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ON GENERALIZED WHITTAKER FUNCTIONS ON

SIEGEL'S UPPER HALF SPACE OF DEGREE 2

S. NIWA

Dedicated to Professor Tomio Kubota on his sixtieth birthday

In [5], H. Maass showed that the dimension of a space of generalized
Whittaker functions satisfying certain system of differential equations on
SiegeΓs upper half space H2 of degree 2 is three. First of all, we shall
investigate the structure of a space of generalized Whittaker functions
which are eigen functions for the algebra of invariant differential operators
on H2. The theory of generalized Whittaker functions is discussed in
Yamashita [12], [13], [14], [15] with full generality. But, we will get an
outlook of the space of generalized Whittaker functions by using elemen-
tary calculus instead of representation theory of Lie groups. Generalized
Whittaker functions, naturally appear in the theory of indefinite theta
function, and so we shall next show commutation relations between the
invariant differential operators on H2 and those on the product Hx X Hλ

of two copies of the upper half plane Hx operated on a theta function.
The relations are analogies of commutation relations for Hecke operators
in [1], [16], [17] and are proved in some cases with the Laplacian in [8],
[2]. We essentially use the result in Nakajima [10] where the generators
of the center of the universal enveloping algebra of fψ(2, R) are explicitly
given. By commutation relations we can construct an automorphic form
F on H2 corresponding to an L-function with Grόssencharacter of a certain
biquadratic field. Generalized Whittaker functions investigated in the
present paper appear in the Fourier expansion of F with respect to trans-
lations in H2 and so we can define the "constant part" of the Fourier
coefficient as the ratio of the Fourier coefficient to a generalized Whit-
taker function. The constant part of a certain Fourier coefficient of an
automorphic form analogous to F is given in 2. (See in particular (2.10).)
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§1.

We denote, as usual, by Z, Q, R, and C the ring of rational integers,
the rational number field, the real number field, and the complex number
field. We denote the algebra of invariant differential operators on H2 by
& and the center of the universal enveloping algebra of §p(2, R) by #.
S. Nakajima calculated generators of S, ^ in [9], [10]. The generators
of @ are

Σ + 3A - (1/2)3,3,)

and

- (l/4)32

2)

^ t f A - (l/4)3»

+ (1/16)0(9,5, + 3,33 - (l/2)3232)

where we put

i < 3),

5, = Sr- =
3z*

and d = ^yj — yj for P 1 ^2) e H2. For two complex numbers d19 d2, we

consider the space iΓ formed by functions f(Z) = g(Y)e

2πίi^ of Z = X +
iYeH2, satisfying ΔJ = dj and A2f = d2f with some functions # of Y,
which we call generalized Whittaker functions. If g(Y)e2πίtτX belongs to
iΓ, g has to satisfy

(1.1) ^ (

= dtg
^2 3j1 dy\

and



(1.2)
256
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dyl

16
dyj&y, dyldyl

16y2 1 dy,dy\

64π2;y

dyl dyt dyl

' dyJyl dytdy3

93

9y, dyl dyldy3

with d = yty3 — ̂ . Put

(1.3) y

Then /ι is periodic with respect to 0, so that h has a Fourier expansion

(1.4) h(tu t2, θ) = Σ B ^ , ί2)β2witf

where Sn(ij, ί2) is a solution of differential equations

(1.5) - 4"1(ί1 -

- <'• -

and

(1.6)

, - t2)
2π2 + 2n%t2

5t[ - 18^,

- (ί, - ί2)(4(2ί, -

- (ί, -

8ί,ί2 -

3ί, -

- It,
dtl

2(4n2

dt\dt\
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Since the differential equations do not change when rc —> —n, we assume

n > 0 hereafter. Now we introduce variables x = tt — t2, y = tt + t2 and

put

(1.7) Bn(tut2) = Cn(x,y)

where y > 0, — y < x < y. Then the differential equations for Bn yield

the following condition for Cn:

(1.8.1) - -±-Un2x\x2 + y2) + (y2 - x2)n2 - x\x f
8x2 \

Unx\x + y) + (y x)n x\x + f)f
8x2 \ dy2

dxdy

(1.8.2) W~χ2)-((rt + 16τrV)(;y2 - x2) + 2 ( 4 A 2 / - 4π2x4 - 2y2 + 7x2)n2

2564 \

+ x)
dydx2 dxdy df )

2 +
By4 dx2dy2 dx

- 2x\y2 +
dxdy2 dx*

x2(2n2y2 — 2n2x2 + 8π 2 /x 2 — 8π2x* + y2 — 3x2)-
dx2

x(2n2y2 - 6n2x2 - Sπ2x2y2 - 8πV + y2 - ^
dx

2x\n2y2 - n2x2 - 4π 2 x 2 / + 4π2x4 + x2)^—
dy2

- 4x2y(n2 + 4π2x2)^-)Cn = d2Cn.
dy /

Put Cn(x, 3/) = (x2 — / ) Σ]Γ=o arc(y)xk where αfc(y) = 0 if k < m with an in-

teger m > 0 such that αm(;y) 9̂  0. Then the equation (1.8.1) implies

(1.9.1) 1 ( ( & 2 + 2k + n2 - 4 π 2 / - 2)αfc + ((ft + 2)2 - n2)y2ak+2 - 4π2αfc_28

especially (m2 — n2)y2am = 0, ((m + I)2 — 7i2):y2αm+1 = 0 which results in

m = n, α w + 1 = 0 and therefore ak — 0 unless /J = m mod 2. The equation

(1.8.2) implies
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(1.9.2) - -±r(2(k + n + 2)(k -n
ΔDΌ

- {¥ - 2krn2 + 16k2π2y2 - 6k2 + 16kπ2y2

- 16k + n4 - 16n2π2/ - 10n2 + 16π4/ + 4(k2/ + 12)αt

- 2(2fe2 + 2Λ - 2n2 - 4π2y2 - l)y2a'k'

+ 2(k2 + 2k-n2 +. 4π2/ + Ί)(k + n + 2){k - n + 2)f

+ 8(k2 -2k- rΐ + 4π2y2 - 3)π2ak_2

+ 2(k2 -2k- n2 - 8π2f + 7)α'/_2

- 4(jfe2 - Sk - rΐ - 4π2/ - 8)ya'k
- (k + n + 4)(& + n+ 2)(k - n + 4)(k - n + 2)/α f t+4

for all integers k. Since we especially have

(1.10) an,t = λ
f 1)/

1

S(n + 2)2
- 4(n + S)ya'n+2 - / < + 2 - < '

and

(1.11) 4(64d2 + 4n2 - 4nπ2/ + 4n - 4πY - lOπ2/ - 3)αn

+ 8/(2n + 4jty + 7Xn + l)αB + 2 + 16(2n + π 2 / + 2)yan

- 2{2n - 4πV - Vf< - 32(n + 2)(n + l)oB + 4y

+ 8y3(n + l)(3<+ 2 + 2<+ 2) - /α<« - 4j3α<3) = 0,

we obtain from (1.9.1), (1.9.2) an ordinary differential equation

(1.12) (8(n2 + n + l)rf, - 16d\ + 64d2 - n4 - 2nz + n2 + 2n + 8πY)an

+ 4(4(τz + l)d, - n3 - 3«2 - 2n + 4π23'2)3'<

+ 2(4d, - 3n2 - 9ra + 2π2/ - 6)yK

- 4(/z + 2)yα<3> - /α<« = 0,

for αn. It is more convenient to introduce parameters λλ, λ2 defined by

(i.i3) d, = λl + λl ~ 2, d2 == ^' ~ ^;)2 - A ± A + A
8 256 32 64

to describe the solutions of (1.12). With these λx, λ2 (1.12) becomes
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(1.14) - (λJz - n(n + l)λ - n(n + l)λ2 + n4 + 2n3 + n2 -

+ λ2)(n + 1) - 2n3 - 6n2 - 6n + 8π2f - 2)ya'n
λι - 6n2 -

For v e C, meZ, denote the associated Legendre function of the first kind

by P™{z) and that of the second kind by QT(z) as usual. Then we have

(1.15) P?{z) = Γ ( μ + m + ϊ > {" (z + (z2 - I)1'2 cos ty cos mtdt,
πΓ(v + 1 ) J»

(~1} 2-Γ(v + 1) {Z ~l) i -x (2 - fr—« d ί

for 2? not on the real axis between 1 and — oo, assuming wμ = eμlosw,

log w = log |u;| + £ arg w, —TΓ < arg w < π for w, μ e C. We put

(1.16) PΓ(*) = lim β

3^^/2P^(χ + £y) = lim em«ί/2P?(x - /y),

Q?(x) = i . lim (e-m"/ 2 Q™(x + iy) - em"il2Qf(x - iy))
2 v^+o

for — 1 < x < 1. PΓ(z) and QΓ(z) are independent solutions of Legendre's

differential equation

(1.17) -£-((1 -
dz\

dzl 1 — z2

Put

(1.18) cn = - % ( 0 ) = VT2-1 sin ( |

C21 . -fzQlM = W T cos( f ,

c22 - | p . (0) = 2 sin ( | , ) Γ ( | + 1

Then cn Φ 0, c22 gt 0 for —1< 9ΐe v2 < 0. Put

(1.19) ΛJ,(a) = cnP%(z) +

SIS.Z) = cuPllz) +

Then we obtain
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PROPOSITION 1. Put Vχ = - 1 + V l +

assume that — 1 < diepί < 0, — 1 < 3tey2 < 0 and that λl9 λ2 are not integers.

Then there exist polynomials hu h2 in y~ι of degree n — 1, n such that

An(y) =

3»(y) = J" (j~ SS 1fe)P^ 2)(-

are linearly independent solutions of the equation (1.14). Further assume

that λu λ2 are real. Then there exists a polynomial hz in y'1 of degree n

such that together with above three functions

Dn(y) =

— n + 1)

X fe2 - ΐ)n/2e~2πz^vdz

generates all the solutions of the equation (1.14).

Note that polynomials hί9 Λ2, Λ3 can be given explicitly.

Proof. Put

[XxXi — n(n + 1)-*! — n(n + 1)Λ2 + n* + 2n3 ^

- 2 ) y

(1.20) L = - O Λ - n(τz + l)Ai - n(n + ϊ)λ2 + n4 + 2n3 + n2 - 8π2y2)

d

3 y
/̂2

— 6n2 — 18n + 4π2y2 — 14)/——

(1.21) Lf =
z\ —

z zz\-\

(1.22) L' = -{LIU - n(n + 1)LJ - n(n + l)Lj + re4 + 2n3 + tΐ - 8π2f)

+ 2((L? + Ώξ)(n + 1) - 2n3 - 6n2 - 6n + 8πV - 2)y-A-
dy
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(L? + L? - 6n2 - 18τι + 4π2y2 - 14)/
df

4{n + 2)yfΓ?fΓ
df dy4

Then we have

(1.23) L Γ ( Γ Riι{z1)Pl{z,)(-2πyzϊ)-%zl - lY'^-^^

= £ J" (-LlEί^LtPKz,) + n(n

- (n4 + 2ra3 + n2 -

n3 - 6n2 - 6n

yzJPΓ^^X-θra2 - 18n

X
3 /

= Γ ίM

Jo Ji

dz1

by partial integration. We note that all integrals should be considered
as limits of integrals of finite interval. Since we easily see that

(1.24) L'((-2πyz2y
n(zl - i)»/V2*2l22*0 = 0,

Ly~m = J L f o _ (n - mf - (n - m))(λ2 - (n - πίf - (n - m))ym

64

π ( 7 i l ) ( M 2 ) r ,
l b

there exists a polynomial ^ in y1 of degree τι such that An is a solution
of (1, 14). In the same way we can show existence of h2, h3f Λ4 such
that Bn, Cn, Dn are solutions of (1.14). It is easy to see that yAn9 yBn

are bounded when y~> cx> and that Cn and Dn are rapidly decreasing
and increasing respectively when y->oo. Since we easily see that Ani

Bn have different asymptotic expansions by considering
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(1.25) ίVΓiϊ^O^feX

fβ /Γ°°
J o \J l vχ

for small e, functions An9 Bn> Cn, Dn are linearly independent.

By the recurrence relation (1.9.1) and the partial integration using

(1.17), we especially obtain

PROPOSITION 2. The functions of x, y

Cn(χ, y) = {χι - f) J I

X Jn(2πί(zl - l)m(z\ - l)ί/2x)e-2πz^dz1dz2

are solutions of the equations (1.8.1), (1.8.2) where Jn denotes the Bessel

function of the first kind.

THEOKEM 1. Put Vι = - l + Vl + 4Λ ^ = - 1 + Vl +

assume that — 1 < 9ΐe vλ < 0, — 1 < 9ΐe v2 < 0 a n d Z/iaί /ll5 i 2 6 R are not

integers.

Let f(X+ iY) = g(Y)e

2πitτX be a generalized Whίttaker functions i.e.,

f(X+ iY) satisfies ΔJ— d^f, J2f = d2f with du d2 in (1.13). Assume that

g(Y) is a real analytic function of tλ — t2 with

Y = (yi y*\ = (^ °\Γcos θ - s i n 0]

^2 yj V0 tj Isinθ cos0J

and that for all positive integers m, a, b, c, the convergence

(tr Y)m-? g(Y) -> 0

holds uniformly on compact sets of yx — yz and y2 when tr Y -> 0.

Then g(Y) is expanded as follows:

g(Y)= Σ KCJtu + t* k - hYni0

nez

where Cn(x> y) is the function defined in Proposition 2 and bn e C.

Proof Put x = t, - t2, y = tx + ί2. Th6n

(1.26)
dxn -r

Jo
2

sin 2Θ 3

~~2Γ~dy2
= 0,2/2 =

g(Y)e-UnSdθ
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holds. Since the left hand side of (1.26) is a solution of (1.14), it should

be one of the functions in Proposition 1. The right hand side of (1.26)

decreases rapidly by the assumption and therefore it equals to Cn(y) in

Proposition 1.

§2.

Here we introduce a certain theta function and show the commuta-

tion relations of invariant differential operators and explain their connec-

tion with the generalized Whittaker functions. We deal with L-function

of biquadratic fields with Grδssencharacter at the end.

For (&, g2) e SL2(R) x SL2(R), put

(2.1)

ί ° i
- 1 0

1 0
0 1

gr1

gί1

a2E

b2E

c,E

d,E

[0 - 1
1 0

1 0
0 1

with E =(Q A g2 = rf2 A Then p(gu g2) is an element in the ortho-

gonal group for / π ,A For an odd squarefree integer iV, we define a

lattice & by

(2.2) <*£ I Λ mi5 e Z for (i, j) Φ (1, 2), Nmn e Z

For Z = X + iYeH2 and a Dirichlet character 1 modulo JV, put

(2.3) ΘX(Z, (gu g2)) = I y I Σ UNmί2)

X exp (πίNtr(χ((° J)[p(ft> gjm]ff)

where S[Γ] means 'ΓST7. The function in (2.3) is usually called theta

function. Put gx+iy = (^ ^ V ^ y%λ for x + i y e H j , the upper half

plane, and put

(2.4) θ(Z,zuz2) = Θx(ZΛgZl,gJ).

Then using Nakajima [10] where the generators of the center # of the
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universal enveloping algebra of §p (2, R) are given, we have

THEOREM 2.υ For zx = xx + ίyu z2 = xz + iy2 e Hu

256

32 \ \ 3xj 9yξ / \ dx\ dy\ JI 64

Note that J,, J 2 defined in § 1 are differential operators with respect

to Z not to zu 2S.

Proof. Put V = Λf2jί(R) and define the Weil representation r of

G = Sp(2, R) on y ( F x V) by

for feS?(V X V) where Xu X2 e V and d n 12J = dxndxί2dx2ίdx22. The
\X21 ^22/

representation r of G derives the representation f of <g\ Let ^ , Λ2 be

generators of ^ in [10]. Then we can express r(A)> KA) by differential

a a
dxn

for

acts on ^ ( V x V) by

/> derives the representation β of the direct product of two copies of the cen-

ter of the universal enveloping algebra c of §1 (2, R) which is generated by

the Casimir operator λ. δ(λ, 1), 3(1, λ) also can be expressed by
dXu

A computer machine is used to prove this theorem.
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Comparing these expressions for r(A), KΛ), p(h 1), ^(1, Λ) by a computer
machine, we obtain desired results.

Let φu φ2 be Maass wave cusp forms with the character X satisfying

P u t d°z =

y~2dxdy for z = x + ίy, and define

(2.6) FΨ1,Ψ2(Z) = f ί Θ(Z, z u z2)ψl(
J Γ\Hχ J Γ\Hi

with Γ = Γ0(N). Then we have

(2.7) AFΨ1,Ψ2(Z) = d,F^ΨlZ\ AFΨ1,Ψ2(Z) = d2Fψuψ2(Z),

with du d2 defined by the equalities (1.13) for λl9 λ29 and

(2.8) Fψl,φ2(σZ) = X(d)FψlJZ)

holds for a — eΓ2 where
*

*

*

*
Hi

a
c d

^21, 031, 032, 041, 042 € i V Z , ^ .

Nan e Z, other α ί ; e Z

Γ — J n — 021 022 023 024
^ ~ SO" W 032 033 034,'

[ \α41 α42 α43 α44y

There exists a lattice SΓ in | ί ^ τ | α , 6 , c e Q containing

that Fψl<n(Z) is expanded as follows:

(2.9) Fφuψ2(Z) --

Hence

Λ such

is a generalized Whittaker function. A direct calculation shows that

is equal to

(2.10)
aj, )φJ
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up to a constant multiple, where U, = α^Z + (cjN + V —N)Z runs over

the full set of representatives of the ideal class group of Q(V — N) with

class number h and Cn(tu t2) is same as defined in Proposition 2.

Note that the corresponding L-function (the spinor L-function) of

Fφi>ψ2(Z) is the product L(s, ψι)L(s, φ2) of L-functions of φx and φ2. Let

Ki = Q(Vdt) be a real quadratic field with discriminant dt for i = 1, 2, 3.

Let <23 = d^a and assume the class number of K = if3 is one. Let o be

the ring of integers in if and E+ the group of all totally positive units

in o. Put

(2.11) ft(«,fj= Σ
μ/ +

μΦO

, f J = Σ £m(/«)ψ(^1 / 2^4 m«(2π | JV*,^ |y) cos (2πxNκ/Qμ)
μ β o/JS +

μΦO

where fTO(^) = \μlμf\im'9 ιc = 2π/log ε, ψ(μ) = ( x—V ε the fundamental
\ Nκ/Qμ )

unit in K, Kimκ the modified Bessel function. Then gx is a Maass wave

form on ΓJidxd^ with character (- J - Λ ) and g2 a Maass wave form on

ΓQ(dld2) with character ί_L-lj. Though in this case N = d\d2 is not

squarefree, we can define Θ, θ and Fψliψ2 for ψx = ̂ , ^2 = g2 in the same

way as above. In this case L-function corresponding to Fφitn is

Σξ(NF/ka)NF/Qa-s

where α runs over all integral ideals in F = Q(\fdl9 \/d2). (2.10) may be

a little more complicated in this case.

Added in proof. The author would like to express his hearty thanks

to Prof. T. Oda and Mr. A. Hori who corrected mistaks of sign in the

relation between vu v2 and λu λ2.
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