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ON THE TOPOLOGY OF FULL NON-DEGENERATE

COMPLETE INTERSECTION VARIETY

MUTSUO OKA

§ 1. Introduction

Let /^(u), , hk(\i) be Laurent polynomials of m-variables and let

Z* = {u e C*m; Λx(u) = . . = hk(n) = 0}

be a non-degenerate complete intersection variety. Such an intersection

variety appears as an exceptional divisor of a resolution of non-degenerate

complete intersection varieties with an isolated singularity at the origin

(Ok4]). We say that Z* is full if dim(J(Aβ)) = m for any a = 1, , *.

Let / b e a subset of {1, , m}. We say that Z* is I-full if (i) for each

a = 1, •••,&, ha(\i) is a polynomial in the variables {ut; ie 1} (fixing other

variables) and (ii) for any J 3 Ic, the polynomials {hϊ(\ij); a = 1, , k)

are not constantly zero and the variety {uJ e C**7; h{(\ij) = = h((\ij) = 0}

is full in the above sense where hi is the restriction of ha to the coor-

dinate subspace CJ — {u e Cm ut = 0 if ieJ} and / c is the complement

of I in {1, , m). Thus any full non-degenerate complete intersection

variety is 0-full. Assume that Z* is I-full and let

Z = {u e C7 X C*/c; ^(u) = . . . = hk(u) = 0}.

Here we identify C1 X C*/c with the subspace of Cm by C7 X C*/c =

{zeCm; zt Φ 0, ie/ c } . In the case that J = {1, , m}, the /-fullness

condition implies that each ha has a non-zero constant term and each

ha(ύ) is a convenient polynomial. Here the polynomial ha is called con-

venient if and only if h™ is not constantly zero for any 1 < i <̂  m. In

particular, 0 & Z in this case. The purpose of this paper is to study the

topology of a full non-degenerate complete intersection variety. We will

prove
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MAIN THEOREM (1.1). Let Z be a I-full non-degenerate complete inter-

section variety and let t\ Z->CZ X C*/c be the inclusion map. Then c is

an (m — ^-equivalence i.e., the homomorphism *#: π^Z) -• π^C1 X C*7C) is

an isomorphism for ί < m — k.

In the case of m — k > 1, the above theorem says that the funda-

mental group πx(Z) is a free abelian group of rank m — \I\ and the

higher homotopy groups πs(Z) vanish for 1 < j < m — k. For the proof

we use an induction on k. An essential step is to show that the mapping

hk: Zfc_! -» C has no critical points at infinity where Zk^ = {u e C7 X C*/β;

hλ{\x) — = Λfc_i(u) = 0} (Lemma (3.2), § 3). To see this, we use a toric

compactification X of C7 X C*/c and we consider the family of compact

varieties {h^\t); teC} in X. This is a new viewpoint comparing with

those in [Bl] and [Ok2]. By the Whitehead theorem ([S]), we have the

corollary:

COROLLARY (1.1.1). v Ht(Z; Z) -> ίft(C7 X C*/c; Z) ^ Z ^ is an iso-

morphism for ί < m — k and a surjectίon for i — m — k.

The Euler characteristic X(Z) can be computed by a result of Kho-

vanskii (Kh2]). Therefore the cohomology group of Z can be completely

computed by Corollary (1.1.1) and the result of Khovanskii as Z has a

homotopy type of CW-complex of dimension m — k. Taking I = 0, or

{1, , m}, we have the following corollaries:

COROLLARY (1.1.2). Let Z* be a full non-degenerate complete intersec-

tion variety and let t: Z* -+ C*m be the inclusion map. Then t is an

(m — k)-equίvalence and Z* has a homotopy type of CW-complex of dimen-

sion m — k.

The above assertion has been essentially proved in [Ok2] for k — 1.

COROLLARY (1.1.3) Assume that Z is a {1, , m}-full non-degenerate

complete intersection variety. Then Z is (m — k — ϊ)-connected and thus

Z is homotopίc to a bouquet of spheres of dimension (m — k).

Note that hλ(\x), , h(u) are convenient polynomials with non-zero

constant terms if Z is a {1, , m}-full non-degenerate complete intersec-

tion variety. The topology of affine hypersurfaces (the case of k = 1)

have been studied by many people. See for instance [M], [V], [K], [Bl],

[Okl], [Ok2] and [B2].
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Let Z* be a full non-degenerate complete intersection variety and

let Y be a smooth compactification in a suitable toric variety X. (See § 2),

There are many beautiful works on the (algebraic) geometry of X and Y.

See [De], [Da], [E], [Da-Kh], [Khl], [Kh2], [K-K-M-S], [Odl] and [Od2].

Their works are done mainly from the viewpoint of algebraic geometry.

Our essential tool is a Morse theory in a toric variety. As an applica-

tion, we will prove that the fundamental group of Y is an abelian group

which is generated by at most k elements (Theorem (4.2)). This is a

generalization of a result in [Ok3] and [Ok4] for the case k = 1.

§ 2. Toric compactification

This paper is a continuation of the previous paper [Ok4]. Unless

otherwise stated, we use the same notations. Let Z* = { u e C * w ; Λj(u)

= . = Λfc(u) = 0} be as in § 1. Let P be a covector. It defines a linear

function on the respective Newton diagrams A(ht). Z* is called a non-

degenerate complete intersection variety if for any covector P, the variety

Z*(P) = {u e C*m; hίP(u) = . . . = = hkP(u) = 0} is a reduced smooth complete

intersection variety (Khl], [Ok4]). Note that Z* is itself a smooth com-

plete intersection variety as we can easily see it by taking P = 0. We

recall the construction of a smooth toric compactification of Z* as in [Khl]

or [Ok4]. Let N be the space of covectors. Let P, QeN. We define an

equivalence relation by P ~ Q if and only if J(P; ht) = Δ{Q; ht) for ί =

1, , k. Here A(P; ht) is the face of J(/O where the covector P takes

its minimal value which we denote by d(P; ht). This gives a polyhedral

cone subdivision of N which we call the dual Newton diagram of Z* and

we denote it by Γ*(hl9 , hk). Let Σ* be a unimodular simplicial sub-

division of Γ*(hί9 -'',hk) and let X be the corresponding toric variety.

Then the closure Z* of Z* in X is a smooth variety. Let us denote this

compactification by Y=Z*. The irreducible divisors contained in X —

C*m is in a bijective correspondence with the vertices P e Vertex (Σ*).

The corresponding divisor is denoted by β(P). We denote the divisor

E(P) Π Y of Y by E(P). The irreducible components of Y - Z* are divi-

sors of Y and they correspond bijectively to the vertices P e Vertex (Σ*)

which satisfy the (A0)-condition:

(Ao) dim ( 2 Δ(P\ hj) >\J\ for any non-empty J c { l , . ,*}.
aGJ

This condition is a necessary and sufficient condition for E(P) ψ 0 ([Ok4]).
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Assume that Z is /-full. We may assume and we assume that I = {1, , s}

for bervity's sake. Then the s-dimensional simplicial cone, say τ7, with
i

vertices Ru , Rs is compatible with Γ*(hu , hk) where Rt = '(0, ΐ ,

• , 0). This results from the assumption that h\c is non-trivial. (In fact,

let P = ΣiUi rtRi e N with rl9 , rs > 0 and P Φ 0. Then d(P; h{) = 0

and J(P; Λf) = J(Λf ).) Thus we may assume that r7 is a simplicial cone

of Σ*. For this, we apply the subdivision method in § 3 of [Ok3]. X is

covered by the union of the coordinate space C™ where a moves in the

m-dimensional simplicial cones of Σ*. Let σ = (Pl9 , Pm) be an m-

dimensional simplicial cone. As we did in [Ok3], we use the notation

σ = (Pu , Pm) in two ways. First Pl9 , P m are primitive integral

vectors expressed as column vectors Pt = ^p^, ,p w ί ), i = 1, , m. As

a cone in iV, σ = {ΣΓ=i ̂ ^ί e Rn; ί1? , tm > 0}. As a matrix, σ denote

the matrix (p^). The isomorphism πσ: C*m —> C*m is defined by ^ff(^ff) =

(ΠjΓ-iy?^ ' ' '» Π ^ i ^ f ) - Remember that in the coordinate space C^,

y Π CΓ is defined by πJW) = { A e C?; Λlff(yσ) = . . . = Λ ^ ( ^ ) = 0} where

haσ(yσ) is defined by the equality ha(πσ(yσ)) = haσ(yσ) Π ^ T ' ^ Here

we use the same notation as in [Ok3], [Ok4]. The closure of {yσi = 0} in

X is the divisor 2{P) by definition and the closure of Y Π Cf Π {yσi = 0}

is a smooth divisor (if not empty) of Y and this is nothing but the divisor

E(Pi) in the above correspondence. By the assumption on 21*, we can

find a simplex ξ = (Qu , Qm) e Σ* such that (^ = Rt for i = 1, , s.

That is, τι is a face of ξ. Then as a matrix, £ can be written as

A

B

where Is is the unit s X s matrix. As ξ is a unimodular matrix, B is

also a unimodular matrix of size m — s. Thus 7r€ gives a holomorphic
diffeomorphism of Cj X Cf(m-S) = {^ ^.+i 3 ^ =£ 0} with Cs X C*(m"s)

and therefore Z can be identified with Y D (C| X Cf ί m" s )). Thus y can be

considered as a smooth compactification of Z. Note that Z = Z* UUi E(Rt)

— (JQΦRI,...,RSE(Q) under this identification.

PROPOSITION (2.1). Let Z be α 1-full non-degenerαte complete intersec-

tion variety. Then Z is non-singular.

Proof. This results immediately from the smoothness of Y and the

inclusion property: Z d Y.
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§ 3. Proof of the Main Theorem

In this section, we prove Main Theorem (1.1) stated in § 1 by the

induction on k. The case k = 0 is obvious. Thus we assume that k > 1

and / = {1, , s] (0 < s < m), for brevity's sake. Let a be a positive

integer and let Φa: Cs X C* ( m" s ) -> Cs X C* ( w" s ) be the map which is defined

by Φα(u) = (uu , us, ua

s+u , ua

m). Φa gives an α(m"s)-fold covering map.

We first prove the following lifting principle ([Ok2]).

LEMMA (3.1). Let Z ( α ) = Φ~a\Z) and let ca: Z ( α ) ->CS X C* ( m" s ) be the

inclusion map. Then c: Z-+Cs X C*(m"° is a (m — k)-equίvalence if (and

only if) ca is a (m — k)-equivalence.

Proof We assume first that m — k > 2. We consider the following

commutative diagrams of the fundamental groups where the horizontal

sequences are exact.

0 > πι(zω) -^> nx(Z) ~—>G >0

Here G is a finite group which is isomorphic to (Z/αZ)m~s. By the as-

sumption, ca% is an isomorphism. Therefore by Five Lemma, r# is an

isomorphism. As ^(Z ( a ) ) = πt(Z) for i > 1, we have that τrέ(Z) = 0 for

i = 2, , m — k — 1. This proves the assertion in the case of m — k > 2.

Assume that m — k = 1. We have to show that Z is connected. But

this is obvious from the assumption that Z ( α ) is connected. This completes

the proof.

Note that Z ( α ) is also a /-full non-degenerate complete intersection

variety if Z is a /-full non-degenerate complete intersection variety. Thus

to prove Main theorem, we may replace Z by a suitable Z ( α ) if necessary

and we may assume that Δ(h{e) contains an interior integral point Q =

(0, , 0, qs+u , qm) if s Φ m (ξ=$ I Φ {1, , m}). In this case, multiply-

ing the monomial u~Q to hk, we may assume (and we assume) that

(B) The origin 0 is an interior point of Δ{h{c) if I Φ {1, , m}.

We consider the variety Zfc_, = { u e C s X C* ( w-S ); h^ύ) = . = Λ^^u)

= 0}. We may also assume that Zk_x is an /-full nondegenerate complete

intersection variety, by moving the coefficients of hl9 , hk_ι slightly if

necessary. This does not change the diffeomorphism class of Z In fact,
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they are isotopic in Cs X C*(m~s). (The proof of this assertion is parallel

to that of Lemma (3.2) below.) We consider the holomorphic function

h = hk\Zk-ί: Zk_1-> C. Let C(h) be the critical points of h and let Σ(h)

be the set of the critical values of h. The following is a generalization

of Lemma (5.9) of [Ok2].

LEMMA (3.2). ( i ) C(h) and Σ(h) are finite sets.

(ii) h: Zfc_i - h~ι{Σ{h)) -» C - Σ(h) is a locally trivial fibration. The

fiber is diffeomorphίc to Z.

(iii) h: Zk_x -> C has no critical point at the infinity.

Proof. First we fix a compactification X of Cs X C*(m~s) as in §2.

Let Xt = h~ι{t) and let Xt be the closure of Xt in X and let dXt == Xt — Xt.

Note that Z = Xo. We first prove that dXt = dX0 and thus it has no

singularity at infinity.

ASSERTION (3.2,1). Let P be a covector. Assume that {J(P;/^); i =

1, , k} satisfies (AQ) condition and that 0 e Δ(P; hk). Then P e Cone (Rl9

Proof of Assertion (3.2.1). Suppose that P e Vertex (I7*) be a vertex

such that {Δ(P; h^; ί = 1, ••-,&} satisfies (40) condition and assume that

Oe Δ(P\ hk). Assume first that / Φ {1, , m}. Then the assumption (B)

implies that Δ(hIC) c J(P; Λfc). On the other hand, by the J-fullness con-

dition we have that dim(J(/λf)) = m — s. The inclusion Δ{h[c) c Δ(P; hk)

is possible only if the 7c-component of P is zero. Therefore we can write

P a s P = ι(pu - - ,ps,0, , 0). Now we assertp t > 0 for any ί — 1, , 5.

In fact, assume that p ί o < 0 for some z0 e /. Let J = {ί e I; Pi < 0} U Ic

and we consider h{. By the /-fullness condition, we must have that

d(P; hk) < 0 and in particular Δ(P; hk) Π Δ(h{c) = 0 which is a contradic-

tion. Thus we have proved that pt > 0 (i = 1, , s). In other word,

we have P e τ j == ConeCR^ , Rs). This completes the proof.

Suppose that P e Vertex (21*) be a vertex such that {Δ(P; hτ)\ i = 1,

• . ., £} satisfies CA0) condition. Assume that 0 e Δ(P; hk). By the assump-

tion on the subdivision Σ*, r7 is a simplicial cone in Σ*. This implies

that P = Ri for some 1 < i < s. Thus if P φ Ru - , Rs and {J(P; ht);

ί = 1, - - -, k} satisfies (AQ) condition, we must have 0g Δ(P; hk). Let hkft

be the function defined by hk}t(\x) = /ιfc(u) — ί with ί being considered as

a constant. Then the assumption (B) implies that Δ(hk)t) = Δ(hk) for any
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tϊ£Iφ{l9 ",m}. If I = {1, , m}, Δ(hktt) = J(Λfc) for any ί φ hk(6) and

J(ΛfcfΛfc(o)) C J(Λfc). Recall that Λfc(u) is a convenient polynomial with a

non-zero constant in this case. Thus OedJ(hk) and 0 g (^,Λjfc(o)). However

even though their outside boundaries are same i.e., if a face 3 c Ά(hk)

does not contain the origin, Ξ is also a face of A(hk)t). Therefore the

divisors E(P)Γ\Xt ^re independent of the variable t if P Φ Ru , Rs in

any cases. Therefore we have that dXt = dXQ and dXt is smooth by the

non-degeneracy assumption on Z. This proves the assertion (iii). It is

obvious that the base points of the family {Xt} are contained in dX0. Thus

the assertion (i) is now follows from the Bertini's theorem ([Grf-Hr]).

The assertion (ii) can be proved easily using the controlled vector field

argument as follows. Let W = {(x, t) e Zk_ί x C; x e Xt) and let π: W-> C

be the projection. W is a smooth codimension one submanifold of Zk_ί

X C. By the above argument, dW={(x,t)eW; xedXt) is simply the

product dX0 X C. Thus by the Ehreman's fibering theorem ([W]), π: (W, dW)

ΠTΓ'^C — Σ(h)) -> C — Σ(h) is a locally trivial fibration. In particular,

TΓ: (W - dW)Ππ-1(C - Σ(h)) -> C - Σ(h) is also a locally trivial fibration.

Define a mapping Ψ: Zk_λ -> W — dW by F(x) = (x, Λ(x)). This is obviously

a diffeomorphism and we have the commutativity πoψ = h. Therefore

we can pull back by Ψ the fibering structure of π: (W - dW)Ππ-ι(C - Σ(h))

-> C - Σ(h) to Λ: Zfc_! - h-\Σ(h)) -> C - ^(A). This completes the proof

of the assertion (ii).

LEMMA (3.3). Let ck\ Zk — Zfc_i be the inclusion map. Then ck is an

(m — k)-equivalence.

Proof. Let C(h) = {pί9 , pv} be the critical points of h and let Σ(h)

= {̂ i> * •> y>'} ̂ e ^he critical values of h (v > îO and let ^0 = 0. Note

that 0 is a regular value of h as Z = h'^O). Take sufficiently small ε > 0

and <5 > 0 (ε > δ) and let JBα be the closed ball of radius ε with center pa

and let Dj be the closed disk of radius δ with center ηjΛ We assume that

the closed balls B19 , Bv (respectively the disks Dl9 , Dv>) are mutually

disjoint. Assume that ηt = h(pa). Let Ea = h~\D^Ba and E* = Ea -

h'Xηj). Let Λ: £ * -> Dό — {0} is the local Milnor fibration. Let η] be a

fixed point of BDj and let F α = h'l%) Π £Jα (the local Milnor fiber). It

is well known that Fa is homotopic to a bouquet of (m — ̂ -dimensional

spheres ([M]). We also know that the pair (Ea, Fa) is homotopic to the

pair (CFa, Fa) where CFa is the cone of Fa. Let lό be a simple path from



144 MUTSUO OKA

η0 to η'j and let Lj = IJΌDJ and let L = U^L,-. We may assume that

L is contractible to jy0. We can see that (i) h~ι{L) is a strong deformation

retract of Zk_x by the fibering structure, (ii) For each h~\Lj) is homo-

topic to the space Z{J[a,h{Va)=sηj]CFa. The cone CFa are glued along Fa.

This can be proved using the product structure of h: h~ι(Ds) — Uto Λ^α)-̂ }

Ea -> Djt If <oα is a simple critical point, CFa is homotopically a cell of

dimension m — k — 1. In general, to add CFa along Fa does not change

the homotopy groups of dimension less than m — k. (iii) Thus h'\L) is

homotopic to the space h~ι(%) Ui-i CFα by (i) and (ii). See Figure (3.3.1).

See also § 5, [Ok2] for a similar argument.

deform

, - 1

Figure (3.3.1)

Thus we can conclude that Z = h~\η^^—> Zk_1 is an (m — /^-equivalence.

Now we are ready to prove our Main Theorem (1.1) in §1. Zfc_1

c:—>

Cs X C*(m~fc) is an (m — k + l)-equivalence by the induction's assumption.

Thus the composition c: Z —> Zk_x —• Cs X C*(m~fe) is an (m — /^-equivalence

by Lemma (3.3). This completes the proof.

Remark (3.4). In this paper, we have only studied the full non-

degenerate complete intersection variety. Let Z* be a non-degenerate

complete intersection variety which is not necessarily full. We say that

Z* satisfies (AJ-condition if

dim(2
jej

> min(|JΊ + ί, m) for any non-empty J c ί l ,

A full non-degenerate complete intersection variety satisfies (Am_ ^-condi-

tion. We finish this section by the following question: Is c: Z*->C*m

a min (m — k, i)-equivalence? (True also for ί — 0. See [Ok4]).
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§ 4. Fundamental group of the compactification Y

Let Z* be a full non-degenerate complete intersection variety as

before and let Y = Z* be the closure of Z* in X. We are going to show

that the fundamental group of Y is an abelian group which is generated

by at most k elements. This gives a generalization of Theorem (7.3) of

[Ok3]. The main difficulty is that the configuration of the irreducible

divisors {E(P)} which are in the complement of Z* in Y is not so clear.

We say that a simplex σ = (Pu , Pm) e 21* is good if there exist 1 < ^

< < im-k < m so that (m — h) divisors {E(PU)9 , E(Pίm_k)} have a

non-empty intersection in this coordinate chart C™. For the next lemma,

it is not necessary to assume the fullness of Z*.

LEMMA (4.1). There exists a good simplex of Σ*.

Proof. Note that Z* is compact if and only if m — k = 0. Let S =

{P; E(P) Φ0, Pe Vertex (Σ*)}. Note that Z* = Y - [Jpes E(P). We prove

the assertion by the induction on m — k. The assertion is obvious if

m — k = 0. Assume that m — k > 1. As Z* is compact, there is a vertex

Pe Vertex(J*) such that E(P) is non-empty i.e., P e ^ . Now we consider

the variety E(P) as a non-degenerate complete intersection variety in

the toric variety J5(P). Replacing X by the divisor E(P) and Y by £(P),

we apply the induction's assumption. We can find vertices Pu , Pm-u-\

of Vertex (I7*) such that the divisors {E(Pτ)Γ\E(P)\ i = 1, , /n - k - 1}

have a non-empty intersection. That is ΠΓ-"i*"1£f(-P<)Π-B(P) ψ 0 . Thus

the divisors E(P), E(P^), , E(Pm_1c_ί) has a non-empty intersection. Thus

we can find a m-simplex a which contains the vertices P, Pu , Pm_fr_ le

This complete the proof.

Now we fix a good coordinate # = (P1? , Pw) such that Pte^ for

i = 1, , m — k. The calculation of the fundamental group can be done

by the exact same way as § 7 of [Ok3]. As the canonical homomorphism

of the fundamental groups πx(Z*) -> πx(Y) is a surjection, we can see easily

by Van Kampen theorem that πx{Y) is isomorphic to the quotient group

of π^Z*) by the subgroup H generated by {ρ(P); Pe £f}. Here p(P) is

the corresponding element of π^Z*) to a small loop l(P) which goes

around the divisor E(P), Pe<9*. See Figure (4.1.1).

By the commutativity of the fundamental group TΓ^Z*), this element

does not depend on the choice of the small loop l(P). Let P e Vertex(21*).

We can write P as P = Y^^1aiPi for some integers al9 , am. Then it
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E{P)

Figure (4.1.1)

is easy to see that the above element p{P) of Z*"1 is equal to (au , αm)

if we identify π,(Z) with Zm through the isomorphism πt(Z*) ^ ^(C*w) ^ Zm.

See [0k3] for a similar calculation. By the assumption on Pi9 we have

that p(P%) = (0, , ϊ, , 0) for i = 1, , m - k. We define Aσ(P) =

(σro_fc+i, , α j as § 7 of [Ok2]. Then we have

THEOREM (4.2). Assume that m — k > 1. Then the fundamental group

of Y is an abelίan group which is ίsomorphic to the quotient group of Zk

by the subgroup generated by {Aσ(P); Pe Sf\

The fundamental group 7Γi(Y) is finite if the subgroup H has rank m.

It seems that this is always true but the proof involves some combina-

torial problem and we will treat this somewhere else. This class of

algebraic varieties may give many interesting examples of algebraic surfaces

as was the case for the hypersurfaces in a toric variety ([Ok5]). Note

also that the fundamental group does not depend on the choice of a

smooth compactification Y.

EXAMPLE (4.3). Let m — 4 and k = 2. Let

4

Λβ(u) = Σ αβ4wr17M<+1M<+2w}9

+8 + !> α = 1, 2

where ui+i = uu i = 1, , 4. Let Y be as before. Here the coefficient

[aai a = 1, 2, i = 1, , 4} are generically chosen. Then the Newton

diagram A(ha) is a 4-dimensional simplex with vertices Ao = 6, Ax =

(-17, 1, 1, 19), , A4 = (1, 1, 19, -17). Then dual Newton diagram

Γ*(hu h2) is a simplicial cone with vertices P = £(1, 1, 1, 1), Px = (3, 4, 5, 6),

. . • ^ = ^4,5,6,3). Note that det(P«, P<+1) = 1 and det(P f, P i + 2) = 2.

Thus on the two-dimensional cone (P4, P i + 2) we have to add vertices

Qί = (P4 + Pi+2)/2 (i = 1, 2). An easy (but not so pleasant) calculation

shows that τr,(Y) = Z2 x Z4.
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