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FIBRATIONS WITH MOVING CUSPIDAL SINGULARITIES
YOSHIFUMI TAKEDA

Let f: V— C be a fibration from a smooth projective surface onto a
smooth projective curve over an algebraically closed field 2. In the case
of characteristic zero, almost all fibres of f are nonsingular. In the case
of positive characteristic, it is, however, known that there exist fibrations
whose general fibres have singularities. Moreover, it seems that such
fibrations often have pathological phenomena of algebraic geometry in
positive characteristic (see M. Raynaud [7], W. Lang [4]).

In the present article, we consider the surfaces with cuspidal fibration
which are obtained as the quotients of surfaces with smooth fibration by
p-closed rational vector fields. In particular, we shall give a construction
of generalized Raynaud surfaces and give a dimensional estimate of the
nonzero first cohomology group which appears in counter-examples to the
Kodaira Vanishing Theorem in positive characteristic.

The author would like to express his gratitude to Professors M.
Miyanishi and S. Tsunoda for their advice and encouragement.

§1. Preliminaries

Throughout this article, we assume that k is an algebraically closed
field of characteristic p > 3. Let V be a smooth projective surface over
k and let D be a k-derivation of the function field (V). Then we say
that D is a rational vector field on V. We call D a p-closed rational
vector field if there exists a rational function A on V such that D = hD.
For a rational vector field D, let V? be the scheme whose underlying
space is the same as V and whose structure sheaf consists of the germs
of sections of 0, killed by D. We call V? the quotient of V by D. Then
the quotient V? is normal and the canonical projection z: V— V2 is a
purely inseparable morphism. Moreover, if D is p-closed, then the degree
of 7 is p. Let (x,y) be a local coordinate system at a point P of V.
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Then D can be written as

0 0
D= hiffel + g"ay)’

where A, is a rational function on V and where f» and g, are regular
functions at P which are relatively prime. The functions {hz}sc, determine
a divisor on V, which we call the divisor of D and which we denote by
(D). Therefore, the invertible sheaf @((D)) is generated locally by Az'.
If IV is a rational vector field on V such that D' = hD, where A is a
non-zero rational function, then we say that the rational vector fields D
and I are equivalent. When one of these equivalent rational vector
fields is p-closed, so is the other. Moreover, the quotients V? and V%
are isomorphic to each other. Consider the rational vector field (1/hp)D
= fp0/0x + g,0/0y, where h,, fr and g, are the same as above. Then
(1/hp)D is equivalent to D and is a k-derivation of the local ring 0, . If
[#(P) = gx(P) = 0, then we say that P is an isolated singularity of D. If
the ideal (fp, g5) in O, » contains the unity, then we say that D has only
divisorial singularities in a neighbourhood of P. When D has only divi-
sorial singularities in a neighbourhood of any point of V, we say that
D has only divisorial singularities on V.

LemMma 1.1. Let V be a smooth surface, let D be a p-closed rational
vector field on V and let P be a point of V. Then we have the following:

(1) The quotient V? is nonsingular at =(P) if and only if D has only
divisorial singularities in a neighbourhood of P.

(2) Suppose that D has only divisorial singularities in a neighbourhood
of P. Then we can choose a local prarameter system (x, y) in the completion

A~
Oy, such that D is equivalent to 3/dx. Moreover, (x*,y) is a local para-

. . RN
meter system in the completion Oy» .(p.

For the proof of this lemma, we refer to Seshadri [9]. Next, we shall
define the notion of integral curves of a rational vector field D. Let I
be a curve on V and let P be a point of I'. Denote (1/hp)D by Dp, where
hy is a local equation of the divisor (D) at P. We call I" an integral curve
of D if Dy(f) = 0 modulo (f) in 0, , for any point P of I', where f is a
local equation of I' at P.

Lemma 1.2. Let D be a p-closed rational vector field on V, let z: V
— V2 be the canonical projection and let I' be a curve on V. Denote by
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I’ the image of I' by n. Then we have the following:

(1) If I' is an integral curve of D, then n,l" = pl” and z*I" = I as
divisors;

(2) If I' is not an integral curve of D, then n, " = I" and z*I" = pl’
as divisors.

For the proof of this lemma and more detailed discussions on rational
vector fields, see Rudakov-Shafarevich [8].

§ 2. p-closed rational vector fields and cuspidal fibrations

Let ¢: Z— B be a fibration from a smooth projective surface onto a
smooth projective curve such that general fibres of ¢ are smooth curves.
Let D be a p-closed rational vector field on Z. Suppose that k(B) is not
contained in the invariant field k(Z)”? = {h e k(Z)| D(h) = 0}. Then at most
finitely many fibres are integral curves of the rational vector field D.
Indeed, let P be a general point of Z. We may assume that ¢ is smooth
in a neighbourhood of P. Take a local coordinate ¢ on an open neigh-
bourhood of ¢(P). By the smoothness of ¢ near P, the image of ¢ in 0,
by ¢* forms part of a local coordinate system near P. So, let (z,f) be a
local coordinate system on an open neighbourhood W of P. Then, cho-
osing W small enough, we can express D on W as D = h(fd/oz + gd/adt),
where A is a local equation of the divisor of D and where f and g are
regular functions on W. Let @ be a point of ¢(W). By the definition
of integral curves, we know that the fibre ¢~'(@) is an integral curve of
D if and only if g is zero on ¢ (). Hence either at most finitely many
fibres over (W) are integral curves or g = 0 in 0, ie., D) = 0. The
latter case implies that k(B) C k(Z)”.

We can regard the rational vector field D as a global section of
0,0 0(—(D)), where O, is the tangent bundle of Z. So, we have an
injection «a: O((D)) — ©,. Meanwhile, there is a natural homomorphism
B: Oz — ¢*0,. Consider the composite of these homomorphisms 8o a: O(D))
— ¢*05. We have

LemMma 2.1. Under the above assumptions and notations, the homomor-
phism Boa: O((D)) — ¢*O is injective.

Proof. Let P be a general point of Z and take a local coordinate ¢
at ¢(P). Let (& 7) be a local coordinate system at P. Then we can write
D as D = h(f3/0¢ + g0o/on), where h is a rational function on Z and where
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f and g are regular functions at P and they are relatively prime. Hence
the image of &« in 0, , is 0, (f3/0& + gd/dn) over P. Denote the regular
function ¢*(¥) by w(§ 7). Then the images of 3/0¢ and 9/3y by B are
(0u/og)p*(9/ot) and (du/on)p*(d/at) respectively. Hence the image of Boa is
O, (foulog + goulon)p*(9/dt). Since k(B) is not contained in k(Z)?, we
know that fou/oé + gou/oy is not zero in k(Z). So, poa is not a zero-
map. Therefore, it follows that go« is injective. O

Let # be the cokernel of foa. Then we have an exact sequence on
VA

0—> (D)) —> ¢*Op —> Z—>0.

Z has the support of dimension 1. Write SuppZ =T, 4+ --- + T, + [,
+ -++ + I, where T,’s and /,’s are the irreducible components of Supp #
such that T,’s are horizontal components, i.e., T,’s meet general fibres
transversally, and each [/, is a component contained in fibres of ¢. By
tensoring O(p*K;) to the above exact sequence, we have

0 —> o((D) + SO*KB) —>0; —> AR U(p*Kz) —> 0.

Hence there are positive integers ay, ---, q,, b, ---, b, such that a,T, +
coro 4 a,. T, + bl + -+ + b,l, is linearly equivalent to —(D) — ¢*K,;. We
call this divisor a, T, + --- + a,T, 4+ bl, + --- + b,l, the tangent locus
of the rational vector field D with respect to the fibration ¢ and we call
o, Ty + .-+ + a,T, the horizontal part of the tangent locus. Let X be the
quotient of Z by D and denote the canonical projection Z — X by n. Let
F;: B— B’ be the k-Frobenius morphism of B, namely, 0, = 0,®,(k, [p])
with [p]: 2 — k defined by [p](2) = 2* for Ae %k and F§¥: 0 = 0,®,(k, [p])
— 0p given by f®2A+— fP2. Then there is a natural morphism +: X — B’
so that the following diagram is commutative:

Z—"5X

wl lv»
B——Fi-)B’ .

Moreover, we have the following fundamental lemma:

LeEmMMA 2.2. With the same assumptions and notations as above, we
have:
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(1) + is a fibration, i.e., almost all fibres of +» are reduced and irre-
ducible curves. Moreover, the fibres of » are the images of the fibres of ¢
by =

(2) Let F be a smooth fibre of ¢ which does not contain any I, and
let P be a point of F. Suppose, furthermore, X is nonsingular at =n(P).
Then =(F') is singular at =(P) if and only if P is contained in the horizontal
part of the tangent locus of D.

(8) The fibres of +» have the arithmetic genus p(F) — (p — 1)(F, (D))/2,
where F is a general fibre of ¢.

Proof. (1) Let @ be a general point of B. Write *(Q') = nF’,
where n is an integer and F’ is the set-theoretic inverse image of @ by
. Let @ be a point of B such that Fy(Q) = @ and let F be a fibre of
¢ over @. Then ¢*oF}(Q') = ¢*(pQ) = pF as divisors and F' is the set-
theoretic inverse image of F’. Since F is not an integral curve of D, we
have z*(F’) = pF by Lemma 1.2.(2). So, we have z*o+4*(Q) = npF as
divisors. Hence we obtain npF = pF. This implies n = 1. Therefore, it
follows that + is a fibration. Now, the second assertion is clear.

(2) Since D is p-closed and X is nonsingular at z(P), D has only
divisorial singularities in a neighbourhood of P. Hence, by Lemma 1.1,
we can choose a local parameter system (£, ) at P in the completion

@ such that D is equivalent to 9/0§. The quotient X is locally at =(P)
the same as the quotient of Z by 9/0&. So, we may assume that D = 3/3&.
Let t be a local parameter at o(P) on B and write ¢*(t) = w(¢, 7). Then
the image of the injection O((D)) — ¢*@5 at P is 0(0u/0&)p*(3/0t). Hence
P is lying on Supp £ if and only if 9u/d§(P) = 0. On the other hand,
(&?, y) forms a local parameter at =(P) on X and #(F') is defined by u? = 0.
We know a(u?)/0(¢?) = (0u/o&)? and d(u?)/an = 0. Therefore, n(F) is singular
at z(P) if and only if u/0&é(P) = 0. So, we have the stated result.

(3) Since F is not an integral curve of D, we obtain that r*(F') =
pF as divisors by Lemma 1.2.(2), where F’ is the set-theoretic image of
F by n. Meanwhile, by the canonical divisor formula due to Rudakov
and Shafarevich, we have n*K, = K, — (p — 1)(D) (see [8, §2]). So, we
compute as (F’, Ky) = (1/p)(z*F’, 2*K,) = (F, K, — (p — 1)(D)). This im-
plies the stated formula. O

In order to specify the singularities of fibres of : X— B/, we shall
consider the vector field and the fibres locally. Let P be a point of Z
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which is not an isolated singular point of D and is not lying on any
singular fibre of ¢. Take a local parameter system (&, ) at P such that
D is equivalent to 9/d¢. Then the curve C defined by the equation 5 =0
is an integral curve of D through P. Let ¢t be a local coordinate on B

Pl

at o(P) and write ¢*(t) = ue @, . Let T be the closed subscheme defined
by the equation ou/0¢ = 0, which is none other than the tangent locus
of D at P. We have the following lemma:

LemMma 2.3. In addition to the above assumptions and notations, we
suppose, furthermore, that the reduced scheme T, associated to T is non-
singular at P and meets the integral curve C at P transversally and that
T = n(T,.,) as divisors, where n is a positive integer with n %= p — 1 (mod p).
Then we have the following:

(1) There exists a local parameter system (x, z) in the completion @\P
such that D is equivalent to 9/6z and u = x + z"*\.

(2) The fibre ' (Fzoo(P)) is defined by the equation x? + y**' =0
at =(P).

Proof. (1) By the assumptions for T, we can choose a local param-

eter & in the completion 0/Z\P such that (&, ») forms a local parameter
system at P and T, is defined by & =0. Write u = ayp) + &u(p) +
Eay(p) + - -+, where a,(p) € kl[y]] and a,(0) = 0. Since D is equivalent to
9/0¢, we have ou/o&(P) = 0. So, «(0) = 0. By the assumption that the
fibre {v = 0} is nonsingular, we have dw,/on(P) + 0. Changing 7 to a,
we may assume that u =y + &a(p) + ap) + --- and ¢,(0) = 0. From
T = n(T,,), it follows that &" divides ou/0& and (1/&")ou/d¢ is a unit.
Therefore, we can write u = 5 + £**'8(€, n) with B(§, 5) € K[[€, ]] and 5(0, 0)
# 0. Since n 4+ 1% 0 (modp), there exists 7(&, ) € k[[&, »]] such that
7, P+ = B(&, p). Set x =75 and 2z = &r(§, 7). Then we have the required
expression.

(2) Let y = z*. Then (x,y) forms a local parameter system at z(P)
on X. Meanwhile, ## is a local parameter at Fzo¢(P) on B’. Hence the
fibre v *(Fzo0o(P)) is defined by ¢ = 0, i.e., x* + y**' = Q. O

Remark 2.4. Keep the same assumptions and notations as above.
Since ¢*() = u = x + 2**!, we can regard (z,?) as a local parameter sys-
tem at P on Z. Then D is equivalent to
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0 0
— 4+ (n+ 1z
0z ot

By virtue of the above lemmas, we conclude the following:

THEOREM 2.5. Let Z, B, ¢, D, v and B’ be as above and let n,T, +
-+« 4+ n,T, be the horizontal part of the tangent locus of D. Then the
following assertions hold:

(1) + is a fibration whose general fibres have the arithmetic genus
P (F) — (p — D)(F, (D)2, where F is a general fibre of ¢.

(2) The singular loci of the generic fibre of +r consist of the images
of all T}’s.

(8) Let G be a general fibre of \ and let @ be a point of G. If @
is lying on o(T;) and n;, = p — 1 (mod p), then G has a cusp at @ of type
X 4 ymitt = 0.

§3. Construction of generalized Raynaud surfaces

In this section, we shall construct fibrations whose fibres are all
irreducible rational curves with one cusp. Certain surfaces with such
fibration were constructed by M. Raynaud for the case of index 2 in our
terms, and by P. Russell, H. Kurke and W. Lang for the case of index
mp — 1 (meN). Our construction is based on their methods, especially
the one by Russell and Kurke. To begin with, we recall generalized
Tango curves. Let C be a smooth projective curve over k& and let ./ be
an invertible sheaf on C with positive degree. Suppose that there exist
local sections {{; € I'(U;, Op)}ie; whose differentials {d{;,} are local gen-
erators of Q} satisfying df; = a?7d({;, where {a,;} are transition functions
of 4 for an affine open covering {U,};.; and where n is a positive integer
with n % 0 (mod p) and n > 1. Then we call the triplet (C, 4", {d¢;}) a
generalized Tango curve of index n. The following lemma is useful for
constructing generalized Tango curves.

LEmmA 3.1 (Kurke [2]). Let w be an exact differential on a smooth
projective curve C. Suppose that the divisor of w has the form pnH, where
H is a non-zero effective divisor and n is o positive integer. Then there
exist an affine open covering {U,},c; of C and local sections {{; € I'(U,, O¢)}ie;
such that dt, = a?rd¢; on U,NU,. where {a,;};,;c; are transition functions
of O/(H). In other words, (C, O,(H), {d¢,}) is a generalized Tango curve
provided n % 0 (mod p) and n > 1.
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Proof. Since o is exact, we can write v = df, with a rational func-
tion & on C. Let V, be an affine open subset of C such that d¢, is
nonzero everywhere on V, and Supp(H)N V, = @. Then we have Q%},, =
0,,d%. Write H=nrP, + --- + r, P, where P/s are points of C and r,’s
are positive integers. For 1 < 1</, let 5, be a local coordinate at P,
and let V, be an affine open subset such that dy, is nonzero everywhere
on V, and Supp(H — r,P)N V,=0. Then we have Qi|,, = 0, dy, =
0y, dC /75", Hence it follows that ep]*#dy, = d{,, where ¢ e I'(V,, Oy)*.
Consider the derivation 3/an,. We know that (3/d,)? = 0 and that 3,/an,
= g;pi#". Therefore, we have (3/d7,)"'(¢;) = 0. So, we can write ¢ = af,
+ o+ -+ a“, 2%7% where «,, € I'(V,, 0,) and a;, # 0. Let {; = aZq;

@24 - + o, i /(p —1). Then ¢, is a local coordinate at P,
and d¢, = Exdm, so, pp*hdl, = df,. Since {y,=;™*} are transition functions
of 0,(H), we have the required result. 0

Remark 3.2. By the proof of the previous lemma, we can choose
local sections {{;};c; so that each {; is a local coordinate on U,.

We shall give two examples of generalized Tango curves.

ExampiE 3.3 ([7]). Let C be an affine plane curve defined by an
equation y"? — y = x"*!, where n is a positive integer with n % 0 (mod p)
and n > 1. Since the genus of C is (np — 1)(np — 2)/2, the divisor of an
exact differential dx is np(np — 3)P., where P, is the point at infinity.
By Lemma 3.1, we know that (C, 0((np — 3)P..), dx) is a generalized Tango
curve of index n.

ExaMPLE 3.4. ([4]). Consider an affine plane curve C defined by an
equation y* = x™ — 1, where m is an odd integer. Suppose that p does
not divide m. Then C is a hyperelliptic curve of genus (m — 1)/2. The
divisor associated to a differential (1/y)dx is (m — 3)P., where P, is the
point at infinity. Let m = pn 4+ 3, where n is a positive integer with
n=0(modp) and n > 1. By virtue of Lemma 3.1, if (1/y)dx is exact,
then (C, O(P.), (1/y)dx) is a generalized Tango curve of index n. We shall
compute #((1/y)dx), where ¥ is the Cartier operator. Note that

y (dx) #(y-1dx) = F((x" — 1)®-ndx) .
y

Meanwhile, by the definition of the Cartier operator, we have #(x*dx) = 0
unless v = p — 1 (mod p). Hence it is easy to verify that #((1/y)dx) =0
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if and only if p = 2 (mod 3). Therefore, we obtain a generalized Tango
curve (C, O(P..), (1/y)dx) of index n provided p = 2 (mod 3).

Now, we shall construct a generalized Raynaud surface. Let (B, 4, )
be a generalized Tango curve of index n. Then there exist an affine open
covering {Ujl,e; of B’ and local sections 7, € I'(Uj, 05) satisfying dyp, =
a?rdy,, where a,; is the transition function of 4" on U;NU’. Consider
the k-Frobenius morphism F;: B— B (see §2). We know Fif™ = QL.
Moreover, there exist local sections §&, € '(U, 0p) such that &2 = F§(y,)
and d¢, = a},d§,, where U, is the inverse image of U; by Fj; and @, =
Fi(a,). Let & = 0,®F}A4 and consider the P'-fibration ¢: P(¢) — B.
Denote P(€) by Z. Set z; = ¢,Je and w,; = ele;, where e; is a generator
of FfA"|y, and e is the image of 1€ @y in &. Then, by Remark 3.2, (2, &,)
and (w,, §&) are inhomogeneous coordinate systems on ¢ '(U,)) = P' X U,
such that z, = 1/w, and 2, = G,;z,, Choose one arbitrary open set U,
among {U,},c;- Consider a p-closed rational vector field

0 4 0
D= nzyt
024, + 0&,,

on ¢ %U,) (cf. Remark 2.4). Then D is regarded as a rational vector
field on Z. Namely, we have

D= '—wz'_q("-l)<w?q+l a —n a )
0wy, 084,

and

~ 0 n-1_ 0

D= am( 5, + nzj %, >

Note that D has only divisorial singularities. W2 see that 0,((D)) =
O0,(—(n — 1)S)R@¢* o FA4""!, where S is a cross-section defined locally by
w, = 0 and 0O4(S) is the tautological line bundle Op,(1). Moreover, S is
an integral curve of D. Meanwhile, since O(S) = 0,(T)Q¢* o Fi AN, we
know that the tangent locus is (n — 1)T, where T is a cross-section defined
locally by z, =0. Let X be the quotient of Z by D. Then X is non-
singular and, by virtue of Theorem 2.5, there exists a fibration »: X — B’
such that all fibres are rational curves with one cusp of type x? + y* =0
and that the arithmetic genus of a fibre is (p — 1)(n — 1)/2. Furthermore,
the locus of cusps is the image of 7. We call this surface X a generalized
Raynaud surface over a generalized Tango curve (B, ./, 7). Let & =
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Op @ A7 and let Z' = P(&’). Denote by ¢’ the canonical projection Z'—
B'. We know that Z’ is the image of Z by the k-Frobenius morphism
F, of Z which is defined similarly to the case of curves. Hence there
exists a natural projection p: X — Z’ such that the composite por: Z— 2’

is the A-Frobenius morphism F,. We have the following commutative
diagram:

z— " sx— 7

sal W lw’
B B——>B .
Fg ids

Y

Y

From now on, we regard X as a purely inseparable covering of Z’.
Set F§(y,) = 2% and F§(t,) = w?. Then (y,, ) and (¢, »,) are inhomogeneous
coordinate system on ¢~%Uj) such that y, = 1/t, and y, = a%;y,. Let q
and A be positive integers such that n + ¢ = hp and 0 < ¢ < p. Consider
the line bundle L. on Z’ which is associated to O(AS")®¢*A4-", ie., L
is the spectrum of the symmetric @,.-algebra generated by the dual of
O(hSNQ¢* A -, where S’ is the cross-section of ¢’ defined locally by
t, = 0, and @,.(S’) is the tautological line bundle Op,(1). Let F;: L—L?
be the Frobenius homomorphism of a group scheme L over Z’' and
let a;, be the kernel of F;. Set V, = SpecI'(Uj, 0y)[y;] and set W, =
Spec I'(U;, 0z)[t;]. Then {V,, W,},e; is an affine open covering of Z’.
Consider the following trivialization of L:

L‘Vi = Spec F(U:’ @B’) [yi7 01] ’
LlWi = Spec F(Uia 01?’) [tiy Ti] ’

where 0, = 7"z, 0, = a};,0, and ¢, = a;%c,. Similarly, we can express L?
as

Lprz = Spec F( Ug, @B') [yh 0{,] ’
Lp|W¢ = Spec [’(U:y @B’) [tt, Tf] ’

where 6, and r, are the same as above. Consider the local sections:
L?,, D {07 — vt + 9 =0}, LP|p, D{c? —t! + t!%p, = 0}, in terms of the
above expression of L?. Take the pull-backs of these local sections by F;.
Then they glue together to define an «;-torsor ¢: Y — Z’ (see Ekedahl [1]
for the definition of «;-torsor). Y is not normal in general, but the
normalization of Y is nothing but X because D(z? — &) = 0 for every
iel. Concerning Y, we have the following lemma:
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Lemma 3.5 (cf. [1, Proposition 1.7]). With the same assumptions and
notations as above, we have:

(1) There is a filtration of 0z-modules
Op=F,CF, C - CF,., =00y

with successive quotients F ,|F ., = 0,(—1hS")Q ¢'* A",
(2) Y has the dualizing sheaf

oy = 0¥z @ 0,((p — DS o"* A= ®=D7) .

Proof. (1) By the construction of Y, we know that ¢ (V) =
Spec I'(U7, 03)10,, y,1/(0? — ¥y 4+ ;) and ¢~ (W,) = Spec I'(U;, Op)[z;, t,1/(z? —
t? + t*?p). Consider the 0,-submodule %, of ¢,0, generated by 1,4,, - - -,
6. over V, and by 1,7, ---,c¢ over W,. It is easy to verify that these
0z~-modules {#,} give the required filtration.

(2) Take b,,e I'(U;N U}, Oy) such that 7, = a?p, — b, Consider an
Al-bundle @: A — Z’ such that

Ay, = Spec I'(U;, Op)[y,, %1,
Ay, = Spec I'(Uj, 0p)[t,, s, ,

where x, = t;*s,, x, = a};x, + b;; and s, = a;fs; + a;*?ttb,;. It is easy to
verify that there exists a closed immersion ¢: Y=—>%. The image of Y
is written as {x? — y7 + 7, = 0} on U, and {s? — #¢ 4 t;?p, = 0} on Aly,.
Since x, = a};x, + b;,, we have

X7 — ¥+ = afxh + bfj — aify; + aify; — bf/
= ap(xh — ¥ + 1,
Meanwhile, since x, = t;*s, and y, = t;!, we have
X — Y+ o= 4Pl — 4" +
= t;"(s? — 67" + tiPy,)
= t;"2(s? — t§ + tiPp,) .
Hence it follows that *(0y(Y)® Oy) = ¢*(O(hpS’)® ¢'*./"~"?).  On the other

hand, we have wy = 0*(w; @ O(—hS)Q¢'* A ™). Applying the adjunction
formula, we obtain the stated formula. |

We know that X is the normalization of Y. We shall express the
structure sheaf ¢, and the dualizing sheaf w; in terms of those of Y.
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THEOREM 3.6. Retain the same assumptions and notations as above.
Let s be the cokernel of the natural injection ¢,0y — p.0y. Then the
following assertions hold:

(1) Supps# = S’ and # is a locally free Oz -module.

(2) o has a filtration 0 = 24, C #, C - - - CH,., = H with successive
quotients K | H o1 = @ NP for 0 < a < q if S is identified with B,
where B ranges over all integers such that 0 < < p and —ap + pg > 0.

Proof. (1) With the same notations as in the proof of Lemma 3.5,
consider the normalization of the equation s? = t{(1 — ¢}#-%,). Since p
and g are relatively prime, there are integers 1 and g such that 1g — ug
=1. We may assume that 0 <1<q and 0 << p<p. Set u, = tis;*
Then we have u? = t,(1 — t}*"%,)™* and u! = s,(1 — t}*"9,)"". Let é@\y
and @ be the completions of ¢,0y and p,0; along S’, respectively.

PN N
Then we obtain that 0,0y|vins = Opllul, uill and p4Oxly.as = Oy llull.
Therefore, it is easy to verify that J|y,ne = @q,p Oy lt; **** = D5 Oy ti®st,
where (e, ) ranges over all pairs of integers such that 0 < a < ¢q,0< 8 <p
and —ap + g > 0. So, we know that s# is a locally free Og-module.

(2) Consider the Og-submodule #, of # for 0 < a < g which is
generated by {¢;*'sf},; over W,;NS’, where o' and 5 range over all integers
such that 0 < &' <, 0< 8<p and —a’p 4+ Bg > 0. We have

~ __ —1f y— —hpth
i7'st = abt;(aifts; + ai*tib,,)"

Bag—1gp PN
= a?7%t;'s} (mod ¢,0y) .

This implies that #, = @, 47 %, where feZ, 0<g<p and —p + pg
> 0. By a similar computation, we have

t7es? = ag?~Pi;esf + (terms of £;°**sf~! for 1 <1 < p).

Note that ¢;**sf-! for 1 <1< B is contained either in o, , or in ¢40y.

So, we have #,/H ., = @, AN ? %, where B ranges over all integers such
that 0 < < p and —ap 4 Bg > 0. I

Remark 3.7. With the same notations as in the proof of the previous
theorem, we know that £;***'sé-! is contained in oi(ﬁ\y if A > a. Hence,
if &> a, then we obtain that %, = ®,,, 4 “? %, where a and 8 range
over all integers such that 0 <o <, 0< 8<p and —ap + fg > 0. In
particular, we know # = @, , 4/ *"% if h > q, where (, f) ranges over
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all pairs of integers such that 0 < a <gq, 0< g <p and —ap + Bg > 0.
In the rest of this section, we give the dualizing sheaf of a general-
ized Raynaud surface.

ProrositioN 3.8. Under the same assumptions and notations as above,
X has the dualizing sheaf

0y = X0z R0(p — DA)R * AN "R Ox(—(p — 1)(q — DE)
= Ox((np —p — n — DE)Qy* A",

where E is the set-theoretic inverse image of S’ by p.

Proof. By Lemma 3.5, we know that oy, = ¢*(0, ®0,(p — DAS)®
@ * - @-bm) Hence we can write oy = p* (0 ® 0,((p — 1)AS")Q ¢'* N "-P"*7)
® O(—rE) with reZ, where 0(—rE) is the contribution coming from the
conductor ideal for the extension ¢,0, C p,0r. We have only to deter-
mine r. Let F’ be a general fibre of ¢’. Then p*F’ is a general fibre
of . Moreover, since O(D)) = 0,(—(n — DS)R@ p* o FtA"!, we have
PLp*F’) = (p — 1)(n — 1)/2 by Theorem 2.5.(2). On the other hand, E is
the image by = of the integral curve S of D. Therefore, E is a cross-
section of 4 and p*S’ = pE as divisors by Lemma 1.2.(1). Applying the
adjunction formula, we obtain (p — 1)(n — 1) — 2 = (wg, p*F’) = —2p +
p(p — Dh — r. From this, it follows that r = (p — 1)(q — 1). O

§4. Kodaira non-Vanishing on generalized Raynaud surfaces

In this section, we consider certain ample invertible sheaves on
generalized Raynaud surfaces. Especially, we shall give a lower bound
of the first cohomology group of their dual sheaves. Throughout this
section, we assume that X is a generalized Tango curve (B, 4", 7) of
index n. We begin with the following general theorem, which is proved
by applying a Leray spectral sequence. For the reader’s convenience,
we shall give a proof.

TaEOREM 4.1 (Mumford [6], Szpiro [10]). Let f: V— C be a fibration
from a smooth projective surface onto a smooth projective curve such that
all fibres are reduced and irreducible. Let I' be a cross-section of f. Assume
that the fibres of f have positive arithmetic genus. If the self-intersection
number of I' is positive, then we have:

1) 0,(INRf*F is ample on V, where ¥ is an invertible sheaf on C
isomorphic to O,(I)|r.
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(2 HY(V,0,(-DQf*Z"") # 0.

Proof. (1) Apply the Nakai criterion.
(2) Consider a Leray spectral sequence H*(C, Rif,0,(—1NQR %) =
H"(V,0,(—TN®f*#""). Then we have

0 —> H'C, f,0(~T)Q L) —> H(V, 0(—~ I f*£-)
> HYC, R, 0(~T)Q L) —> 0.

Since H'(C, f,0(—I"® L") = 0, we obtain H(V, 0(—IN® f*¥-") = HYC,
R'f,0(—N®%-"). By using an exact sequence

00— 0(—-1)—> 0, —> O, —> 0,
we have
Oy —> [ 0p —> R, 0,(—T) —> R'f,0, —> 0.

Noting that f,0, = f,0r = 0;, we know that R'f,0,(—I") = R'f,0,. Now
using an exact sequence

0 > 0, > O, (") > O, ()| —> 0,

we find
0 —> [0y —> £,0,(I") —> f,0,()|, —> R'f,0, .

Since the genus of a fibre is positive, we have f,0,(I") = 0,. Hence
+0,(D)\r = & — R'f,0, is injective. By tensoring £~', we get an injection
0, > Rf,0,% ' =Rf,0,(-1NRF"'. Hence H V,O0,(-INQf*F) =
H(C, R, 0,(—1N®@FL ") #0. 0

We return to the subject. Let ¢/, ¥, S’ and E be the same as in §3.
Since pE = p*S’, we have (E*) = (S8”)/p = deg 4" > 0. By virtue of the
previous theorem, the invertible sheaf O (E)®y*0,(E) gives a counter-
example to the Kodaira Vanishing Theorem. We notice that the normal
sheaf of E is isomorphic to .#". Indeed, let .# be the normal sheaf of E.
From pE = p*S’, it follows that #? = 04(S’) = A4*. Meanwhile, using
an exact sequence

0—> 0x((np —p — n — DE) —> Ox((np — p — n)E) —> Mw2-7-7 0,
we have an exact sequence on B’:

M ——s R Ox(np — p — 1 — DE) —> Ry, 0x((np — p — n)E) .
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Since wy/p = 0x@VWrwp' = H(np —p — n — DE)QF A U-™P+r (see Prop-
osition 3.8), we obtain R\, 0((np — p — n — DE) = (Y Oy Q N C-mren)V —
A== gnd R, 0(np — p — mE) = (Y 0x(— E)Q A -mP*")V = () by the
Serre duality. Hence #"?-?-" — 4#"P-?-" ig gurjective. Hence this is an
isomorphism. Therefore, we have 4 = 4" because p and n are relatively
prime. In the sequel of this section, we consider the ample invertible
sheaf Ox(E)®*.4# and the first cohomology group HY(X, O(— E)®@* A1),
There is an exact sequence on X:

0—> O(—E)—> 0y —> Oy —>0.
By tensoring *.4""!, we have
0—> (—E)YRAXN ! —> f* N — /-1 — 0.

Since H(B’, #/-') = 0, we obtain

0—> HY(X, 0(— E)YQy* AN 1) —> HY(X, y* A1) —> H(B', /).
Hence it follows that

dim H'(X, (— E)Q* A1) > dim H'(X, v*A4"~") — dim H(B', /7).
By virtue of Theorem 3.6, there is the following exact sequence on Z’:

0 > 0,0y > p50x > H# —> 0,

where 5 is the same as in the theorem. By tensoring ¢*.4/', we have
1D 0—>0,0,R*N ' — 0, 0, R N —> A RQ* N —>0.

Consider HYS’, #Q@¢*4-"). Theorem 3.6 implies that #®¢*A4"~! has
a filtration 0 =%, C % C --- C %,., = #XQ¢* 4! with successive quo-
tients %,/9,., = @, A7 "', where f is the same as in the theorem. We
know that HYB', #?-f1-1) = 0. Hence we have HYS', #Q¢*4 ") = 0.
So, taking the cohomology exact sequence associated with (1), we obtain

0—> H(Z, 6,0, @¢* N ) —> H(Z', p3 03 Q¢ * A1) .
Therefore, we know that
dim H{(X, 0(— E)@* 4" > dim HY(Z', 6,0y @ ¢'* A~") — dim H' (B, /7Y).

We shall compute H'(Z, 0,0, ¢*A4""). By Lemma 3.5, there is the
following exact sequence on Z’ for 1 <[l <p — 1:
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0—F,, —>F,—> 0 (—IN)Q¢* A" —>0,
where #, = 0, and F,_, = ¢,0,. Tensoring ¢’*4"~!, we have
2 0—>>F,,Q*N ' —> F Q¥ N —> Oz(—IR) Q@' * N1 —> 0.
Since HYZ', 0,(—Ih)Q@¢*A4""1) =0 for 1 <! < p — 1, we know that
dim H(Z', F,.,Q ¢'* A/~ < dim H(Z', F ,Q o'* A"~?)
for 1<I<p—1 When [l =1, we have
0— ¢*N ' —> F Q¢ N — O, (— ) Qe * N "' —> 0.
Hence we have
0—> HY(Z, g*N") —> HN(Z', F Q@ * N ") —> HNZ', O(— h) @ ¢'* N "~1)

> HZ(Z/’ gDI*Jt/‘—l) > HZ(Z/’ '?,_1®¢/*LA/‘—1) > HZ(ZI, 0(~h)®§0l*mn~l)
—>0.
Since wyp = 0,(—2)@ ¢'* A7, we know that R'¢l(¢"* /) = R'¢,0, @ A"
= (@O0 —2)QNP)VR AN~ =0 by the Serre duality. Hence we obtain
that HY(Z’, o"*4"~") = HY(B', /"~*) and HXZ’, ¢’*4"~') = 0 by using a Leray
spectral sequence HYB’, Ri¢,(¢o* N Y) = H**(Z', ¢'* 4-1). Therefore, we
have
0—> H\(B', /") —> HNZ', F,Q¢* N ") —> HNZ', O(—h) @ ¢'* N"~1)
—>0

and
0—> HYZ', F\Q¢*N ") —> H¥Z', 0(—h) @ ¢'* /™) —> 0.

Moreover, a Leray spectral sequence HY (B, R'¢i(0(—h)® ¢'* 4™ 1) =
H(Z', 0(—h)Q¢'* A ™) implies that

H¥Z', 0(—h)@¢* A1) = H(B, R'¢,0(—h) @ A1)
and

HYZ', 0(—h)®@¢* /™ 1) = H(B, R'o,,0(—h)@ A1)
since L (—h)Q N1 = 0.

Suppose that A > 2, whence n > p + 1. Then, by the Serre duality,

we have RlglO(—h)Q@ /™! = (¢ Oh — 2)Q NPV RN = (piO(h — 2))V®

A*=?-1 Note that there exists a surjection ¢L0(h — 2) = S* %) — Op.
So, we have an injection 4™ ?"! — (o} O(h — 2))V® A4 ™"?-'. Hence
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dim H(B, R'¢,0(—h) @ A1) = dim HY(B', (p50(h — 2))¥ @ #™-7-1)
> dim H(B', /"~?7").
Thus we obtain that
dim H(Z', #,Q ¢'*A~") > dim H\(B', #"~") 4+ dim HY(B', #/™"-?"").
From these observations, it follows that
dim HY(X, O(— E)Q *A""") > dim H(B/, /™ ?71).,

Next, suppose A =1, whence 2<n<p —1. Then, by the Serre
duality, we have R'¢,0(—1)Q@ A" ! = (¢, O(—1)@ N?)VQ A ™! = 0. Hence
HNZ', 0(—1)@¢'* A" = 0 and H¥(Z', )(—1)Q@¢'*#™') = 0. These imply
that H(Z', #,Q¢'* A~y = H (B, /") and H¥Z',.F,Q¢*4#") = 0. Re-
call the exact sequence (2) and let [ = 2. Then we have

0—> F ,Qo* N —> F Q@ * N —> O(—2)® ¢/ * N~ > 0.
Taking the cohomology exact sequence, we have

0—> H(B', /") —> HY(Z', F,Q ¢'* N ~") —> HNZ', O(—2) Q@ ¢'* N"*"-1)
—>0.

Since ¢i(O(—2)Q@¢* A1) = 0 and R'@(O(—2) @ '* N *"~1) = (9407 R NP)V
Q Nt = fm-r-1 we know that H(Z', 0(—2) @ ¢’* 4"~ 1) = HY(B/, #*"-7-1)
by considering a Leray spectral sequence H¥B/, Ri¢,0(—2)Q A1) =
H*(Z', 0(—2)Q ¢’* A/*"). Hence we have

dim HY(Z', F,@ ¢'*A"") = dim HY(B', /") + dim HY(B', A"**-7-1) .
From this, it follows that
dim H'(X, O(—E)Qy*A"~") > dim HY(B/, #*"-271) .
By virtue of the above results, we obtain the following

THEOREM 4.2. With the same assumptions and notations as above,
OE)QV* AN is ample and we have:
1) If n>p++1, then

dim H'(X, O(— E)®y*A4"") > dim H(B', 477" ;
(@ If2<n<p-—1, then
dim H'(X, 0(—E)Q*4"~) > dim HY(B', /**=?7Y) ,
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To close this article, we shall give two examples.

ExampLE 4.3. Let X be the generalized Raynaud surface over a
generalized Tango curve (B, /", 5) which is given in Example 3.3. Then
there is a finite covering @: B’ — P' of degree np which is totally
ramified over the point at infinity of A!. Since 4 = O((np — 3)P.), we
have @*0p(r) A ™-?-' provided that (n — p — 1)(np — 3) > rnp, where
r is a positive integer. Therefore, we know that dim H(B’, #/*~?-%) >
dim H°(P!, ¢(r)). Note that lim,..(n — p — 1)(np — 3)/np = oo and that
lim,_., dim H%(P!, 0(r)) = oo . Hence, by the above theorem, we have

lim dim H'(X, O(— E)®@ y*4~") = oo .

N— o0

ExampLE 4.4. Let (B, ./, ) be the same generalized Tango curve as
in Example 8.4. Then B’ is a hyperelliptic curve and A4 = O(P.,), where
P, is the point at infinity. Consider the generalized Raynaud surface
over (B, A/ ',5). By the same arguments as in the previous example, we
have

lim dim H'(X, O(— E)Q@y* A ') = oo .

n—co
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