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HOLOMORPHIC MAPPING INTO ALGEBRAIC

VARIETIES OF GENERAL TYPE

PEICHU HU

§ 1. Introduction

We will study holomorphic mappings

/; M >N

from a connected complex manifold M of dimension m to a projective

algebraic manifold N of dimension n. Assume first that N is of general

type, i.e.

where KN -» N is the canonical bundle of N. If KN is positive, then N

is of general type.

In 1971, Kodaira [6] obtained that

THEOREM A. Any holomorphic mapping f: C"1 -> N has every-where

rank less than n.

P. Griffiths & J. King [2], [3] furthermore proved that

THEOREM B. If M is a smooth affine algebraic variety, then any holo-

morphic mapping f: M -> N whose image contains an open set is necessarily

rational.

In 1977, W. Stoll [6] extended Theorems A, B to parabolic manifolds

M. To state it, we let M possess a parabolic exhaustion τ and denote

( 1 ) v = ddcτ, a = dclogτ A (ddc log τ)m~\

For a form ψ of bidegree (1, 1) on M9 write

( 2) A(t, φ) = t2~2m f φ Λ vm-χ, Γ(r, s; ψ) = Γ A(ί> φ) dt
J Mitl J s t
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if the integrals exist, where M[t] = {x e M: τ{x) < t2}. Suppose throughout

that L is a positive holomorphic line bundle over N with a hermitian

metric p along the fibers of L such that the Chern form c(L, p) > 0. The

characteristic function of / for L is defined by

(3) T(r,s) = T(r,s;f*c(L,p)).

THEOREM C. If M is a parabolic manifold and if F is an effective

Jacobίan section such that

( i ) JP is dominated by r with Y as dominator, there exist positive

constants c1? c2, c3 such that for ε > 0

( 4) T(r, 8) < C l log Y(r) + c2 Ricτ (r, s) + c3ε log r

with the exception of a set of values (r) of finite measure.

The condition (i) implies m > n = rank / ([8], Lemma 18.1). We re-

move this restriction (see [4]). To state the generalization of the Theorem

C which we shall prove, we take a positive form ψ of class C°° and bide-

gree (1,1) on N and set

r/*(ψ~) iΐm<n
( o ) w t = <

f \/*(ψn)Λ% i f w > n

where Z be a positive (m ~- n, m — n)-form of class C°° on ilί. Then the

form

( 6) %r = /*(Ric ψn) - — Ric ψf where b = min (m, n) ,
b

is well-defined. Take a holomorphic form B of bidegree (m — 1, 0) on M.

Define

ψ, = ψ/B) = mί^Πψ) ABAS,

ef = e7(ψ) = /*(Ric fn) — n Ric ψ / ,

where ίm_1 is defined in Section 3. Then Xf(hψ) = ̂ Oψ), ef(hψ) = e/(ψ)

for positive functions Λ of class C2 on JV". Define ^ by ψf = ηf*(ψ) A v"1"1

and denote

(7) B(r,9) = l
2

( 8 ) EJr, s) = Γ(r, s ef) + nB(t, η) \; ,
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where B(t)\ζ means B(r) — B(s). For ψ = c(L, p), we obtain that

THEOREM 1. // there exists an effective Jacobίan section of f and if

rank f = b = min (m, ή), then exist positive constants c1 and c2 such that

for ε > 0

( 9 ) ctT(r, s) < n Ric, (r, s) + Ef(r, s) + c2ε log r

with the exception of a set of values (r) of finite measure.

COROLLARY 2. If M is smooth affine algebraic variety, any non-degen-

erate holomorphic mapping f: M—> N with

(ii) Hm E ^ s) < oo
r-oo log Γ

is necessarily rational.

To draw geometrical consequences, here assume that M and N are

hermitian manifolds. Relative to the local coordinates z* let

(10) ds2

M = 2 hi5dzιdz' 1 < ij < m
id

be a positive definite hermitian metric on M with the associated 2-form

(11) φ = ^ϋλ Σ Kdz1 Λ dz1 .

Similarly, let

(12) ds\ = J ] hkldwkdwι I < k, I < n

be a positive definite hermitian metric on JV, with the local coordinates

wk, and

(13) ψ = ^ZL-l Σ Λ f c^
f c Λ dwι

2π k>1

be the associated 2-form. Define the function u on M by

(14) ψf = Mp» .

Then we have

(15) 33 log u = Ric,, - ~ ? ^ l

When m < n,
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u = ψ^
det (hί})

is geometrically the ratio of the volume elements, where

under the mapping /. If m = n, (15) implies the Chern formula [1]

(17) \ Δ log u = R - Tr (f*(βicN)),

where J is the Laplacian in M and i? denotes the scalar curvature of M.
Let Df be the zero divisor of ψf, which independent of the choices of

ψ and X. Then Xf determines an element [Xf] e H2

DR(M — Df) R), the de
Rham cohomology group of closed C°° differential forms modulo exact
ones. We extend the Chern Theorems [1] on holomorphic mappings of
hermitian manifolds of the same dimension to non-equidimensional cases.
This includes a non-equidimensional version of the Schwarz lemma,
which says that if M is the unit m-ball and N is almost einsteinian with
V — 1 Tr (Xf) > 0, the mapping / does not increase volume.

The author learned about value distribution theory from Mo Ye and
Yum-Tong Siu, whom he wishes to thank for sharing their insights with
him. Also he would like to thank the referee for his suggestions to cor-
rect errors in this paper.

§ 2. The Ricci form and proof of the formula (15)

As usual, we let

d = a + S and dc = ^nλ(S - d).
4τr

Then

2π

The Chern form of the line bundle L for the hermitian metric p is de-
fined by

c(L, p) = - ddc log \s\2

p on U

for all open subsets U in N and all s e H°(U, L). Let ¥ be a volume form
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on N. This is the same as a metric on the canonical line bundle KN,

which is denoted by pf. In terms of complex coordinates w\ , wn, such

a form is one which can be written

ψ(w) = p(w)Φ(w) where Φ(w) = f[ ?ίllΣdwj A dϊϋj

and p is real >0. In practice one often has

p(w) = λ(w)\g(w)f\

where g is holomorphic not identically zero, q is some fixed rational

number > 0 and λ is C°° and >0. We define the Ricci form of Ψ to be

the Chern form of this metric ρψ on KN, so

Ric Ψ = c(KN, pΨ) = drfc log p = ddc log ^ ,

which is independent of the choice of complex coordinates, and defines a

real (1, l)-form.

Now we prove the formula (15). It is well known that the Ricci form

of M for the metric ds2

M is of

(18) Ric3/ = — 3d log det (hυ).

Then we have

(19) Ric ψm = ddc log det (htj) =• ~ Ric i ¥ .
27ΓV— 1

It follows that

Xf = /*(Ric ψn) - ϋ Ric ψfb

u + Ric ω1

which implies (15) by (19).

For convenience, we let 1 = 1 if m < n, so that

Ψz = /*(Ψδ) Λ %.

Hence when m < n, u is independent of the choice of 1 and of the ex-

pression (16). Thus

det
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if m = n. When m> n, u = uχ depends on the choice of X with

uhϊ =

where h is a function on M. Locally we may choose an orthonormal co-

frame θu , θm for M such that

ds2

M = Σ 0,5, .sM Σ
.7 = 1

It is well-known that ds2

M induces an intrinsic connection on M and we

let

be the curvature. Then

m 1 _

Ricjv/ = Σ ®u = TΓ Σ #* A Λ #ι,
ί = l Zi k,l

where

m
7") V * T>

From them we form the scalar curvature

VI

R ~ Σ -̂ fcfc

Similarly, let ωίf , ωn be an orthonormal co-frame for N such that

and let SίifcZ, S<; and S be the curvature tensor, the Ricci tensor and

scalar curvature of N respectively. We put

du = Σ (M< + w<^<),

= Σ uifii A ^^.

Then the Laplacian of u is defined by

Ju = 4 X

If w > 0, we find

(20) J log u = — Δu - -. Σ1 Σ ^B
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Under the mapping / let us set

m

(21) ω{ = Σ, atjθj l<i<n.

If u > 0, it follows from (15) that

(22) l j l o g M = J ? - A j ] SuauaH + ^-λf,
2 n kyi.i n

where

(23) λj = 2π\f- 1 Tτ(Xf).

When m = n, (22) implies (17).

To draw geometrical conclusions we start with some definitions: / is

said to be degenerate at p e M, if u vanishes at p, totally degenerate if u

vanishes identically, volume decreasing or volume increasing according as

u < 1 or u > 1 for a X. Proceeding in similar manner as Chern [1], we

have

PROPOSITION .3. Let f: M —> N be a holomorphic mapping, where M, N

are hermitian manifolds of dimension m and n respectively, with M compact

and N einsteinίan. Let R and S be their scalar curvature respectively.

Then we have

(1) If R > 0, S < 0, λs > 0, then f is totally degenerate.

(2) If R <0, S > 0, λs < 0, then there is a point of M at which f is

degenerate.

To obtain an upper bound for the scalar function u, Chern impose

some conditions on the domain manifold M and the image manifold N.

The first property is:

(DOK). M is exhausted by a sequence of open submanifolds

Mx c M2 c M3 c c M

whose closures Ma are compact, such that: (1) to each a = 1, 2, there

is a smooth function va > 0 defined in Ma, which satisfies the inequality

(24) λ.Aκ<R + Kexp(vJm),

where if is a given positive constant; (2) va(pβ)-> oo, if pβ is a divergent

sequence of points in Ma.

For example, the unit ball M = A defined by
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r2 = z,zx + + zmzm < 1

in the m-dimensional number space C w with coordinates (zu •• ,2m) has

the property (DOK), with

(25)

in the exhaustion submanifolds Dp of Du where Dp be defined by r < p

(<1), and K = 2m(m + 1). The unit ball is einsteinian with its scalar

curvature R = — 2m(ra + 1) under the kahlerian metric

(26) dsl = - J - j - Σ <fetdgt + 4 r 2 3r5r.
l — r k {L — r )

(IMK). N is said to have the property (IMK) (or almost einsteinian), if

(27) Σ S^ζu < - — Σ CiC,, for all ζ 4 .

For the rest of this section we let m < n. Define

n

Ajk = Σ aiβik

Then we have

(28) u = det (A i fc).

By Hadamard's well-known determinant inequality we have

— ΣI^|2>|det(A ί e)r = «2/m

m j,fc

Hence Cauchy-Holder's inequality implies

(29) (m*ηή)u^ < 1 ( Σ |A,fc|
2)1/2 < - Σ i«^l2.

n j,k n UJ

It follows from (22) that if N have the property (IMK) and w > 0 w e have

(30) — Δ log u > R + (m^/n^Ku1'™ + *!L
2

Δ log u > R + (m/n^Ku + λf .2 n

Now proceeding in similar manner as Chern [1], we have

PROPOSITION 4. Let f: M-+N be a holomorphic mapping, where M

and N are hermitian manifolds of dimension m and n having the properties
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(DOK) and (IMKo) respectively, with KQ — (n2/ms/2)K and m < n. If λf > 0,

then u < exp (va).

PROPOSITION 5. Let f: D1-> N be a holomorphic mapping, where Dx

is the unit m-ball with the standard kdhler metric and where N is an

n-dίmensional hermitian einsteίnίan manifold with scalar curvature < —

2n\m + ί)lmίβ and n > m. If λf > 0, then f is volume-decreasing.

§3. Notes on parabolic manifolds

From now on, we will study value distribution on the holomorphic

mapping /: M —> N. Let Lf —• M be the pull-back of L —> N and sf the

pull-back of s e H%N, L). Then KM ® (K%f) is called the Jacobian bundle,

its holomorphic sections over M are called Jacobian sections. A Jacobian

section F is called effective if the set F~ι(G) of zeroes is thin, its zero

divisor DF is called the ramification divisor of / for F. Let A%(U) be the

vector space of forms of class Ck and degree p on U C iV. Define

Then a Jacobian section F operates on forms of degree 2n as follows:

Take Ψ e Af{U) with U = f'\U) Φ 0 . Relative to the local coordinates

zi and wk of M and N respectively, write

Λ •" Λdzm®(~^_ Λ ••• Λ
V d1 Λ Λ )

dw1 dwn Is

Ψ = ίnhdw1 A - Λ dwn A dw1 A Λ dwn.

Then

F[Ψ] = ijhof)\gfdzι A Λ dzm A dzι A Λ dzm .

If M is Stein and if f has strict rank min (m, n), effective Jacobian sec-

tions exist (see [8]).

Assume that τ is a parabolic exhaustion of M, i.e., a proper map τ\

M —> R+ of class C°° which satisfies

(ddc\ogτ > 0,

| ( d d c τ ) m ^ 0 but (ddc log r) m = 0 ,

(M[0] has measure zero .

For any regular value r of r, then
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-f
is a constant. Take a positive form Ω of degree 2m and class C2 on M.

Define v by vm — vΩ. The Ricci function of τ is defined by

(31) Ricr (r, s) = T(r, s; Ric β) + B(t, v)\r

s ,

which does not depend on the choice of Ω. Let D be a divisor on M

and set D[r] = D D M[r]. We define

Γ

If we define i; by vm = ι;F[iΓ] for an effective Jacobian section F and a

positive volume form Ψ of class C°° and degree 2n on iV, then

(32) Ricr (r, 5) = Γ(r, s; /*(Ric y)) + B(t9 υ)\ζ + N(r, s; DF)

(For a detailed proof see [8] Theorem 15.5).

Take an effective Jacobian section F and a positive form ψ of class

C°° and bidegree (1, 1) on N. Define u0 and uλ by

(33) vm = uoψf , vm =

By the definitions of η and ψf, we have

Let Dj be the zero divisor of ψf. Then

(34) S/r, 8) = ΛΓ(r, β; Dp) - niV(r, β;

is defined such that

(35) E,(r, s) + S/r, s) = (1 - Λ) Ricr (r, s) + τιB(ί, 9 ) | ; .

In fact, the form ψf determines a section sf of KM such that ψf — \ssfpΩ

for a volume form Ω and a hermitian metric p along the fibers of KM.

Then by Green Residue Theorem [9]

(36) Γ(r, s; ddc log |β / |J) + N(r, s; Df) - B(ίf | β / | J ) ;

for all regular values s and r of τ with 0 < s < r. Since
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Ric ψf = ddc log Is,)2, + Ric Ω ,

we have

(37) Ricr (r, 5) = Γ(r, 5; Ric Ω) + J3(*,.κ0 |*/lϊ)|ί (by (31))

= Γ(r, s; Ric ψf) + N(r, s;Df) + B(t, uo)\r

s (by (36))

It follows from (32) that

(38) Ricr (r, S) = Γ(r, 5; /*(Ric ψ»)) + B(t, u^ + N(r, s; DF).

Multiply (37) by n and minus (38) to obtain (35).

Let D be a divisor given by the zeroes of a holomorphic section a e

H°(N, L). Since a and Λ<Ύ (Λ ^ 0) define the same divisor and N is com-

pact, we shall assume that |or(jc)|p < 1 for xeN, i.e., the metric p is dis-

tinguished. Assume that af ^= 0. The proximity form is defined by

m(r, £>) = 5(r, K|- 2) > (K

Then we have F. M. T. for any effective divisor (see [3], [8])

(39) N(r, s; D}) + m(t, D)\; = T(rf s),

where Da

f be the divisor of af e H°(M, Lf).

The following Lemma is well-known (see Nevanlinna [7]):

LEMMA 6. Let h(r) > 0, g(r) > 0 and a(r) > 0 be increasing continu-

ous functions of r where g\r) is continuous and hf(r) is piecewise continu-

ous. Suppose moreover that (dr/a(r)) < 00. Then

h'(r) < g\r)a(h(r))

except for a union of intervals I d R+ such that dg < 00.

We use the notation

II. Φ) < b(r)

to mean that the stated inequality holds except on an open set / C R+

such that rzdr < 00 for ε > 0.

LEMMA 7. Let φ ;> 0 be a form of bίdegree (1,1) on M such that

T(r, s; Φ) exists. Let u > 0 be a function on M such that

uvm < ψ A v™-1 .
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Then

II, B(r, u) < -L{(1 + 2ε) log T{r, s; φ) + 4ε log r}.

Proof. Define

B(r, u) = — f uσ.

Since

0 < r2 m-2A(r, MV) = m f uτm~ιdτ A σ = 2m Γ (f Mσ

= 2wc fr J3(ί, u)fm-ιdt < r2m-2A(r, ψ),
Jo

β(ί, u) exists for almost all t > 0. Now

— B(r, M) = — f log wσ < log B(r, u)
C C j3Jf[r]

implies

H(r) = Γ f- ί mΛ Γ r2™-1 exp (—B(r, w))dr

< [ tι~2mdt [l r^-'Bir, u)dr
J s Jo

= J ~ Γ Λ(ί, uv)*L = J_T(r , s; uv) < ^ Γ ( r , β;
2mc J* ί 2mc 2

Taking Λ(r) = ίΓ(r), g(r) = r1+ε/(l + e), α(r) = rλ with ε > 0 and λ > 1, we

obtain from Lemma 6 that

||. H'(r) = r1"2"1 Γ r2—1 exp (—B(r, u)\dr < rε(h(r))λ

<rε(T(r,s;φ)l(2mc)y.

Keeping the same a and g and taking h(r) = r2m~ιHf(r), we find

||. r«-> exp
c / dr\ dr J \ dr

< r {r +ί—»(r(r, s; p)/(2mc))ψ ,

which implies

(40) II, B(r, u) < ±{λ* log T(r, s;φ) + (λ(s + 2 m - l ) + ( ε + l - 2m)) log r

- λ2 log (2mc)}.
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Take 0 < δ < min (1, ε) such that ε(4 + δ) + δ(2m - 1 ) < 6ε. Let λ = 1 +

δ/2. Then Λ2 < 1 + 2ε and

λ(ε + 2m - 1) + ε + 1 - 2m = — {ε(4 + δ) + δ(2m - 1)} < 3ε .

Hence Lemma 7 follows if r is large enough. q.e.d.

§ 4. Holomorphic maps into algebraic varieties of general type

Proof of Theorem 1. By Kobayashi-Ochiai [5] and Kodaira [6], an

integer p e N exists such that Lp is ample and k e N exists such that

H°(N,I) has positive dimension with I = K%®(Lψ. Take aeH\N,I).

Let D} be the divisor of af e H°(M, If) and let p be a distinguished her-

mitian metric along the fibers of I. Then (39) implies

T(r, s; f*c(I9 p)) = N(r9 s; D}) + m(t, D)\ζ.

A form Ψ > 0 of class C" and degree 2n exists such that Ric Ψ = c(KN, ρψ)

and p = (pr)
k (8) (p*)p. Hence

which implies

kT(r, s; /*(Ric Ψ)) - m(ί, D)\ζ = pΓ(r, s) + iV(r, s; ΰ j ) .

A function u > 0 of class C°° exists on M - F'^O) such that vm = ϋ

and such that

Ricτ (r, 8) = N(r, s;DF) + B(t9 u)|; + T(r, s; /*(Ric ¥))

from (32), where F is an effective Jacobian section of /. Define ζ =

\aff/
kv-\ Then

Rict (r, s) + JB(ί, Dlί = N(r, s; DF) + T(r, s; /*(Ric ?Γ))

- I w ( ί , i )) | ί = N(r, s; DF) + liNΓ(r, S; D?) + ^ - Γ ( r , s).
/e fan

Therefore

(41) niV(r, β; D,) + £- T(r, s) < Ricr (r, s) - S/r, β) + B(t, 0IΓ,

where ζ = uxUQnζ and

ψ = c(L, p).
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Define Ψ = \a\2/kΨ. Then

F[¥] = \af\fF[Ψ\ = ζvm .

Since Ψ is continuous and c(L, p) > 0, a constant fx > 0 exists such that

OΆL, p))n > Ψ, which implies

^ 7 / •*• LV l^\ " > r// J ^ γn
" \ U-i — ~ " \ / i .

Hence

It follows from Lemma 7 that

II. β(t9 ~? ) Ir - nB(r, c<*(ηr)-1) + ~ log n - B(S, 4 Γ )

< i^{(l + 2ε) log T(r, s) + 5ε log r} < -£-T(r, s) + 3ncε log r

if r is large enough. Therefore

(42) ||. nN(r, 8;Df) + J?- T(r, s) < Ricr (r, 5) - S/r, s) + nB(ί, 9)|ί
Art

+ 3τzcε log r .

Now (35) and (42) yield (9). q.e.d.

Remark. If F be dominated by r with Y as dominator, i.e.

< Y(r)/*(ψ) Λ v™-1 on Λf [r]

holds for all continuous form ψ > 0 of bidegree (1, 1) on M, which implies

Then

( 7 /n \ 1/w

(43) S/r, s)>- nN(r, s; D,) - ^ log ^ - -
Δ n

Hence (42) and (43) yield

||. ^ Γ(r, 5) < Ric, (r, 5) + - ^ log - ί M - + Sncε log r,
2k 2 n



HOLOMORPHIC MAPPING INTO ALGEBRAIC VARIETIES 169

which is the (4) in Theorem C.

Proof of Corollary 2. By Stoll [8], there exist effective Jacobian sec-

tions of / and holds the following

<co,
log r

Then the condition (ii) and Theorem 1 imply

A(oo) = lim A(r) = lim I^ΣilL < oo ,

r-co r-*oo l o g r

where A(r) — A(r, f*c(L, p)). Hence / is rational (see [8]). q.e.d.

Remark. The condition (ii) can be replaced by

(ii)' E} = ΠE IArA-^(r,s;Dl < ^
r-oo log r

If M is smooth affine algebraic variety with m> n, then there exists an

effective Jacobian section of / and dominated by τ with a constant domi-

nator Y = m. It follows from (35) and (43) that

lim Eλr>s) ~ nN(r,8;Df) < j j^ (1 -lim < j j ^ ^ Q #

r-=o log r " r-oo log r ~~

Hence (ii)x holds for this case and Theorem B follows from Corollary 2.

Remark, If M = C"\ then Ricr(r, s) = 0 where τ is defined by τ(z) =

μ|2. Now (9) yields

^ / > c 1 A ( o o ) > 0 ,

because the line bundle L is positive and rank / = 6. Hence we have

COROLLARY 8. Let N be a connected, n-dimensional projectίve algebraic

manifold of general type. Then any holomorphίc mappings f: Cm -» N with

Ef < 0 has everywhere rank less than min (/n, n).

Theorem A follows from Corollary 8 and Remark above.

Remark. If ψ satisfies

by the proof of Theorem 1, Theorem 1 holds for such ψ.
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