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NOTES ON ENERGY FOR SPACE-TIME PROCESSES

OVER LEVY PROCESSES

MAMORU KANDA

Dedicated to Professor Masanori Kishi on his 60th birthday

§ 1. Introduction

Let X = (Xt, 0 < t < oo) be a Levy process on the Euclidean space Rd,
that is, a process on Rd with stationary independent increments which has
right continuous paths with left limits. We denote by Px the probability
measure such that PX(XO = x) = 1 and by Ex the expectation relative to Px.
The process is characterized by the exponent Ψ through

E°(expί(z, Xt)) == exp(- tΨ{z)).

The Λ-energy Ex(y) of a measure v on i?d for X is defined by

Ex{v) =

where !F denotes the Fourier tranform on Rd. A nice explanation of the
reason why it is called the Λ-energy is given in Rao [11]. Throughout
the paper ^v{z) is defined by expi<2, x} v{dx) and we write ^u{z) in
place of ^udx(z) if v(dx) — u(x)dx. So our ^-energy differs from Rao's
by a constant multiple.

The space-time process Y = (Yt, 0 < t < oo) over X is a Levy process
on R1 X Rd defined on the probability space (Rι X β, Pux), where Ω is the
path space of X and Prx = δr®Px, δr being the Dirac measure at reRK
The trajectory Yt(r, ω) is (r + t, Xt{ω)) and the exponent of Y is Ψ(z) — it.
So the ^-energy Eλ

γ(μ) of a measure μ on U1 X Rd for Y is

E*τ(μ) = JjRe(W + F(«) - itYι)\&μ(t, z)fdtdz,

where J^ denotes the Fourier transform on R1 X Rd.
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If we assume the existence of a transition probability density pit, x)

of X relative to the Lebesgue measure dx, that is, P°(Xt e dx) = p(t, x)dx,

the ^-resolvent density Ux(x) of X is exp(— λt)p{t, x)dt and the λ-
Jo

resolvent density Wλ(t, x) of Y relative to the Lebesgue measure dtdx on

R1 x Rd is
(- λt)l10>ooί(t)p(t, x).

In this paper we show

THEOREM. Let X be a Levy process on Rd with a transition probability

density, and Y be the space-time process over X. Let μ be a bounded

measure on R1 X Rd of compact support.

( I ) Assume that the λ-energy of μ for Y is finite. Then we have

the following.

( i ) The Rd-marginal μ2 of μ (i.e. μ2(B) = μ{Rι X B)) has finite λ-

energy for X.

(ii) If the R1-marginal μx of μ (i.e. μx{B) = μ(B X Rd)) is singular to

the Lebesgue measure on R\ then the Rd-marginal μ2 does not charge any

semipolar set.

(II) Consider the case that μ is of the direct product form η®v.

( i ) If μ has finite λ-energy for Y and v is carried by a semipolar set

for X, then η has a U-density relative to the Lebesgue measure on R1.

(ii) If v is a bounded measure of compact support on Rd with finite

λ-energy for X and it does not charge any semipolar set for X, then we

can find a singular measure η of compact support so that μ = η®v has

finite λ-energy for Y.

Using Theorem, we can get a new characterization of semipolar sets,

which is announced for a more general class of Markov processes with

transition probability density [9].

COROLLARY. Let X be a Levy process on Rd which has a transition

probability density. Then a closed set B in Rd is semipolar if and only if

Px(Xt e B for some teA) = 0

for every xe Rd and every set A c ]0, oo[ of Lebesgue measure 0.

Remark. The above Corollary does not hold if we do not assume

the existence of a transition probability density. Indeed, let X be the
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space-time Brownian motion on Rι x Rd and let B = {(f0, x), x e Rd}. Then

P°(Xt0 e B) = 1, but B is semipolar.

In § 2 we shall prepare some notations and several lemmas. The

proof of Theorem and Corollary will be given in the subsequenct sections.

§ 2. Preliminaries

Throughout this section we assume that the Levy process X has a

^-resolvent density Uλ(x), that is,

Γ exp(- λt)P\Xt e dx)dt = Uλ(x)dx .
Jo

But we do not assume the existence of a transition probability density.

So all the results in this section hold for the space-time process Y over

X, if X has a transition probability density. We note that Uλ is always

chosen to be lower semίcontinuous. See Hawkes [4]. The convolution

operation is written as " # " . The symbol " ~ " is used to denote the

reflection, that is, μ(dy) = μ(— dy), f(x) = /(— #). The symmetrized λ-

resolvent density is written as Uλ

s:

Uλ

s(x) = {lP(x) + C7'(-*)}/2

Then

where Ψ is the exponent of X.

The celebrated theorem of Bochner plays an important role in the

proof of Theorem. So we repeat it here:

Let f be bounded in a neighborhood of the origin and belong to ZΛ

If ^(f) is nonnegatίve, then ^(f) belong to D and / = ^'K^if))

almost surely.

Applying this theorem to our case, we have

LEMMA 2.1. The λ-energy Eλ

x{μ) of a measure μ for X is finite if and

only if Uλ

s * μ * β is bounded. If Eλ

x(μ) is finite, then

Uλ

s*μ*μ = &-*\Re([λ + ψ

almost everywhere, and so

Uλ

s*μ*μ(0)<(2π)-dEx(μ).



66 MAMORU KANDA

The last inequality follows from the lower semicontinuity of Uλ

s * μ * μ

and the continuity of the right-hand side of the equality. Using this

lemma we can prove

COROLLARY OF LEMMA 2.1. // Eλ

x(μ) is finite, then Eλ

x(μ) is monotone

decreasing as λ increases. If μ = μγ + μ2y where μt9 ί = 1, 2, are measures,

then Ex(μ) > Ex(μί\ i = 1, 2.

The first assertion follows from the monotone decreasingness of

Us*μ*ft(x) in λ for every fixed x. The second statement follows from

the inequality Uλ

s * μ * μ(x) > Uλ

s * μt * μ^x) for every x.

Let Cλ(K) be the λ-capacity of a Borel set K, that is, the total mass

of the uniquely determined measure π on the closure of K such that

Uλ * π(x) = E*(exp(- λTκ)\ where Tκ = inΐ(t > 0, Xt e K). The following

lemma is proved essentially by Kanda [5] and Hawkes [4] without explicit

mentioning. The explicit statement (proved from a very different point

of view) is given by Rao.

LEMMA 2.2 Rao ([11]). Let K be a compact set and v be a bounded

measure on K. Then

Ex(v)>(2πy\v(K)f/2CKK).

We say that a Borel set JB is thin if Ex(exp(— λTB)) < 1 for every

xeRd. The set B is semipolar if B is a countable union of thin sets.

The set B is called polar if Ex(exp(— λTB)) = 0 for every x. Then we can

give a characterization of polar sets using ^-energy.

LEMMA 2.3 (Kanda [6], Hawkes [4] and Rao [11]). A Borel set B is

non-polar if and only if there exists a bounded measure whose support is

in B with finite λ-energy for X.

The next lemmas show some peculiarity for sets which are non-polar

but semipolar.

LEMMA 2.4 (Kanda [6], Rao [11]). Let K be a compact set such that

Ka{x; Ex(exp(- λTκ)) < δ} for some δ<l. Then Cλ(K) \ C as λ\ oo for

some finite constant C.

LEMMA 2.5 (Kanda [8], Fitzsimmons [3]). Let K be a closed set such that

K C {x; Ex(exp(- λTκ)) < δ, £ * ( e x p ( - λfκ)) < δ} for some δ<l. Then a

subset B of K is polar if and only if π(B) = 0, where π is the λ-capacitary
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measure of K for X, that is, the uniquely determined measure on K such

that Uλ * π(x) = Ex(exp(- λTκ)).

In the above we used the dual process of X with the symbol " Λ "

attached. But recently Fitzsimmons noted that K C {x; Ex(exp( — λTκ)) < S)

is sufficient for the statement [3],

The following lemma gives a relation between a measure which does

not charge semipolar sets and its energy.

LEMMA 2.6 (Rao [12], Kanda [7]). If v is a bounded measure which

charges no semipolar sets and Ex(v) < oo, then Eλ

x(v) 10 as λ \ oo.

Finally we give a lemma which is essential in the proof of (II) of

Theorem.

LEMMA 2.7 (Zabczyk [14]). Let U be a real function on Rd of class U.

Then there exists a singular measure η {relative to the Lebesgue measure)

such that U*η equals a continuous function on Rd except on a set of

Lebesgue measure 0.

§ 3. Proof of Theorem (I)

In the subsequent sections, the process X is a Levy process on Rd

with the exponent Ψ which has a transition probability density. Hence

the space-time process Y over X is a Levy process on Rι X Rd with the

^-resolvent density Wλ(t, x) as is explained in § 1. We denote by J^ the

Fourier transform on R1 X Rd. We add the suffixes x and t for the Fourier

transforms on the variable x of Rd and on the variable t of R\ respectively.

Thus

* v * v)(z) = Re([λ

's * μ * μ)(t, z) = Re([λ + Ψ(z) - it]-ι)\&μ{t, s)f .

In what follows, we assume for simplicity that

μ is a probability measure on R1 X Rd .

Then μ is disintegrated as

μ(dsdx) = μ2(dx)μ1(ds, x),

where μ2(dx)(= μ{Rί X dx), the Rd-margίnal of μ) and μ^ds, x) are pro-

bability measures on Rd and R1, respectively.
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Proof of i) of the part (I). Set

Then ^(μ)(t, z) = 2Fx(f(t, x)μ2(dx))(z). By the assumption, the ^-energy

of μ for Y is finite. So ί Ee([λ + ¥(z) - it\-χ)\^{μ){t, z)\2dz < oo for

almost all t. Since Eλ

x(f(t, x)μ2(dx)) = f Re([λ + Ψ{z)Yι)\^(μ)(t, z)fdz, it

follows from the estimate Re([λ + Ψ(z) - it]-1) > CRe([λ + Ψ(z)Yι) for

every z, where C is a positive constant (independent of z but dependent

on t), that Ex(f(t, x)μ2{dx)) < oo for almost all t. But

x)μΛdx))(z)f = G f̂, z) + G2(t, z),

where G^ί, «) = |^,(Re/(i, x)μ2(dx))(z)f + | ^ ( I m / ( ί , x)^2(rfx))(^)|2 and

G2(ί, 2:) = 2 cos<2:, x}lmf(t, x)μ2(dx) sin<^, x>Re/(ί, x)μ2{dx)

— 2 cos<2, x>Re/(ί, x)μ2(dx) sin(z, x>Im/(ί, x)μ2(dx).

Since Re(U + »"(«)]-1) = Re([^ + r ( - ^l" 1 ), G^ί, e) = Gί(t9 - «) and G2(ί, z)

= — G2(t, — z), we have

L
-J, \<R

\z)Y1)G1(t9z)dz

Re(U + Ψ(z)Y1)[Gί(t9 z) + G2(t, z)]dz < Eλ

x(f(t, x)μ2{dx)) < oo

for every R. Thus £J^(Re/(ί, x)μ2(dx)) < oo. Now note that, by compact-

ness of the support of the measure μ, there exist constants c > 0 and

ε > 0 such that Re/(£, #) > c for every \t\ < ε and every x. Hence, using

Corollary of Lemma 2.1, we see Eλ

x(μ2) < oo. The proof of i) is finished.

Proof of ii) of the part (I). Assume that the i^-marginal μ1 of μ is

singular to the Lebesgue measure (we choose a set E of Lebesgue measure

0 such that μx(Rι — E) = 0). Suppose that i?d-marginal μ2 of μ charges

a semipolar set. Then there exist a constant δ, 0 < <5 < 1, and a compact

set B such that £ c {x; Ex(exp(- λTB) < δ, £>(exp(exp(- λfB) < δ} and

μ2(B) > 0. Note that B is non-polar for X. Indeed, for the restriction

μ2\B of μ2 to the set B, Ex(μ2\B) < oo by Eλ

x(μ2) < oo and by Corollary of

Lemma 2.1. So B must be non-polar by Lemma 2.3. Let πB be the λ-

capacitary measure of the set B for X. Then dt®πB is the Λ-capacitary

measure of the set R1 X B for the space-time process Y over X. Indeed,
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W>(t -s,y- x)dtπB(dy) = J U*(y - x)πB(dy)

- λTB))
- λTBlχB)),

where TRlχB = inf(ί > 0, Yt e R1 X B). Clearly (dt®πB)(E χ B ) = 0, So,
applying Lemma 2.5 for Y, the set E X ΰ must be polar for Y. But, dis-
integrating μ as μι(ds)μi(s, dx),

EXB

μi(ds)μ2(s, dx) = μ(Rι x B) = μ2(B) > 0 .

μ(EχB)=

Since the Λ-energy of μ for Y is finite by the assumption, the set E X B
must be non-polar for Y by Lemma 2.3. Thus the Rd-marginal μ2 does
not charge a semipolar set. The proof of ii) is finished.

§ 4. Proof of Theorem (II)

We use the same symbols as in § 3. In the case of μ = η (x) v, μx (dt)
= η(dt) = μλ(dt, x), μ2(dx) = v(dx) = //2(ί, dx) and so

Proof of i) o/ ί/iβ part (II). First note that Eλ

x(v) < oo follows from
Eγ(μ) < oo by i) of (I). If v charges a semipolar set, then charges a
compact set K such that if c {x; £';r(exp(— /lϊ7^)) < <5} for some ^ < 1. Let
vκ be the restriction of v to the set iί. Then Eλ

x{vκ) < JSx(i>) < oo by
Corollary of Lemma 2.1, and therefore K must be non-polar for X by
Lemma 2.3. So Cλ(K) \ C as λ \ oo for some positive finite constant C by
Lemma 2.4. Then it follows from Lemma 2.2 that

lim Eλ

x(v) > lim Ex(vκ) > (2π)dv(K)2l2C .

Thus we have

liminf ί Re(U + Ψ(z) - itYx)\^v{z)fdz > (2π)dv(Ky/2C
Λ t ° o J

for every fixed t. Hence

\imEι

γ(μ) > [ \^tη{t)\2dt(2π)dv(K)2l2C.
λl°3 J
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So 3Ftη belongs to U(Rί), which implies that η is absolutely continuous

and that the density belongs to U(Rι). The proof of i) of the part (II)

is finished.

Proof of ii) of the part (II). Let y be a bounded measure with finite

A-energy for X. Assume that the measure v does not charge any semipolar

set. Then, by Lemma 2.6,

(4.1) Eλ

x{v) I 0 as λ | oo .

Set

gλ(t, x) = J W&t, y - x)v * v(dy).

Then

gλ(t, x)dt = Uλ

s * v * v(x).

Since Uι

s * v * v is bounded by Lemma 2.1, gx(t, 0) is L1 in t. So it follows

from Lemma 2.7 that there exists a bounded singular measure η on i?1

(we may suppose its support is compact) such that gλ( ,0) *(t) η equals a

continuous function on R\ a.e., and therefore &( , 0 ) * ( t ) ^ is locally

bounded because of its lower semicontinuity. Hence gλ( 9 0) *(t) y *(«> ̂  is

locally bounded in ί. Clearly it belongs to DiR1). Further, for every t,

by Fubuni's theorem. (In the above we denote by * ( ί ) and * U ) the con-

volution operation in ί and x respectively.) On the other hand, since

t, z) = &Ά^t(W*s( ,x))(t)](z) = Re(U

we have, for each fixed ί,

PAPAW'si., x))(t) * ( x ) v * ( x ) *](*) = Re(U + ^ ) - itY*)\&M\ι > 0

Hence it follows from Bochner's theorem that, for each fixed t,

(4.2) i&AWtt., - ))(t)*ix)v*ix)i>)(x)

for almost all x. In general the equality does not hold for all x. In the

following we shall show the equality holds for x = 0 (hence it holds

everywhere) by the use of (4.1). Since JS(&( , 0))(ί) = (^t(Wλ

s(', ..))(*)

*u> ^*u) ^)(0), we must show
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(4.3) r,(&( , O))0) = (2π)-i J Re([λ + ¥(z) - it]-ι)\άFxv(z)fdz .

Define

Vx

t(x) = ί exv(itu)Wx(u, x)du/2 , V%x) = f exp(itu)Wx(- u, - x)duβ .

Then it is easily proved that

V\(z) - Vf(z) = 2(X - λ) J Vί(y)V((z - y)dy .

The same equality is also valid for V\. Setting H\t, z)=((Vl+ Vf) * v* v){z),
we have

H\t, z) - W\t, z) = 2(r - ) J VK* + 2)[f Vf(y - ac)v * v(dy)]dx

+ 2(λ' -

Since V\(y — x)v * v{dy) and V'c'(y — x)v * v{dy) are bounded measurable,
each term of the right side is a continuous function of z, and so
Hz(t, z)-Hr(t, z) is continuous. Since Hι(t, z)=(&r

t(W*s( , x)){t) *(x) v *Cx) v)(z),

it follows from (4.2) that

ω »,*„, v){z) - (&t(W% ,xMt) *ix)v*ix) v)(z)

¥(•) - itYι)\&A )f]{z)

- άFΛRe([λ' + ¥(•) - it}-1)^xv(-)f](z)

for every z. In particular, putting 2 = 0 and letting λ' f oo, we have

"1 ίRe([/ + Ψ{z) - it]-ι)\&xv{z)fdz.
J

But it follows from (4.1) that the last term in the above equality is zero.
Thus the equality (4.3) is proved. Finally we shall prove that the λ-
energy of μ = η ® v for Y is finite. Since

Ψ(z) - ίt]'1)]^Άz)fdz\&tη(t)f > 0

by (4.3), Bochner's theorem ensures that
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belongs to Lι(Rι) as a function of t, which implies Eλ

γ{η®v)<. oo. The

proof of ii) of the part (II) is now finished.

§ 5. Proof of Corollary

First we shall prove the "only if" part. Assume that the set B is

semipolar for X. If B is polar, the assertion is trivial. So we assume

that B is non-polar. If there exists a set A in ]0, oo[ of Lebesgue measure

zero such that Px(Xt e B for some t e A) > 0 for some x. Then the product

set A X B in R1 X Rd is non-polar for the space-time process Y over X.

So there exists a bounded measure μ whose support is compact and in

A X B with finite ^-energy for Y by Lemma 2.3. Then the i^-marginal

μx of μ is carried by A and the i^-marginal μ2 of μ is carried by JB.

This contradicts the statement ii) of the part (I) in Theorem.

Before proving the "if" part, we prepare

LEMMA 5.1. Let B be a non-semipolar closed set. Then there exists

a non-trivial bounded measure v on B of compact support with finite

λ-energy for X that charges no semipolar set. Indeed we can choose the

restriction of the regular part (explained below) of the λ-capacitary measure

of B for X to some compact subset of B as the measure v.

Proof. We can decompose any bounded measure μ as μ — μx + μ2 + μ3

where μx is carried by a polar Borel set, μ2 is carried by a semipolar

Borel set but charges no polar set and μz charges no semipolar set. See

Blumenthal and Getoor [1], p. 283. We say that μΆ is the regular part of μ.

We show that the regular part of the Λ-capacitary measure πB of B

for X is non-trivial (i.e. {πB)z Φ 0). Suppose, on the contrary, that the

regular part is trivial. Since πB charges no polar set, we have then πB

= (πB\. Let E be a semipolar Borel subset of B for X such that πB(B — E)

= 0. Then E is a countable union of thin sets for X by definition. Let

H be any compact subset of one of such thin sets satisfying πB(H) > 0.

Let μ and v be the restrictions of πB to B and B — H, respectively. Then

Uxμ is discontinuous at μ-almost all points by Pop-Stojanovic [10]. But

E*(exp(- λTB)) = LΓ' * πB(x) = Uλ * μ(x) + fj * v(χ), and so #*(exp(- λTB))

is continuous at x if and only if both Uλ * μ and Ux * v are continuous

at x, because the both are lower-semicontinuous. Since Ex(exp(— λTB))
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is continuous at every point of Br( = {x; Ex(exp( — λTB)) = 1}), we see

μ(Br) = 0. Therefore πB(Br) = 0, because πB(BrΓ)H) == μ(Br) = 0 for every

if and so 0 = πB(Br Γ\E) = πB(Br Π B) = τrβ(βr) For the last equality we

used the closedness of B. Setting D = Z? — i?r, we have then T Γ ^ ( =

the restriction of πB to D) < π^, where τrD is the Λ-capacitary measure of

D for X, because

= χ ί £*(exp(- ΛTβ), %B eS)dx<λϊ £*(exp(- λtD), XfD e S)dx

= πD(S)

for SczD. So £*(exp(- ΛT*)) = Uλ * πB\D(x) < Uλ *

Since TD > TB almost surely, we have PX(TB = TD) = 1 for every x. But

the set D is semipolar so that almost surely Xte D for only countable

many values of t. See Blumenthal and Getoor [1], p. 80. Then it follows

from D = B — Br and TB = TD almost surely that Xte B for only coun-

tably many values of t almost surely. Hence the set B must be semipolar.

See Sharpe [13], p. 281. This contradicts the assumption that B is non-

semipolar.

Now we prove the "if" part of Corollary. Assume that B is non-

semipolar for X. Then there exists a bounded measure v on B of com-

pact support with finite ^-energy for X which charges no semipolar set.

For the measure v, by ii) of the part (II) in Theorem, we can find a

singular measure η on R1 such that η (x) v has finite ^-energy for Y. Then

the product set E X B is non-polar for Y by Lemma 2.3, where E is a

set of Lebesgue measure zero such that rj{Rl — E) — 0. This implies

Px(Xt e B for some t e A) > 0 for some x and for some set A c ]0, oo[ of

Lebesgue measure zero (which is indeed a translation of E). The proof

of Corollary is finished.

Remark. If the process X satisfies Hunt's condition (H), that is, every

semipolar set for X is polar for X, then a set B is polar if and only if

Px(Xt e B for some t e A) = 0 for every x and every set A c ] 0 , o o [ of

Lebesgue measure zero.
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