M. Shirosaki Nagoya Math. J. Vol. 120 (1990), 103-112

ON DEFECT RELATIONS OF MOVING HYPERPLANES

MANABU SHIROSAKI

§1. Introduction

The defect relation $\sum_{j=1}^{q} \delta(f, H_j) \leq n+1$ gives the best-possible estimate, where f is a linearly non-degenerate holomorphic curve in $P^n(C)$ and H_1, \dots, H_q are hyperplanes in $P^n(C)$ which are in general position. However, the case of moving hyperplanes has ever got only n(n+1) instead of n+1 (Stoll [4]) and it has not yet been known whether this bound is best-possible or not. In this paper we shall give some particular cases which have the bound n+1.

The author thanks Professor Fujimoto for his useful advice and discussions with the author.

§2. Holomorphic curves and moving hyperplanes

In this paper, we fix one homogeneous coordinate system of the *n*-dimensional complex projective space $P^n(C)$ and denote it by the notation $w = (w_0 : \cdots : w_n)$.

A hyperplane H in $P^n(\mathbf{C})$ is an (n-1)-dimensional projective subspace of $P^n(\mathbf{C})$, i.e., it is given by $H = \{w \in P^n(\mathbf{C}) | \sum_{j=0}^n a_j w_j = 0\}$, where $(a_0, \dots, a_n) \in \mathbf{C}^{n+1} - \{0\}$. We call the vector (a_0, \dots, a_n) a representation of H. Let H_j be hyperplanes in $P^n(\mathbf{C})$ with representations $a^j = (a_0^j, \dots, a_n^j)$ $(j = 1, \dots, q)$. If any min (q, n + 1) elements of a^1, \dots, a^q are linearly independent over $\mathbf{C}, H_1, \dots, H_q$ are said to be in general position.

We call a holomorphic mapping $f: \mathbb{C} \to P^n(\mathbb{C})$ a holomorphic curve in $P^n(\mathbb{C})$. A representation of f is a holomorphic mapping $\tilde{f} = (f_0, \dots, f_n)$: $\mathbb{C} \to \mathbb{C}^{n+1}$ which satisfies $\tilde{f}^{-1}(0) \neq \mathbb{C}$ and $f(z) = (f_0(z) : \dots : f_n(z))$ for all $z \in \mathbb{C} - \tilde{f}^{-1}(0)$. Then we write $f = (f_0 : \dots : f_n)$. If $\tilde{f}^{-1}(0) = \emptyset$, then the representation \tilde{f} is said to be reduced.

DEFINITION 2.1. A moving hyperplane H^{M} in $P^{n}(C)$ is a mapping of Received December 15, 1989. *C* into the set of all hyperplanes in $P^n(C)$ given by $H^M(z) = \{w \in P^n(C) | \sum_{j=0}^n a_j(z)w_j = 0\}$ $(z \in C)$, where (a_0, \dots, a_n) is a reduced representation of some holomorphic curve g in $P^n(C)$. We call a representation and a reduced representation of g a representation and a reduced representation of H^M , respectively.

DEFINITION 2.2. Let $H_j^{\mathfrak{M}}$ be moving hyperplanes in $P^n(C)$ $(j = 1, \dots, q)$. $H_1^{\mathfrak{M}}, \dots, H_q^{\mathfrak{M}}$ are said to be in general position if there exists a point z_0 of C such that hyperplanes $H_1^{\mathfrak{M}}(z_0), \dots, H_q^{\mathfrak{M}}(z_0)$ in $P^n(C)$ are in general position.

DEFINITION 2.3. Let f be a holomorphic curve in $P^n(C)$ with a representation (f_0, \dots, f_n) and let K be an extension field of C. We say that f is non-degenerate over K if f_0, \dots, f_n are linearly independent over K. In particular, f is said to be linearly non-degenerate if it is non-degenerate over C.

§3. Characteristic functions, counting functions and defects

We define the norm ||z|| of $z = (z_1, \dots, z_m) \in C^m$ by $||z||^2 = \sum_{j=1}^m |z_j|^2$.

DEFINITION 3.1. The characteristic function of a holomorphic curve f in $P^{n}(C)$ with a reduced representation \tilde{f} is defined for 0 < s < r by

$$T(f;r,s) = rac{i}{2\pi} \int_s^r rac{dt}{t} \int_{|z| \leq \iota} \partial ar{o} \log \| ilde{f} \|^2 \, .$$

This definition does not depend on the choice of \overline{f} . We see that T(f; r, s) is non-negative and that if f is non-constants, then $T(f; r, s) \rightarrow \infty$ monotonically as $r \rightarrow \infty$. Furthermore we can easily verify that

(3.2)
$$T(f; r, s) = \frac{1}{2\pi} \int_{0}^{2\pi} \log \|\tilde{f}(re^{i\theta})\| d\theta - \frac{1}{2\pi} \int_{0}^{2\pi} \log \|\tilde{f}(se^{i\theta})\| d\theta.$$

DEFINITION 3.3. The counting function of zeros for a meromorphic function $F \neq 0$ on C is defined for 0 < s < r by

$$N(F; r, s) = \int_{s}^{r} n(F; t) \frac{dt}{t} ,$$

where n(F; t) is the sum of zero orders of F in $\{z \in C | |z| \le t\}$.

By the definition, N(F; r, s) is non-negative, and Jensen's formula shows that

(3.4)
$$N(F; r, s) - N(1/F; r, s) = \frac{1}{2\pi} \int_{0}^{2\pi} \log |F(re^{i\theta})| d\theta - \frac{1}{2\pi} \int_{0}^{2\pi} \log |F(se^{i\theta})| d\theta.$$

In the situation of Definition 2.1, we define the characteristic function of $H^{\mathfrak{M}}$ by $T(H^{\mathfrak{M}}; r, s) := T(g; r, s)$. And we define the counting function of $H^{\mathfrak{M}}$ for a holomorphic curve f by $N(f, H^{\mathfrak{M}}; r, s) := N((\tilde{f}, \tilde{g}); r, s)$, where $\tilde{f} = (f_0, \dots, f_n)$ and $\tilde{g} = (a_0, \dots, a_n)$ are reduced representations of f and g, respectively, and $(\tilde{f}, \tilde{g}) := \sum_{j=0}^{n} a_j f_j$, if $(\tilde{f}, \tilde{g}) \neq 0$. This assumption holds if f is non-degenerate over a field containing all a_j/a_k with $a_k \neq 0$. This definition does not depend on the choice of \tilde{f} and \tilde{g} . By (3.2), (3.4) and Schwarz's inequality, we get

$$(3.5) N(f, H^{\scriptscriptstyle M}; r, s) \le T(f; r, s) + T(H^{\scriptscriptstyle M}; r, s) + O(1), \quad r \longrightarrow \infty$$

If either f or g is not constant, the defect of H^{M} for f is defined by

$$\delta(f, H^{\scriptscriptstyle M}) = \liminf_{r \to \infty} \left(1 - \frac{N(f, H^{\scriptscriptstyle M}; r, s)}{T(f; r, s) + T(H^{\scriptscriptstyle M}; r, s)} \right)$$

which does not depend on s. By (3.5), we see $0 \le \delta(f, H^{M}) \le 1$. The moving hyperplane H^{M} is said to be of lower order than f if $T(H^{M}; r, s) = o(T(f; r, s))$ as $r \to \infty$. Then

$$\delta(f, H^{\scriptscriptstyle M}) = \liminf_{r \to \infty} \left(1 - \frac{N(f, H^{\scriptscriptstyle M}; r, s)}{T(f; r, s)} \right).$$

The definitions of counting functions and defects of (not-moving) hyperplanes are the same as those of moving hyperplanes. However, for convenience sake, we consider that the category of moving hyperplanes contains not-moving hyperplanes.

Let f be a holomorphic curve in $P^n(C)$. We denote by K_f the set of all meromorphic functions g which satisfy the condition that T(g; r, s)= o(T(f; r, s)) as $r \to \infty$. If a representation (f_0, \dots, f_n) satisfies that $f \neq 0$ for each j and that each f_j/f_k $(j \neq k)$ is not constant, then we set $\tilde{K}_f = \bigcap_{j \neq k} K_{f_j/f_k}$. Now, we present two lemmas without proofs.

LEMMA 3.6 ([4, Lemma 5.3]). The sets K_f and \tilde{K}_f are fields.

LEMMA 3.7 ([1, Proposition 5.9]). A holomorphic curve $f = (f_0 : \cdots : f_n)$ in $P^n(C)$ is rational, i.e., all f_j/f_k with $f_k \neq 0$ are rational if and only if

$$T(f; r, s) = O(\log r) \quad as \ r \longrightarrow \infty$$
.

PROPOSITION 3.8. Let f be a non-constant holomorphic curve and let g be a holomorphic curve in $P^n(C)$ with a reduced representation (g_0, \dots, g_n) . Assume that $g_j/g_k \in K_j$ if $g_k \not\equiv 0$. Then, T(g; r, s) = o(T(f; r, s)) as $r \to \infty$.

Proof. Without loss of generality, we may assume that $g_0 \neq 0$. Since the representation (g_0, \dots, g_n) is reduced, for each point p where g_0 vanishes there is some g_j with $g_j(p) \neq 0$. Hence, we have

$$egin{aligned} N(g_{\mathfrak{g}};r,s) &\leq \sum_{j=1}^{n} N(g_{j}/g_{\mathfrak{g}},\infty;r,s) \ &\leq \sum_{j=1}^{n} T(g_{j}/g_{\mathfrak{g}};r,s) + O(1) \ &= o(T(f;r,s)) \qquad (r \longrightarrow \infty) \end{aligned}$$

and

$$\begin{split} T(g;r,s) &= \frac{1}{4\pi} \int_{0}^{2\pi} \log\left(1 + \sum_{j=1}^{n} |g_{j}(re^{i\theta})/g_{0}(re^{i\theta})|^{2}\right) d\theta \\ &+ \frac{1}{2\pi} \int_{0}^{2\pi} \log|g_{0}(re^{i\theta})| d\theta + O(1) \\ &\leq \sum_{j=1}^{n} T(g_{j}/g_{0};r,s) + N(g;r,s) + O(1) \\ &= o(T(f;r,s)) \qquad (r \longrightarrow \infty) \,. \end{split}$$

In this paper, we treat non-rational holomorphic curves f and we use a notation S(f, r) for representing a quantity with a property that

$$\lim_{r\to\infty,r\notin E} S(f;r)/T(f;r,s) = 0$$

for a set $E \subset (0, \infty)$ of finite Lebesgue measure.

§4. Defect relations

First, we give the known defect relations.

THEOREM 4.1 (See, for example, [3, Chapter 3]). Let f be a linearly non-degenerate holomorphic curve in $P^n(\mathbf{C})$ and let H_1, \dots, H_q be hyperplanes in $P^n(\mathbf{C})$ which are in general position. Then

$$\sum_{j=1}^q \delta(f, H_j) \le n+1$$
 .

THEOREM 4.2 ([4, Theorem 6.19]). Let f be a holomorphic curve in $P^n(\mathbf{C})$ and let H_1^M, \dots, H_q^M be moving hyperplanes in $P^n(\mathbf{C})$ with lower orders than f which are in general position. Let (a_0^j, \dots, a_n^j) be reduced representations of H_j^M $(j = 1, \dots, q)$ and K be the smallest extension field

of *C* which contains all a_k^j/a_m^j $(1 \le j \le q, 0 \le k \le n, and m \in \{k \mid a_k^j \neq 0\})$. Assume that *f* is non-degenerate over *K*. Then

$$\sum_{j=1}^{q} \delta(f, H_j^M) \leq n(n+1)$$

THEOREM 4.3 (2, Theorem 3.4]). Let f be a holomorphic curve in $P^n(\mathbf{C})$ and let H_0^M, \dots, H_{n+1}^M are moving hyperplanes in $P^n(\mathbf{C})$ with lower orders than f which are in general position. Let (a_0^j, \dots, a_n^j) be reduced representations of H_j^M $(j = 0, \dots, n + 1)$ and let K be the smallest extension field of \mathbf{C} which contains all a_k^j/a_m^j $(0 \le j, k \le n \text{ and } m \in \{k \mid a_k^j \neq 0\})$. Assume that f is non-degenerate over K. Then

$$\sum_{j=0}^{n+1} \delta(f, H_j^{\scriptscriptstyle M}) \leq n+1$$

The main purpose of this paper is to prove the following:

THEOREM 4.4. Let f be a linearly non-degenerate holomorphic curve in $P^n(\mathbf{C})$ with a reduced representation (f_0, \dots, f_n) and let $H_1^{\mathtt{M}}, \dots, H_q^{\mathtt{M}}$ be moving hyperplanes in general position in $P^n(\mathbf{C})$. Let (a_0^j, \dots, a_n^j) be reduced representations of $H_j^{\mathtt{M}}$ $(1 \leq j \leq q)$. Assume that the following three conditions are satisfied:

(C1)
$$a_k^j/a_m^j \in K_f$$
 if $a_m^j \not\equiv 0$;

- (C2) f is non-degenerate over \tilde{K}_{f} ;
- (C3) $N(f_f; r, s) = S(f; r) \quad (j = 0, \dots, n).$

Then

$$\sum_{j=1}^{q} \delta(f, H_j^{\mathrm{M}}) \leq n+1$$
.

§5. Second main theorems

The next second main theorem is well-known and Theorem 4.1 is its corollary:

THEOREM 5.1 (See, for example, [3, Chapter 3]). In the same situation of Theorem 4.1, the inequality

(5.2)
$$(q - n - 1)T(f; r, s) \leq \sum_{j=1}^{q} N(f, H_j; r, s) + S(f; r)$$

holds for 0 < s < r.

The next lemma will be proved by the same method of Theorem 4.3. For a proof, see [5, pp. 313-333].

LEMMA 5.3. In the same situation of Theorem 4.3, the inequality

(5.4)
$$T(f; r, s) \leq \sum_{j=0}^{n+1} N(f, H_j^{M}; r, s) + S(f; r)$$

holds for 0 < s < r.

§6. Proof of Theorem 4.4

Before begining to prove Theorem 4.4, we show the following lemma.

LEMMA 6.1. Let f be as in Theorem 4.4. Let $H^{\mathbb{M}}$ be a moving hyperplane in $P^{n}(\mathbb{C})$ with a reduced representation (a_{0}, \dots, a_{n}) . Assume that $a_{j}/a_{k} \in \tilde{K}_{f}$ if $a_{k} \neq 0$. If $a_{j_{0}} \neq 0, \dots, a_{j_{k}} \neq 0$ and $a_{j} \equiv 0$ for $j \neq j_{0}, \dots, j_{k}$, we give a hyperplane $H = \{w \in P^{n}(\mathbb{C}) | w_{j_{0}} + \dots + w_{j_{k}} = 0\}$ in $P^{n}(\mathbb{C})$. Then

(6.2)
$$N(f, H; r, s) = N(f, H^{M}; r, s) + S(f; r)$$

Proof. For simplicity, we may assume that $j_0 = 0, \dots, j_k = k$. In the case of k = 0, the conclusion is evident since $N(f_0; r, s) = o(T(f; r, s))$ $(r \to \infty)$ by Proposition 3.8. Hence we assume that $k \ge 1$.

Let $h := (f_0 : \dots : f_k)$ be a holomorphic curve in $P^k(\mathbf{C})$ and let L^M be a moving hyperplane in $P^k(\mathbf{C})$ with a reduced representation (a_0, \dots, a_k) . Furthermore, we consider the hyperplanes $L_j := \{w \in P^k(\mathbf{C}) | w_j = 0\}$ $(j = 0, \dots, k)$ and $L := \{w \in P^k(\mathbf{C}) | \sum_{j=0}^k w_j = 0\}$ in $P^k(\mathbf{C})$. Note that L^M has a lower order than h. We get by Theorem 5.1 and Lemma 5.3.

$$T(h; r, s) \le N(h, L^{\scriptscriptstyle M}; r, s) + S(f; r)$$

and

$$T(h; r, s) \leq N(h, L; r, s) + S(f; r).$$

Here we used the fact $N(h, L_j; r, s) = S(f; r)$ $(j = 0, \dots, k)$. By (3.5) and the above inequalities, we have T(h; r, s) = N(h, L; r, s) + S(f; r) and $T(h; r, s) = N(h, L^{\mathfrak{M}}; r, s) + S(f; r)$. Since N(h, L; r, s) + o(T(f; r, s)) =N(f, H; r, s) and $N(h, L^{\mathfrak{M}}; r, s) = N(f, H^{\mathfrak{M}}; r, s) + o(T(f; r, s))$ $(r \to \infty)$, we obtain (6.2). Q.E.D.

Proof of Theorem 4.4. There exists a point z_0 of C such that $a_k^j(z_0) \neq 0$ if $a_k^j \neq 0$ and that $H_1^{\scriptscriptstyle M}(z_0), \dots, H_q^{\scriptscriptstyle M}(z_0)$ are in general positions. Then by Lemma 6.1, we have

$$N(f, H_{i}^{M}(z_{0}); r, s) = N(f, H_{i}^{M}; r, s) + S(f; r)$$
 $(j = 1, \dots, q)$.

On the other hand, we have by Theorem 5.1,

$$(q-n-1)T(f;r,s) \leq \sum_{j=1}^{q} N(f, H_{j}^{M}(z_{0});r,s) + S(f;r).$$

Hence we obtain

$$(q - n - 1)T(f; r, s) \le \sum_{j=1}^{q} N(f, H_j^M; r, s) + S(f; r).$$

Therefore we have the defect relation

$$\sum_{j=1}^{q} \delta(f, H_j^{\mathsf{M}}) \le n+1. \qquad \qquad \text{Q.E.D.}$$

§7. Further result

In this section, we give a generalization of Theorem 4.4. Before stating it, we show next lemmas.

LEMMA 7.1. Let g be a linearly non-degenerate holomorphic curve in $P^{m}(C)$ with a reduced representation (g_{0}, \dots, g_{m}) . Assume that $N(g_{j}; r, s) = S(g_{k}/g_{i})$ for any distinct k and l. Then g is non-degenerate over \tilde{K}_{g} .

Proof. Assume that g_0, \dots, g_m are linearly dependent over \tilde{K}_g . So there exist $a_0, \dots, a_m \in \tilde{K}_g$ such that some $a_j \not\equiv 0$ and that $a_0g_0 + \dots + a_mg_m \equiv 0$. Without loss of generality, we may assume that $a_j \not\equiv 0$ $(0 \le j \le k + 1)$ and $a_j \equiv 0$ $(k + 2 \le j \le m)$, where $k + 1 \le m$, and that g_0, \dots, g_{k+1} are linearly independent over \tilde{K}_g . If k = 0, we can immediately lead a contradiction. So, let $k \ge 1$.

Consider the holomorphic curve $h = (g_0 : \cdots : g_k)$ in $P^k(C)$ and moving hyperplanes

$$H_{j}^{M}(z) = \{ w \in P^{k}(C) | w_{j} = 0 \} \qquad (0 \le j \le k)$$

and H_{k+1}^{M} with a representation (a_0, \dots, a_k) in $P^k(C)$. They are in general position and of lower order than h. By the assumption and the relation $a_0g_0 + \cdots + a_kg_k = -a_{k+1}g_{k+1}$, we see that $\delta(g, H_j^{M}) = 1$ ($0 \le j \le k+1$). This contradicts to Theorem 4.3. Hence we complete the proof of this lemma. Q.E.D.

LEMMA 7.2. Let f be a linearly non-degenerate holomorphic curve in $P^n(\mathbf{C})$ with a reduced representation $\tilde{f} = (f_0, \dots, f_n)$ and let g be a linearly non-degenerate holomorphic curve in $P^m(\mathbf{C})$ with a reduced representation $\tilde{g} = (g_0, \dots, g_m)$. Assume that there are relations

(7.3)
$$f_j = \sum_{k=0}^m a_k^j g_k, \quad a_k^j \in C \ (0 \le j \le n)$$

and that for each $k = 0, \dots, m$, there is a j(k) such that $a_k^{j(k)} \neq 0$. Moreover, if $N(g_j; r, s) = S(g; r)$ for $j = 0, \dots, m$, then

109

MANABU SHIROSAKI

$$T(g; r, s) = T(f; r, s) + S(g; r).$$

Proof. By (7.3), we have the inequality $\|\tilde{f}\| \leq C \|\tilde{g}\|$ for some C > 0. Therefore we get

(7.4)
$$T(f; r, s) \leq T(g; r, s) + O(1)$$
.

Now, we can choose $b_0, \dots, b_n \in C$ such that $c_k := \sum_{j=0}^n a_k^j b_j \neq 0$. Consider hyperplanes

$$H = \{w \in P^n(\mathbf{C}) \mid \sum_{j=0}^n b_j w_j = 0\}$$

in $P^n(\mathbf{C})$ and

$$egin{aligned} & L_k = \{ w \in P^m(m{C}) \, | \, w_k = 0 \} & (0 \leq k \leq m) \, , \ & L = \{ w \in P^m(m{C}) \, | \, \sum_{k=0}^m c_k w_k = 0 \} \end{aligned}$$

in $P^{m}(C)$. Then by Theorem 5.1, we have

$$T(g; r, s) \leq \sum_{k=0}^{m} N(g, L_k; r, s) + N(g, L; r, s) + S(g; r)$$

= $N(g, L; r, s) + S(g; r)$.

Since $\sum_{k=0}^{m} c_k g_k = \sum_{j=0}^{n} b_j f_j$, we have

$$N(g, L; r, s) = N(f, H; r, s)$$
.

Hence, we get by (3.5)

$$egin{aligned} T(g;r,s) &\leq N(f,H;r,s) + S(g;r) \ &\leq T(f;r,s) + S(g;r) \,. \end{aligned}$$

Consequently, by (7.4), we obtain

$$T(g; r, s) = T(f; r, s) + S(g; r). \qquad Q.E.D.$$

The generalization of Theorem 4.4 is the following:

THEOREM 7.5. Let f be a linearly non-degenerate holomorphic curve in $P^n(\mathbf{C})$ with a reduced representation $\tilde{f} = (f_0, \dots, f_n)$ given by $f_j = \sum_{k=1}^{m_j} f_k^j$, where $f_1^j, \dots, f_{m_j}^j$ are entire functions which are linearly independent over \mathbf{C} $(j = 0, \dots, n)$. Let H_j^{M} be as in Theorem 4.4. Assume that f is non-degenerate over \tilde{K}_f and that $N(f_k^j; r, s) = S(f_k^j/f_m^l; r)$ if f_k^j/f_m^l is not constant. Then

$$\sum_{j=1}^{q} \delta(f, H_j^{\mathsf{M}}) \leq n+1.$$

Proof. Choose g_0, \dots, g_m from f_k^j $(1 \le k \le m_j, 0 \le j \le n)$ such that

 $\{g_0, \dots, g_m\}$ is a base of the vector space over C spanned by f_k^j $(1 \le k \le m_j, 0 \le j \le n)$. Let g be a holomorphic curve in $P^n(C)$ with a reduced representation $\tilde{g} = (g_0/h, \dots, g_m/h)$, where h is an entire function such that $g_0/h, \dots, g_m/h$ are entire functions without common zero. By Lemma 7.1, g is non-degenerate over \tilde{K}_g . It is easy to check that $\tilde{K}_j \subset \tilde{K}_g$.

We define entire functions b_k^j $(1 \le j \le q, \ 0 \le k \le m)$ by the equations

$$a_{_0}^j f_0 + \, \cdots \, + \, a_{_n}^j f_n = b_{_0}^j g_0 + \, \cdots \, + \, b_{_m}^j g_m
ot\equiv 0 \qquad (1 \leq j \leq q) \, .$$

Since b_k^j are linear combinations of a_0^j, \dots, a_n^j with complex coefficients, we see that $b_l^j/b_k^j \in \tilde{K}_g$ if $b_k^j \not\equiv 0$. Let d_j be a common factor of a_0^j, \dots, a_m^j and let L_j^M be a moving hyperplane in $P^m(\mathbf{C})$ with a reduced representation $b_j = (b_0^j/d_j, \dots, b_m^j/d_j)$. Set $a_j = (a_0^j, \dots, a_n^j)$. Then $(\tilde{f}, a_j) = hd_j(\tilde{g}, b_j)$. Hence we have

(7.6)
$$N(f, H_j^{\scriptscriptstyle M}; r, s) = N(g, L_j^{\scriptscriptstyle M}; r, s) + N(hd_j; r, s)$$

We choose z_0 of C such that $b_k^j(z_0) \neq 0$ if $b_k^j \neq 0$ and $H_1^M(z_0), \dots, H_q^M(z_0)$ are in general position. Then by Lemma 6.1, we get

(7.7)
$$N(g, L_{j}^{M}(z_{0}); r, s) = N(g, L_{j}^{M}; r, s) + S(g; r)$$

Furthermore we have

(7.8)
$$N(g, L_i^{\mathsf{M}}(z_0); r, s) + N(h; r, s) = N(f, H_i^{\mathsf{M}}(z_0); r, s)$$

by $(\tilde{f}, a_j(z_0)) = hd_j(z_0)(\tilde{g}, b_j(z_0))$. Since $N(d_j; r, s) = o(T(f; r, s))$ by Proposition 3.8, N(h; r, s) is S(f; r) and S(g; r) is S(f; r) by Lemma 7.2, we obtain

$$N(f, H_{j}^{M}(z_{0}); r, s) = N(f, H_{j}^{M}; r, s) + S(f; r)$$

by (7.6), (7.7) and (7.8). Hence using Theorem 5.1, we have

$$egin{aligned} (q-n-1)T(f;r,s) &\leq \sum_{j=1}^q N(f,H_j^{\scriptscriptstyle M}(z_0);r,s) + S(f;r) \ &\leq \sum_{j=1}^q N(f,H_j^{\scriptscriptstyle M};r,s) + S(f;r) \,. \end{aligned}$$

Therefore we obtain the defect relation

$$\sum_{j=1}^{q} \delta(f, H_j^{\scriptscriptstyle M}) \le n+1. \qquad \qquad \text{Q.E.D.}$$

The most typical case of Theorem 4.4 is that $f_j = \exp h_j$, where h_j are entire functions, and a_k^j are polynomials.

MANABU SHIROSAKI

References

- [1] P. Griffiths and J. King, Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math., 130 (1973), 145-220.
- [2] S. Mori, Remarks on holomorphic mappings, Contemporary Math. Vol. 25, 1983, 101-113.
- [3] B. V. Shabat, Distribution of values of holomorphic mappings, Amer. Math. Soc., Providence, R.I., 1985.
- [4] W. Stoll, An extension of the theorem of Steinmetz-Nevanlinna to holomorphic curves, Math. Ann., 282 (1988), 185-222.
- [5] —, Value distribution theory for meromorphic maps, Aspects of Mathematics, E7, Vieweg, 1985.

Department of Mathematics Faculty of Science Kanazawa University Marunouchi, Kanazawa 920 Japan