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WHITE NOISE ANALYSIS AND TANAKA FORMULA FOR

INTERSECTIONS OF PLANAR BROWNIAN MOTION

NARN-RUEIH SHIEH

§ 1. Introduction

In this paper, we shall use Hida's [5, 7, 9] theory of generalized

Brownian functionals (or named white noise analysis) to establish a

stochastic integral formula concerning the multiple intersection local

times of planar Brownian motion B(t). First, we review some basic facts.

It is well-known that, for each r > 2, a.s. B(t) has points of multiplicity

r, see Dvoretzky-Erdόs-Kakutani [1] and Geman-Horowitz-Rosen [4]. A

formal measure on such r-fold self-intersections is

(1.1) ^jδ(B(t2) - B(td) δ(B(tr) -

where D c {(tu , tr)\0 < U < t2 < < tr < oo}. Rosen [15] proved that

(a.s.) there exists measurable ar(x, D), xeR2^'^, called the r-fold inter-

section local time, such that for all bounded measurable g(x) on R2ir~l)

- Bit,), - . ,B(tr) - B{tr_λ))dU " dtr

= ί -..\g(x)ar{x,D)dx.

In case D = f]Γ=i i^u &J» 0 < αj < 6t < α2 < 62 < — - < br (the off-diagonal

case), Rosen [15, 17] proved that (a version of) ar(x, D) can be chosen so

that it is (a.s.) jointly continuous in x, ai9 bt. Thus, (1.1) is represented as

ar(0, D) in this case. However, in case D = Dτ = {(tu , tr)\0 < U <

tr < T) (the diagonal case), then ar(x, T) = ar(x, Dτ) can only be contin-

uous on (iPXfO})1"1. To study the asymptotics of ar(x, T) as x-»0, it is

intended to find that after substracting off certain explicit "infinite part"

from ar(x, T) the remainder &r(xy T), called the renormalized intersection

local time, admits a jointly continuous extension to all (x, T) e R2(r~ί)χR+.
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The research was initiated by Varadhan [22] and has been studied inten-

sively by Dynkin, LeGall, Rosen and Yor, see Dynkin [2]. In the inves-

tigations Tanaka type formulae for ar and άr9 analogous to the classical

Tanaka's formula for one-dimensional Brownian local time, play an

important role. In the off-diagonal case, let ar(x9 au , ar, dtr), tr e [ar, br],

denote the Borel measure induced by tr->ar(- , tr) and ax{dt^) = dtu the

Lebesgue measure on RK The Tanaka formulae relating ar+ί and ar were

studied by Rosen [16, 17] and Yor [23]. Then, the formulae were used

by them [18, 20, 23] to find the explicit forms of ά2 and <$3.

In this paper, we shall prove the following formula, which is an

extension of Yor [23] from r = l to general r > 1. It corresponds also

to Rosen [17], who used the potential kernel for the killed Brownian

motion instead of

THEOREM 1.1. Assume that 0 < at < bt < ai+1 < 6i+1, i = 1, , r. For

each x = (xu , xr,1) e i? 2 ( r"υ and xr e R2 the following equality holds al-

most surely.

(1.2) fr log|B(6r+1) - B(tr) - xr\ar(x, au , αr, dtr)
J ar

ί br

log|B(αr+1) — B(tr) — xr\ar{x, au , ar, dtr)

Jαr + 1 \Jαr |JB(ίr + 1) — B(tr) — Xrf

+ πar+ι((x, xr\ au , ar+u br+ι)l

in the above, the integrand for the (Ito's) stochastic integral will be proved

to be the L\dtr+1χdP) limit of certain approximation sequence.

Our formula will suggest an explicit form for άr, which is an exten-

sion of Yor [23, r = 2] and Rosen-Yor [20, r = 3] to general r. See § 5.

We explain our viewpoint on using white noise analysis to derive

(1.2). Kubo [11] established an Ito formula for generalized Brownian

functionals and indicated briefly to view the classical Tanaka's formula

as a case of his result [11, Remark 4.1]. Thus, we are motivated to derive

(1.2) from Kubo's formula. The crucial point is that Kubo's formula holds

in Hida's space (L2)~, while our (1.2) is an a.s. equality. Therefore, in

order to achieve our formula we must "realize" a Brownian functional

from generalized one to ordinary one. Our procedure in based on or-
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thogonal series expansions of generalized Brownian functionals. The
expansions are known to hold in Hida's space (L2)", and we carry out
precise computations to show that the expansions are in fact convergent
in L2 sense. In a previous work Kuo-Sheih [13], Yor's result (i.e. (1.2)
with r = 1) was reproved by using realization techniques. However, the
setting in [13, §4] is improper, because of the doubtful definition f(B(t, ω), ω)
given there.

The remaining part of this paper will be devided into four sections.
In § 2, we shall summarize briefly Hida's theory. In § 3, we shall prove
two realization results of generalized Brownian functionals. Then, we
shall prove a Tanaka type formula in § 4 and derive Theorem 1.1. In
the final § 5, we shall discuss how to apply (1.2) to obtain an explicit
form of the renormalized άr.

The present work was initiated while the author visited Nagoya
University in August, 1988. The hospitality of the Mathematical Depart-
ment and the inspiring discussions with Professor T. Hida are deeply
appreciated.

§ 2. Summary on generalized Brownian functionals

Let E c L\R) c £* be a GeΓfand triplet and μ be the standard
Gaussian measure on E*9 i.e. its characteristic functional is given by
C(ξ) = exp [-||f |Γ/2)], || || being the L\R) norm. Let Kn1 K%\ K(

n~
n) consist

respectively of the multiple Wiener integrals of symmetric functions in
Hubert space D(Rn), Sobolev space H(n+1)/2(Rn) and negative Sobolev space
H~^n+1)/2(Rn); see Hida [6]. By Wiener-Ito decomposition theorem, we have

Hida [5, 7, 9] introduced the following two spaces

and established the continuous inclusions (L2)+ <=—>(L2)̂ —>(L2)~. Mem-
bers in these three spaces are called respectively test, ordinary and gener-
alized Brownian functionals. A calculus has been developed on (L2)~
which is usually referred to white noise analysis or Hida's calculus. To
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visualize an element φe(L2)~, we consider its ^-transform (or say

functional):

= exp l- i i^ lL )«e( €), φ(-))) , ξeE;
V 2 /

((•, •)) being the pairing between (L2)+ and (L2)".

Note that 2?(£, ω) — «ω, l[Olf]>, <ω, l[-t,o]», ί > 0 and ω e £?*, is a planar

Brownian motion. For 0 < tx < t2 < < ίr and i^, , ur_x e ^*(i?2), the

space of tempered distributions on i?2, the formal product

(2.1) rUut(B(tt+ι) - Bit,))

can be defined as a member of (L2)~ its ^-transform is given by

i = l \j<i J-Π + 1

see Kubo [11], Kuo [12] and Kallianpur-Kuo [10]. Moreover, the ortho-

gonal series expansion of (2.1) in (L2)" is given by

(2.2) - o - Σ rfff- , L,.,.,
ί = l . . r - l ι *

-JΛ±J$L)\
2(ti + ί - tt) //(XUX

In the above, <wfc, Λ:2)> Ψfe? ^2)>u1(χ2) denotes the pairing between we

^*(i?2) and ψe6f(R2), and ffn(x), xeΛ, is the Hermite polynomial of

degree n.

For 0 < t, < t2 and ue 5f*(R2\ Kubo [11] established the following

formula in (L2)~:

(2.3) u(B(t2)) - uiBifd) = Γ2 df(Vu)(B(t))dt + 1 f'2 (J M

In the above df = (3fίfl), 3fί>2)) is the adjoint of β(ί)-differentiation operator

(3(ί,D» 3(ί,2))» s e e Kubo [11] and Hida [8].
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§ 3. Realization of generalized Brownian functionals

Assuming 0 < ax < bx < α2 < b2 < < br.x < ar < 6r, we shall prove

PROPOSITION 3.1. Let uu ί = 1, , r — 1, 6e positive tempered distri-

butions on R2 (or equivalently, they are positive tempered Radon measures

on R2). Then

(3.1) Γ r • Γ j f Ui(B(ti+ί) - J3(O)d*i dtr
J ar J ai i = l

is in (L2).

Remark. From the arguments in Kallianpur-Kuo [10], it is not diffi-

cult to see that

(j . . . $) 6 π [α.? ft.] _> π 1

 uAB(ti+1) - £(L)) e (L2)-
i = 1 i = 1

is continuous. Thus, (3.1) exists as a generalized Brownian functional.

Proposition 3.1 asserts that it can be "realized" as an ordinary one.

To prove Proposition 3.1, we write the summund in (2.2) as

r- l

Π φt(mi9 nt9 tίt ti+ι)y mi9 nt > 0 and tt e [ai9 6J .

LEMMA 3.1. ( i ) // (mu nt) Φ (m[, ra ) for some ί, then
r-l

E Π Φi(mι> nu ti, ti+ι)φί(m'i> n'i> ?ί> ί'ί+i) — 0 .
r-l

(ϋ) E \\ φι(mu nu tu ti+ι

< const.
JΓί m()! ( Σ - ί m) •' (Π ί-ί

where a A b = min (α, δ) αred α V 6 = max (α, 6).

Proo/. We prove (ii) first. Since w4 is positive, \{uu fg} < <Kf,/> |l£ll«

for all f,ge ^(iϊ 2 ) and / > 0. Thus
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The first term in the above product is less than a constant. This is

because ti+ί — tt > α i + 1 — bt > θ > 0 and the mapping ί e [Γ0) ^l] -• <w*( )»

exp( —I |2/4£)) is continuous, hence is bounded, on each [TOi ΓJ, 0 < To <

ϊ7! < oo. The second term is Oiim^^^^y^m^y1'12), according to Szego

[21, (8.91.10)]. Thus, the expectation in (ii) is not greater than a constant

multiple of

(3.2)

i )E(T\H ( *

where

Xt(ω) =

Since Xt and X are independent of Yt and 7 ,̂ the expectation in (3.2)

is equal to the product of (3.3) and (3.4) below, and (ii) will follow from

these two displays once they have been proved.

(3 3) E l H -

(3 4) Λ S ^ ( Λ W Λ )

We prove (3.3), and (3.4) is proved in the same way. Each Xi and X\ is

N(0,1) distributed. In case r = 2, we apply the ready formula in Hida

[7, p. 139] and the covariance

VΛ f̂ + 1 / \ ^i + 1 H W tt

In case r > 2, we appeal to the diagram formula listed in (for example)

Major [14, p. 51]. Note that, in our case, the summation in the diagram
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formula is reduced to only one term, namely the right-handed side of

(3.3). This is due to the covariances E(XtX^ and

and that all other Xt and X< have zero correlations. In the above, we

rely on the relation ti + 1, t'i+ι > ti9 t\.

The diagram formula also asserts the validity of (i), thus, the proof

of Lemma 3.1 is completed. •

Now, we prove Proposition 3.1. By (2.2), the series expansion of (3.1)

is

Let the integral in the above summation be denoted by ψ(mu nu , mr_u

Πr-i). By Lemma 3.1 (i), ψ(mί? nj's are orthogonal in (L2). By Lemma 3.1

(ii), the square of the (If) norm of ψirrij, n3) is not greater than a constant

multiple of

(3.5)

X π V<+1 A ^+ 1 ~ ι* v ^ d^ . dttdt[

(i) r = 2. That (3.5) is reduced to

(3.6)
tymn

ί feΛ^- t,V tj)m+n—
** Jtutί ((t2- O W - ί ί )) m + 7 l ) / 2 + 1

The integration domain of ίly ίί, ί2> 2̂ is split into four parts. On tx < t[

< ί2 < >̂ w e integrate in the order of tf

2, t[, t2y U and find that the result-

ant is < const. l(m + nf. On tx < t[ < f2 < ί2. we integrate in the order

of t[, tf

2) t2, U and find that the same dominating factor l/(m + ήf appears.

The other two parts are treated similarly. We conclude that (3.6) is

dominated by a constant multiple of

(m + rίf fymn 4(mn)7β
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Therefore, the series expansion of (3.7), for r = 2, converges in (L2), and
thus (3.1), for r = 2, is in (L2).

(ii) r > 2. The integration domain of tu t[, , ίr, ^ is split into 2r

parts. On tx < ^ < t2 < ^ < < r̂ < C w e integrate in the order of t'r,
t'r_u , t[ and in the meantime drop the terms involving (tt — £ _i)/(̂  — tt^),
the resultant < const. /(mr_! + nr^) (/r̂  + nj (Compare with (i); we
have no (mi + nj1 here). We treat all other parts similarly, and conclude
that (3.5) is dominated by a constant multiple of

(Σί-ί md! (Σί-ί ni)! Π £ί

Using mέ + nέ > 2^771^ and Stirling formula, we see that the above is
not greater than a constant multiple of

/ \\lzlmTi+ιnV+ι \ 1
V (Σϊ-ί^)1/2+Σw<(Σί-ίΛ*)1/2+Σlι< /(ΠΓ-ί^Λ ,7/6

Since the quantity in the parenthesis above is < 1, we have shown again
that the series expansion of (3.1) converges in (L2). This completes the
proof. •

Remark, The above proof depends on the off-diagonal assumption
at > ί^. In the diagonal case {̂  < t2 < < T}9 we even cannot assert
that (3.1) is in (L2)", since the limiting case limu, u(B(t) — B(s)) is in
general unknown. Thus, it seems challenging to "renormalize" (3.1) in
this case.

Let f(x) be a measurable function on R2, which is locally square-
integrable and is slowly increasing as |x|->oo. That log|x| is such a
function. Then, for 0 < s < ί,

Ef\B{t) - B{s)) = } f f\x) exp ( - f )dx < oo .
2π(t — s) JR* \ 2(t — s) /

PROPOSITION 3.2. Assume that ar< ^ < α2 < 62 , ut are given in

Proposition 3.1 and f(x) is the function mentioned above. Then, for each

te[ar+ubr+1],

(3.8) Γ Γf(B(t) - B(tr)) n

is in (L2).
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Proof, As in the proof of Proposition 3.1, the series expansion of

(3.8) is

(3.9)
Σ

(2π)r .^i]r

where ίr+1 = ί and φr(mr, nr, tr, tr+1) is the term corresponding to f(B(tr+1

— B(tr)). To estimate the squares of (L2) norms of the above summunds

and their sum, we note that

r + 1 — O m " w '

is the series expansion of f(B(tr+1) — B(tr)) in (L2). Thus,

(3 10) Y1 E fί ^ = ^ = ̂

ϊf 4κYE[f(B(t) - B(tr))f(B(t) - B(fr))]

JL (ί — 6 r) JΛ \ (t -ar)/ J

Therefore, the arguments in the proof of Proposition 3.1 show that (3.9)

converges in (L2). ' •

§ 4. A Tanaka type formula and the proof of Theorem 1.1

Let 0 < Oi < bx < a2 < b2 < < ar+1 < 6r+1 and uu - - , ur_x e S?*(R2)

be positive, we shall prove

THEOREM 4.1. Let f(x), x = (xl9 x2) e R2, be a measurable function such

that f(x) itself and its distributional derivatives df/dxu dfjdx2 are all locally

square-integrable and slowly increasing as \x\-> oo. Let Δf be the distri-

butional Liplacian of f. Assume also that Δf e y*(W) is positive. Then

the following equality holds in (L2).

(4.1) Γ Γ1 {f(B(br+1) - B(tr)) Π1 M,(B(ί4+1) -
J Or J α i I ί = l

- Γ Γ f f ( B ( a r + ι ) - B(tr)) U U ί ( B ( t i + 1 ) - W i ϊ λ d t t •••dtr
J Or J ax I ί = l J

= Σ | (I •ί j^-(B« r + ι) - B(O)

X
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+ i- . . . (J/)(β(ίr+1) - B(tr))
£ J dr + X J CL\ I

X U Uί(B(tr+ί) - Bit^dt, dtr+1.

/n the above, the first term on the right-handed side is an Ito's integral.

Proof. For each tu •• , ί r , fixed, we have the following Kubo's for-

mula in (L2)"

r+1) - B(tr))\\ Uί(B(ti+1) -

+1) - B(tr))U Uι(B(t{+i) - Bit,))}

The above equality can be proved by calculating the ^-transform of each

term, as Kubo did. Now, integrating in tu , tr+u we have the following

equality in (L2)~:

(4.2) Γ . . . Γ1 ίf(B(br+1) - B(tr)) rΠ ut(B(tt+1) - 5(0)}* ! dtr

- Γ Γ ί / ( B ( α r + 1 ) - β ( O ) W «i(B(«ι+.) - Bit^dt, ...dtτ
Jar J ai I ί = l J

= Γ + I Γ f3t*+ι(F/XB«r+1) - B(O)
J ctr + ι J a i I

X

1 fδr + i Γbi

Δ J ar + ι Jfti

r-1

x Π s
i = l

Propositions 3.1 and 3.2 assert respectively that the last term and the

left-handed side of (4.2) are in (L2). Therefore, the first term on the

right-handed side is also in (L2) and (4.2) becomes an a.s. eauality. By

Proposition 3.2,

*r+i e [αr+1, br+ί]

- f\ . . Γ ίJL(B(tr+1) - B(tr)) Π1

 M<(B(ίi+ι) - B(O)}d«i dtr

Jar Jax I 5χ ;. ί= l J

is an nonanticipating (L2) process. Thus, according to Kubo [11, Theorem



PLANAR BROWNIAN MOTION 11

2.1] or Hida [8, the concluding statement], the two first terms on the

right-handed sides of (4.1) and (4.2) must be equal a.s., and (4.1) has been

proved. Π

To derive Theorem 1.1, we need the following lemma.

LEMMA 4.2. The following equalities hold in (L2).

( i ) Γ Γ Uδxt(B(ti+1) - BitMU dtr
J ar J <xχ 2 = 1

= ar(x, au bu - , ar, br), x = (xu , xr^) e R2{r~x).

(ii) Γ Γf(B(t) - B(tr)) nδXi(B(tί+1) - B{tJ)dU --dtr
J dr J θχ i — 1

= Γf(B(t) - B(tr))ar(x, α,, 6,, , ar, dtr),

where te [ar+u br+ι] and f(y) is the function in Proposition 3.2.

Proof. By Propositions 3.1 and 3.2, the left-handed sides of (i) and

(ii) are in (L2). Set

α r(*, al9 , br) = Γ Γ1 Y\pXB(ti+ί) - B(tt) - x^dt, •. dtr,
J ar J αi 2=1

βr(x,au , br)

= Γ Γf(B(t) - B(tr)) Up£(B(ti+1) - B(ft) - xddU •• d t r ,
J ar J a\ i = l

where pε(y) is the standard planar N(0, ε) density function. On one hand,

by computing the ^-transforms we see that aε

r and β'r converge respec-

tively in (L2)~ to the left-handed sides of (i) and (ii). On the other hand,

by Rosen [17, Lemma 1 and p. 135] we see that aε

r converges in (L2) to

the right-handed side of (i) and β; converges pathwise to the right-handed

side of (ii). This proves the assertion. Π

We cannot derive (1.2) directly from Theorem 4.1, since (xu x2) —>

xJitf. + χί) is merely in L}oc(jf?
2) not in L2

loc(R2). However, we can prove

(1.2) as follows. Let fε(y) = (1/2 TΓ) log(|;y|2 + ε2)1/2, 0 < ε < 1 and yeR2.

For each x = (xu , xr+1) e ϋ 2 ( r " υ and xr e R2, by Theorem 4.1 and Lemma

4.2 the following equality holds in (L2).

(4.3) \r fe(B(br+1) - B(tr) - xr)ar{x, a,, , αr> dtr)

- [ rfΛ(B(ar+ι) - B(tr) - xr)ar(x, au , αr, dtr)
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= Γ + 1 ( f V / . X B ( < r + , ) - B(tr) - xr)ar(x, au •••,aτ, dtr)) dB(trtl)
J ar + i \J ar /

+ ~ ί (Δfε)(y - xr)ar+1((x, y),au , br+ι)dy,
Δ JyβRt

where the last term is due to the definition of ar+1 and the fact that Δfε

is a positive continuous function. Since

by Lemma 4.2 and (3.10) in the proof of Proposition 3.2 the left-handed

side of (4.3) converges in (L2) to that of (1.2) as ε I 0. Since {Δfε)(y) =

(ε2/π)(l/(|Λ;|2 + ε2), 0 < ε < 1, is an approximation to the identity on R2, by

Rosen [17, Lemma 1 and its proof], the last term of (4.3) converges in

(L2) to ar+ί((x, xr), au , 6r+1) as ε I 0. Therefore, the stochastic integral

term of (4.3) must also converge in (L2). By the isometry property of

stochastic integrals, the limit must be of the form

where φr(tr+uω) is the L 2 (dί r + 1 χdP) limit of

B(tr+1) - B(tr) -xr

(2π)(\B(tτ+ι) - B(tr) - xrf

since (VfXy) = yl(2π)(\yf f ε2). Note that l/flyf + e2) t l/|yΓ Thus, by

the monotone convergence, for a.e. tr+1

Jar

B(tr+U ω) - B(tτ, ω)-xr , . . d

(2π)\B(tr + 1, ω) - B(tr, ω) - xr\

= φr(tr+ί1 α>), which is of finite value for a.s. ω.

Hence, we have proved that the integrand of the stochastic integral in

(1.2) is well-defined and that (1.2) holds in (L2). •

§ 5. An explicit form of άr(x, T)

We have mentioned in § 1 that, in the diagonal case, we intend to

substract off certain "infinite part" from ar(x, T) so that the remainder

άr(x, T) will have a jointly continuous extension to all (x, T) e R2{r~ί)χR+.

In this section, we shall discuss how (1.2) suggests an explicit form of

such a "cut-off". We shall show that the explicit forms in Yor [23, r = 2]
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and Rosen-Yor [20, r — 3] can be extended to general r. Recall that

ά2(x, T) = a2(x, T)-— log — , x e R2 and x ψ 0.
π \x\

Renormalization of ar. For each r > 3, suppose that &2, , #r-i have

been constructed. Set

JV(x) = — log —, *:£jR2 and * =£ 0.
π \x\

Then, we can construct άr as follows.

(5.2) άr(xu , *,_„ Γ) = ar(xu , x r. l f Γ)
i

i)*r-lOCl, ••-,«, . ! , Γ )

- Σ N(xt)N(xJ)N{xk)&r_i(xι,...,xr_uT)

- N(Xi) • • • NiXr.JT;

in the above, xu •• ,Λ:r_1 indicates that the i-th one has been deleted,

etc.

Thus, in case r = 3, we have

(5.3) ά,(xu x2, T) = az{xu xl9 T) - 1 log - L - 52(x2, Γ)

- 1 log -Jv^2fe, Γ) - 4 ^ X

which is consistant with the one obtained by Rosen-Yor [20]. We show

in the below how to obtain α4 from ά2 and άs by using Theorem 1.1 (it

is in the same way to obtain #3 from #2). First, we may rewrite (1.2) as

follows. For each T > 0, each xu x2, x3 e R2 and xi Φ 0, with probability

one

(5.4) Γ log IB(T) - B(t) - xz\a,(xu x2, dt)
Jo

- Γlog|B(ί) - B{t) - xz\a,(xu x2, dt)
Jo

Jo Jo \B(u) — B(t) — x3f
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The proof of the above equality is parallel to that of (1.2), with the simple

observation that limu0(l/£) exp ( —α*/2Z) = 0 for all a Φ 0. Now, we write

άz(xu x2, dt) = cc%{xu x2, dt) — Nz(xu x2, dt), where N3 denotes the "infinite

part". Thus, we have, by (5.4),

(5.5) £ log I B(T) - B(t) - χ,| *,(*, x2, dt)

= πaSxu xΐt xt, T) - log-—-ά 3 (x u xt, T) - log-—-N % (x u x2, T)

\xs\ I * , I
- B(t) - x3\Nz(xu x2, dt)

Z V (* *» dt

|2

Since

and

N3(xu x2, dt) = — log -—-ά2(x2, dt)
| x |

+ — logΊ—~ά2(xudt)
π \x2\

+ — log — — log -T—r-
π \xΛ \Xo\

ά2 = a2- N2, N2(x, dt) = 1 log - i - Λ ,
π \x\

we see that the last term of (5.5) is equal to

l l o g - M Γ log\B(T) - B(t) - x3|̂ 2(x2, dt)
π \xt\ Uo

log|B(Γ) - Bit) -

_ r p B(u) - B(t) - x3 < X u dt).dB(u)

Jo Jo |B(ι*)-B(ί) -x3f

+ J _ log-A-log J_{fΊog|B(T) - B(t) - x3\dt

Jo Jo |B(«) - β ( ί ) - j c p
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i, *„ Γ) - log--1—tf2(x1? Γ))

+ -L log -A- log -1-W*,, ϊ7) - log - l -
TΓ2 1̂ 1 \x2\ I |x,|

by (5.4) with az and α4 being replaced by a2 and a3.

Substituting a3(x2, x3, T) = άs(x2, xs, T) + N3(x2, xZi T) etc. into the

above display, we see that the right-handed side of (5.5) is equal to

πa,(xu x2, x39 T) - log-—-ά3(x2, xi9 T) - log-—-άz(xu xz, T)
\xx\ \x2\

- log -^-az(xu x2i T) - 1 log - L . log -±-a2(xz, T)
\x-i\ π \Xι\ \Xt\

- 1 log J - log -\ά2(x2, T)-λ log J _ log J - d ^ , T)
π \xx\ \xz\ π \x2\ \xz\

- 1 log J - log J - log J L - T ,
TΓ2 1̂ 1 |x2| |x3|

which we shall denote by πά4(xu x2, xz, T). This is just the form άA which

we intend to find.

Now, we consider the left-handed side of (5.5). The following two

multiparameter functionals are well-defined for Γ > 0 , 0 < ε < l and

Φ^T, e, xu x* *,) = £ log (I B(T) - B(t) - x31
2 + εψ%(xu x2ί dt)

Φ2(Z ε, Xu * , xj = Γ Γ , Ώ,BΪU) P/Λ ( 0 ~ | 2

X W ^ i > ^ ΛJo Jo IJ3(w) — B(i) — x3f + ε2

According to Rosen [17], to show that the left-handed side of (5.5) is

jointly continuous in T and xu x2y xz it suffices to show that for any even

integer m

E\Φt(T, ε, xu x2, *,) - ΦW, ε', xί, x'2,

< CWiβ |(Γ, ε, xu x2, x.) - (Γ, ε', *ί, x^ xQ\m%

where a is some positive real number independent on m. However, since

the above display involves the higher moments of random variables, it

seems that we cannot establish it by merely using white noises analysis,
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although the latter does have helped us to prove (1.2).
Finally, we mention that the renormalizations of ar(x, T) have also

been investigated by Dynkin [3] and Rosen [19]. We do not know
whether these seemingly different renormalizations are in fact mutually
inducible.

Add in the proof. It has been found that the arguments for prov-
ing Proposition 3.1, especially Lemma 3.1, are not perfectly right. The
corrections together with some improvements will appear in "A W.N. C.
Viewpoint on Intersection Local Times" (Proceedings on Gaussian Random
Fields Conference, World Scientific 1991).
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