y —> Z' (see Ekedahl [1]

for the definition of a:L-torsor). Y is not normal in general, but the

normalization of Y is nothing but X because D{zΊ — ξ4) = 0 for every

i e l . Concerning 7, we have the following lemma:
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LEMMA 3.5 (cf. [1, Proposition 1.7]). With the same assumptions and

notations as above, we have:

(1) There is a filtration of Θz,-modules

Θz, = ^ 0 c J*\ C • C J%_i = σ*βr

with successive quotients SFx\tFι-γ = Θz>( — lhSf)(g)φ'*Jίln.

(2) Y has the dualizing sheaf

ωγ = <j*(ω

Proof. (1) By the construction of Y, we know that

Spec Γ(U^ ΘB)\βu yx\M - tf + ?«) and *-'( W<) = Spec Γ(U'i9 ΘB)[τi9 i4]/(rf -

ί? + #p%). Consider the ^^,-submodule ^ t of σ^^y generated by l,θi9 ,

^ over Vi and by 1, τi9 •• ,rξ over W4. It is easy to verify that these

0z,-modules {^S} give the required filtration.

(2) Take bu e Γ(?7<n t/J, ^ ) such that % == α?^ ; - b%. Consider an

AJ-bundle Φ: %-*Zr such that

%\Wί = Spec

where xt = tϊhsi, xt = a^ Xj + bi5 and st — aϊβSj + aϊ^H^bi^ It is easy to

verify that there exists a closed immersion c: Yc—>2t. The image of Y

is written as {x? - y? + ηt = 0} on 21 \v. and {s? - t\ + t\vη% = 0} on <Ά\Wr

Since ^ = a^-Xj + 6^, we have

Meanwhile, since xi = ί^Λst and yt = ί̂ 1, we have

x? - yl + Vi = *?ps? - ir" + Vi

= ίr*p(β? - n + %

Hence it follows that **(0a(Y)<g>0F) ^ σ*(^(/ιpS0®^*^" n p). On the other

hand, we have ω% = Φ*(αv(g)0( — /iSO®^'*^7 1). Applying the adjunction

formula, we obtain the stated formula. •

We know that X is the normalization of Y. We shall express the

structure sheaf Θx and the dualizing sheaf ωx in terms of those of Y.
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THEOREM 3.6. Retain the same assumptions and notations as above.

Let Jf be the cokernel of the natural injection a%(9Y -»p*Θx. Then the

following assertions hold:

(1) Supp ffi = S' and ^ is a locally free Θs,-module.

(2) J f has a filtration 0 = ^To c 2tfx C c 2/f q.λ = ^ with successive

quotients Jfjjf^ ^ ®βjV
ap'βq for 0<a<q if S' is identified with B,

where β ranges over all integers such that 0 < β < p and —ap + βq > 0.

Proof. (1) With the same notations as in the proof of Lemma 3.5,

consider the normalization of the equation sf = Z?(l — tϊlv~qηi). Since p

and q are relatively prime, there are integers λ and μ such that λq — μq

= 1. We may assume that 0 < λ < q and 0 < μ < p. Set wt = fe7/i.

Then we have u\ = ^(1 - #*-«?,)-'• and M? - s,(l - tfp-q

Vi)'x. Let ^ ^

and !0*0X be the completions of σ*Θγ and /ô x̂ along S7, respectively.

Then we obtain that σ*0r\Wtn8, = ^J[[M?, W?]] and ^ i k n S ' = ^ [ M J

Therefore, it is easy to verify that J^l^ns' = ®a,β^u^ap+βq = ®a,βΘu,tϊ
asβ

u

where (α, β) ranges over all pairs of integers such that 0 < a < q, 0< β<p

and — ap + βq > 0. So, we know that Jf7 is a locally free (^-module.

(2) Consider the 0s,-submodule Jfa of Jf for 0 < a < q which is

generated by {tϊa's%}a*β over Vt^ΠS', where a' and β range over all integers

such that 0<a' <a, 0< β<p and -a'p + βq > 0. We have

This implies that JfΊ ̂  Θ ^ p " ^ ? where βe Z, 0 < /3 < p and - p + βq

> 0. By a similar computation, we have

tϊas$ = aϊf-βqtjasβj + (terms of tja+hlsβfι for 1 < Z < i8).

Note that tja+hls^~l for 1 < Z < j8 is contained either in ^ α _ ! or in σ*ΘY.

So, we have J^Jj^a^x = Θ^yΓ"21-^, where j8 ranges over all integers such

that 0 < β < p and -ap + βq > 0. •

Remark 3.7. With the same notations as in the proof of the previous

theorem, we know that tia+hls^1 is contained in aφY if h> a. Hence,

if h > a0, then we obtain that Jfao ^ Θβ, i9^
/'Λ2J'^, where a and β range

over all integers such that 0 < a < aQ, 0 < / 3 < p and — ap + βg > 0. In

particular, we know tff = Θ α > ) S ^ α p - ^ if h> q, where (a, β) ranges over
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all pairs of integers such that 0 < a < q, 0 < β < p and — ap + βq > 0.

In the rest of this section, we give the dualizing sheaf of a general-

ized Raynaud surface.

PROPOSITION 3.8. Under the same assumptions and notations as above,

X has the dualizing sheaf

ωχ = p*(ωg,®Φ((p - l)h)®φ'*Jf-*<*-")®Ox{-{p - ΐ)(q - Ϊ)E)

= @x((np —p — n — l)E)®ψ*jVv*n ,

where E is the set-theoretic inverse image of S' by p.

Proof. By Lemma 3.5, we know that ωγ = σ*(ωz>(8)(9z>((p — ϊ)hS')®

φ'*jr-ίp-my Hence we can write ωx = ρ*{ωz.®Θz((p - ΐ)hS')®φ'*jr-*n+n)

®Θ( — rE) with r e Z , where Θ( — rE) is the contribution coming from the

conductor ideal for the extension a^βγ c p*Θx. We have only to deter-

mine r. Let F' be a general fibre of φ'. Then p*F' is a general fibre

of ψ. Moreover, since 0{{D)) = 0z{ — (n — l)S)®φ* o"Q*Jf-\ we have

Pa(p*F') = (P - l)(π - i)/2 b y Theorem 2.5.(2). On the other hand, £ is

the image by π of the integral curve S of Zλ Therefore, E is a cross-

section of ψ and p * ^ = pE as divisors by Lemma 1.2.(1). Applying the

adjunction formula, we obtain (p — ϊ)(n — 1) — 2 = (ωz, /9*ί") = — 2p +

— ϊ)h — r. From this, it follows that r = (p — 1)(<7 — 1). •

§ 4. Kodaira non-Vanishing on generalized Raynaud surfaces

In this section, we consider certain ample invertible sheaves on

generalized Raynaud surfaces. Especially, we shall give a lower bound

of the first cohomology group of their dual sheaves. Throughout this

section, we assume that X is a generalized Tango curve (B\ Jί, η) of

index n. We begin with the following general theorem, which is proved

by applying a Leray spectral sequence. For the reader's convenience,

we shall give a proof.

THEOREM 4.1 (Mumford [6], Szpiro [10]). Let f: V-> C be a fibration

from a smooth projective surface onto a smooth projective curve such that

all fibres are reduced and irreducible. Let Γ be a cross-section of f. Assume

that the fibres of f have positive arithmetic genus. If the self-intersection

number of Γ is positive, then we have:

(1) Θv(Γ)®f*<& is ample on V, where ££ is an invertible sheaf on C

ίsomorphic to ΘV(Γ)\Γ.
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(2) H\ V, Θv( - Γ) ® f*&-ι) Φ 0.

Proof. (1) Apply the Nakai criterion.

(2) Consider a Leray spectral sequence i/^C, Rjf^Θv( —

). Then we have

0 > HXC, / ^ (

> H\C, R7*0(-Γ)(x) if" 1) > 0 .

Since HX(CJ*Θ{-Γ)®&-') = 0, we obtain i ϊ^V,

). By using an exact sequence

0 > Oγ(-Γ) • Θv > ΘΓ > 0 ,

we have

UQv >f*«>r • WUΦvi-Γ) > R'UΘy • 0 .

Noting that f%0γ = f%0Γ = Θc, we know that ΈLιf%0v( — Γ) ^ B}f*(Dv. Now

using an exact sequence

0 > φv > ΘV(Γ) > φv(Γ)\Γ > 0 ,

we find

0 • f%0y • UOyiD • f*Oy{Γ)\r > ̂ f^V •

Since the genus of a fibre is positive, we have f*Θv(Γ) = Θc. Hence

f*Θv(Γ)\Γ = S? -> ΈPfxΦy is injective. By tensoring &-\ we get an injection

Θc -> ΈLιf*Φy<8)&-1 = R'UΘvi-Γ)®^'1. Hence H\V, Θv(-Γ)& f * ^ - 1 ) =

Jff°(C, R ^ f l V ί - Γ ) ® JS?-1) Φ 0 . Π

We return to the subject. Let φ\ ψ, S' and E be the same as in § 3.

Since pE = p*S'9 we have (E2) = (Sn)/p = deg J^ > 0. By virtue of the

previous theorem, the invertible sheaf ΘX(E)®ψ*ΘE(E) gives a counter-

example to the Kodaira Vanishing Theorem. We notice that the normal

sheaf of E is isomorphic to JV*. Indeed, let Jί be the normal sheaf of E.

From pE = p*S\ it follows that Jί* ^ ΘS,{S') ^ Jί\ Meanwhile, using

an exact sequence

0 > Θx((np - p - n - 1)E) > Θx({np -p - n)E) > Jίn*-*-" > 0 ,

we have an exact sequence on B'\

_ p - n - \)E) > R > * ^ Z ( ( M P - p - π)E).
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Since ωXIB, = ωx®^*ω~B} = Θ((np -p - n - l)£)(g)ψ*^ ( 1-* ) 2 J + w (see Prop-

osition 3.8), we obtain R>*0((rcp -p - n - ΐ)E) ^ (ψ*<Px®yr ( 1-n ) ί } + w) v =

^np-p-n a n d R i ψ ^ ^ p -p - n)E) ̂  ( ψ * 0 z ( - £ ) ® ^ ( 1 ~ n ) p + n ) v = 0 by the

Serre duality. Hence ^np-p-n -^ jrnp-p-n is surjective. Hence this is an

isomorphism. Therefore, we have Jί ^ Jί because p and n are relatively

prime. In the sequel of this section, we consider the ample invertible

sheaf Θx(E)®ψ*Jf and the first cohomology group H\X,

There is an exact sequence on X:

0 > Θ(-E) > Θx > ΦE > 0 .

By tensoring ψ*J^~\ we have

0 > Θi-E)®^*^-1 > ΛpvΓ-1 > JΓ-χ > 0.

Since H°(B\ Jf-1) = 0, we obtain

0 >H1(X, Θi-E)®^*^-1) • Hι(X,

Hence it follows that

dimtfXX, Θ(-E)®^*Jf-') > dim Hι(X,

By virtue of Theorem 3.6, there is the following exact sequence on Z'\

0 > σ*Θγ > p*Θx > JP > 0 ,

where #f is the same as in the theorem. By tensoring φf*Jf~~\ we have

(1) 0 > 0%Θγ ® φ'*Jf-ι > p*Θx ®φf*Jf-1 > 3f ® φι*Jf-1 > 0 .

Consider H\S\tf®φ'*Jf-χY Theorem 3.6 implies that 3P®<p'*JT-1 has

a filtration 0 = ^ 0 C ^ c C <$q_x = $e®φ'*Jf-χ with successive quo-

tients ^α/^α_i ~ ®^ap~^-\ where β is the same as in the theorem. We

know that H\B\Jίap-^-1) = 0. Hence we have HXS\tf®φ'*jr-1) = 0.

So, taking the cohomology exact sequence associated with (1), we obtain

0 > E\Zf, a*Θ

Therefore, we know that

) > dimJEΓ(Z',

We shall compute H1(Z',σ*Θγ®φ'*Jf-1). By Lemma 3.5, there is the

following exact sequence on Z' for 1 < / < p — 1:
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o — > &%_x — > Pt — • oz.(-ih)®<j/*jrln — > o,

where Ĵ Ό = Θz, and 3P'v_λ = o%Θγ. Tensoring φ'*^'1, we have

(2) 0 > &x_x®q/*Jf-χ • P&φ'^Jf-1 • Θz.(-lh)®φ'*Jrln'1 • 0 .

Since H\Z', Oz(-lh)®φ'*jrln-1) = 0 for 1 < I < p - 1, we know that

dim H\Z', J^.xΘ^vΓ-1) < ά\mW{Zf^ι®φ^Jr~1)

for 1 < I < p — 1. When / = 1, we have

0 > φ'*^'1 > &x®ipf*Jf-1 > Θz.{-h)®φ'*Jfn-γ > 0 .

Hence we have

0 • H\Z\ φ'*^-1) > Hι(Z', P&φ^Jf-1)

> H\Zf, φ'*Jf-χ) > H\Zf, ^,®φt%Jί-1)

Since ωZΊB. = Θz,{-2)®φ'*Jrp, we know that ΈLιφ^{φ^JT'1) = R V i ^

= (φ'*Gz.( — 2)®Jf*y®Jf-1 = 0 by the Serre duality. Hence we obtain

that Hι{Z\ φ'*Jf-λ) = H\B', Jί~ι) and H\Zf, φ'*JT-1) - 0 by using a Leray

spectral sequence H\B', Wφ^φ^JT-1)) ^ Hi+j(Z\ φ'*Jf-χ). Therefore, we

have

0 > H\B\ JT-1) > H\Z\ J

>0

and

0 > H*(Z'9 P&φ^jr-1) > H\Z\ Θ(-h)®φf*jVn-1) > 0 .

Moreover, a Leray spectral sequence Hί(B',

Hi+i(Zf,Θ(-h)®φ'*Jfn-1) implies that

and

since φ'*O(-h)®jrn-1 = 0.

Suppose that h > 2, whence n > p + 1. Then, by the Serre duality,

we have R V i ^ - A ) ® ^ - 1 s (φ'*0(h - 2)®^^®^^' = (φ'*O(h - 2))v®

jf*-p-\ Note that there exists a surjection φ*0(h - 2 ) = Sh~Xδ')-+OB..

So, we have an injection jVn-p~ι -> {φ'*Θ{h - 2)) v®^'n-p-1. Hence
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dim H\B', ΈLιφ'*O(-h)®jrn-1) = dim i/°(J3', (φ'*O{h - 2))v

Thus we obtain that

dim H\Z', &x®φ'*Jf-χ) > dim/P(B', Jί'1) + dim H\B\ Jrn~p~1).

From these observations, it follows that

dim/PCX, Θ(-E)®ψ*Jf-1) > dim H°(B', Jfn-*~ι).

Next, suppose h •==• 1, whence 2 < n < p — 1. Then, by the Serre

duality, we have R 1 ^ ^ —l)®^" 1 - 1 = (^^(- l )®^ 2 ' )^ 7 ®^ 7 1 - 1 = 0. Hence

Hι(Z', Θ(-l)®φ'*jV*n-1) = 0 and H\Z\ Θ(-l)®φ'*jfn-1) = 0. These imply

that fl'1(Z/,^'1(8)?)
/*^'-1) = HI(B/,^r-1) and Ή.\Z',.<Fx®φf*Jf-1) = 0. Re-

call the exact sequence (2) and let Z = 2. Then we have

0 > J S ® ? / * ^ " 1 > J S ® ^ / * ^ - 1 > Θ(-eΣ)®φr*JΓLn-1 > 0.

Taking the cohomology exact sequence, we have

0 > H\B', yΓ-1) > H\Z', ^

Since φ'*(Θ(-2)®φ/*Jr2n-1) = 0 and R1φ'*((9(-2)®φ'*jr2n-ί) ^ ( ^ ς ^

®J^2n-1 = t # ' 2 w - ^ 1 , we know that JGΓ̂ Z7, (P(-2)®¥?/*^f12n-1) = i / 0 ^ 7 , ,JTln-p-1)

by considering a Leray spectral sequence H%B\ Rjφ*Θ( — 2)(8)^2 n '1) =>
n - 1 ). Hence we have

dim fPCZ7, ̂ a ® ^ * ^ - 1 ) = dim HX(B', Jf-1) + dim if^JS', Jίln'v-χ).

From this, it follows that

dim/PCX, ^(-ί ;)®.^*^- 1 ) > dim H°(B', Jίln~^).

By virtue of the above results, we obtain the following

THEOREM 4.2. With the same assumptions and notations as above,

Θ(E)®ψ*Jί is ample and we have:

(1) If n>p + 1, then

dim /P(X, ̂ (--

(2) If 2 < n < p - 1 , then

dim ίP(X, 0 ( - £ ) ® ψ*^" 1) > dim
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To close this article, we shall give two examples.

EXAMPLE 4.3. Let X be the generalized Raynaud surface over a

generalized Tango curve (Bf, Jί, η) which is given in Example 3.3. Then

there is a finite covering w: B/ -+ P1 of degree np which is totally

ramified over the point at infinity of A1. Since Jί = Θ((np — 3)PTO), we

have w*Θpi(r)dtΛ
rn-p-1 provided that (n — p — ΐ)(np — 3) > rnp, where

r is a positive integer. Therefore, we know that dim H\B\ J^n-p~ι) >

dimi/^P 1, Θ(r)). Note that l i m ^ (n - p - ϊ)(np - S)/np = oo and that

lim^oo dim H°(P\ Θ{r)) = oo . Hence, by the above theorem, we have

\\mά\mH\X,Θ(-E)®ψ*Jr-1) = oo .
n-*<χ>

EXAMPLE 4.4. Let {Bf, Jί, ή) be the same generalized Tango curve as

in Example 3.4. Then Bf is a hyperelliptic curve and Jί = &(PS), where

P^ is the point at infinity. Consider the generalized Raynaud surface

over (B', Jί, η). By the same arguments as in the previous example, we

have

limdim H\X, Θ{-
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