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§ 1. Introduction

Let k be an algebraic number field of finite degree, and p be a fixed

rational prime. We denote the set of all the non-Archimedian prime

divisors of k by S0(k) and the set of all the real Archimedian ones by

St(k). Put So == {p e SQ(k)\ p\p}, SL = Sϊ(k) and S = S0USTO, and define a

subgroup of the unit group Θx(k) of k by

E(k; S) = {ε e Θx(k)\ε = 1 mod p for p e S}.

Then the Zp-module Eip)(k):= E(k; S)®ZZP is isomorphic to μp(k) X Zr

p,

or to Zr

p if p = 2 and rx > 0 where //p(^) is the multiplicative group of the

p-power roots of 1 in k and r — rt + r2 — 1, rx = |Si(fe)|, 2r2 = ffe: Q] — r1?

is the essential Z-rank of (^x(^). Furthermore we can define a homomor-

phism πs: E{p)(k) —> Y[pes0K by ^ n e diagonal embedding of kx into the last

direct product. The kernel of πs is the Leopoldt kernel for k, p and S,

and denoted by i?p(β) or by &(p)(k; S).

The Leopoldt conjecture is to claim J£p(k) = 1, and known to be true

for every p in case where k is a subfield of not only abelian extensions

but also certain types of extensions containing non-abelian 2-extensions

of imaginary quadratic fields, and also of some special extensions of Q

(e.g. Brumer [B], Miyake [Ml] etc.)

It is known by Nguyen-Quang-Do [Ng], Heider [H2] and others that

Jδfp(ft) is isomorphic to the Pontrjagin dual of the Schur multiplier of the

group of a certain Galois extension. More precisely speaking, let kip)(S)

be the maximal p-extension of k unramified outside S. Then we have

H2(Gal(k^(S)lk), QIZ) ^ Bom(J?p(k\ Q/Z).
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One of our purposes of this paper is to clear the meaning of this iso-

morphism. Let kip) be the maximal p-extension of k, and M be the maxi-

mal central p-extension of k(p)(S)jk. Then the maximal abelian p-extension

k*™ of k is a subfield of M. Put ©<*> = Gal (#«/*), 9(p) = Gal (k

and n(p) = Gal (k{p)lkip\S)). Then we have

H*(®<*\ QIZ) = 0

by Tate [Se], and easily see

H2(tfp\ Q/Z) s Horn (Gal (M/#'>(S) * a b ( Λ ) , Q/Z)

by the Hochschild-Serre exact sequence for the short exact sequence

1 > n(P)

As the duals to the same H2($ip\ Q/Z), therefore, J?p(k) is isomorphic to

Gal (Mlkip)(S) - kmp)). We will establish a natural isomorphism between

them directly by class field theory.

Here we have explained the special case of S where &(p\k; S) = £?p(k)

corresponds to the Leopoldt conjecture. We will treat a general set of

prime divisors of k as S in what follows.

§ 2. Leopoldt kernels

Let k and p be as above. We denote the idele group of k by k%.

We consider kx a diagonally embedded subgroup of k^.

Let S be a set of prime divisors of k, and S = S0\JS^, So — Sf]S0(k)y

SL = S - So. Put

E(k; S J = {ε e ^ x(^)|ε = 1 mod p for p e S }̂

this depends only upon S £ : = Soo Π St(k). Denote the topological closure

of the projection of E(k; SJ) to the non-Archimedian part of k% by

£70(fe; SL); this is an abelian profinite group; let E(

o

p)(k; SJ) be its p-primary

part. The ring of p-adic integers Zp naturally acts on this group. It is

well known that E(

Q

p)(k; SM) is isomorphic to μv{k) X Zr

v or to Zr

p (in non-

trivial cases for p = 2) as Zp-modules (cf. Chevalley [Ch] or Heider [HI],

Satz 4, for example).

Let πSo be the projection homomorphism of k\ onto its S0-part, ΠP650^
X>

where kp is the completion of k by p and \\f denotes the restricted product

with respect to the maximal compact subgroup Θx{k^) of k* for p e So
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The groups

; S ) := Ker πSo Π EQ(k; SJ),

and

are the Leopoldt kernels in k for S and p. It is not difficult to see that

this se<*\k\ S) for S = S0USM with So = {p e S0(Λ) | p\p} and S. = SJ(Λ) is

canonically isomorphic to JPp(k) which was given in the preceding section;

hence we also denote ^(p)(k; S) in this case by &p(k) for simplicity.

The homomorphism πSo maps the torsion part ( = μp(k) if exists) of

EpKk; SJ injectively if SQ Φ φ; then &{p\k; S) is a torsion free Zp-module.

The abelian pro-p-group E(

o

p)(k; S^) is mapped into the abelian pro-

finite group Y[pesQ^x(kp) by πSo. If p does not divide p, the p-primary part

of Θx(kp) is equal to the finite cyclic group μp(kp) of p-power roots of 1

in kr Therefore the p-primary part of the direct product [~[ (9x(kp) is a

finite group if p\p for every p e So and if |S 0 | < +00; then the Zp-rank

of ^{p)(k; S) coincides the essential Zp-rank of Eψ\k\ SJ) and is equal

to r — rx + r2 — 1. Summing up, we have

PROPOSITION 1. (1) // So ψ φ, then ^fip)(k; S) is a torsion free Zp-

module.

(2) // 0 < I So I < +00, and if p)(p for every p e So, then the Zv-rank

of ^(p)(k; S) is equal to the essential Z-rank of Θx(k); hence in particular,

the quotient group E^p)(k; SL)/j£?(p)(£; S) is a finite p-group in this case.

Remark. If p Φ 2, then Έψ\k\ SM) = E(

o

p)(k; φ) because the quotient

group E(k\φ)jE(k\Soo) is an elementary 2-group.

§3. The central extensions

For a given set S of prime divisors of k, we denote the maximal p-

extension (abelian p-extension or abelian extension, resp.) of k which is

unramified outside S by ¥P\S) (k^p\S) or kΆh(S), resp.).

Let S^ be the Archimedian part of S as above, and put S^' — S0(k) US,.

Then by definition, Gal (k^/k^SJ) is a (finite) elementary 2-group. If

p Φ2, therefore, we have &ab(p)(SJ = k&Hp\

Suppose that a finite Galois extension K/k is unramified outside S.

Let Sκ be the set of all the prime divisors of elements of S in K. If Kjk

is a p-extension, then the maximal p-extension of K unramified outside
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Sκ is none other than fcp)(S). We simply write K»-h(p)(S) for Kah(p)(Sκ),

etc., because there is no fears of ambiguity.

In general, we denote the maximal central extension (or p-extension,

resp.) of a Galois extension F/k by (F/k)cen (or (F/β)cen(p\ resp.).

THEOREM 1. Let the notation and the assumptions be as above. Then

the Galois groups of the extensions

and

(κ*h(S)ik)cen n κ Ά b i p ι \

are naturally ίsomorphίc to the quotient groups

<£{k; S)jNκ/knK; Sκ)

and

respectively, where Nκ/k: K% -> k% is the norm map of Kjk.

Proof. Put Q = Gsl(Klk), © - Gal (Kab(SJ/Jfe), 8T - Gal (i£ab(

and S3 = Gal(ίί a b(SJ/Z a b(S)). Then SI and S3 are abelian closed normal

subgroups of ©, and g = ®/SΓ. The inner automorphisms of © naturally

determines an action of g on Si and S3. The subgroup [S3, ®] of commu-

tators of S3 and © coincides with

83":= <α 1 - f f |αe», a e g>

where the right hand side means the topologically generated closed sub-

group of S3. Therefore we have

Now let aκ\ K% -> Gal(K&hjK) be the Artin map of class field theory;

this is a surjective homomorphism the kernel K* of which is the closure

of Kx-K*+ in the idele group K% where K*+ is the connected component

of 1 in K5. Put Si = Sί(Jfe) - SL and

Then Gal (if ab/if ab(SOT)) is isomorphic to the elementary 2-group K*(Sί)IK*

by α x .
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Through the inner automorphisms of Gal (ϋΓab(£O/&), the abelian

group Gal (iίab(Soo)/if) becomes a g-module; ακ induces a g-isomorphism

of KZIKXSL) onto Gal (Kab(SJ/K) which maps the p-primary part

(K$IK%S'jyp) onto Wp) = GΆI(K^\SJIK), Denote the subgroup of K%,

{(• , **, •) e 0x(iQ|x<p - 1 for ψ e S* and for every Archimedian ^}

by U'(K; So). Then by α?̂ , S3 corresponds to

U'(K;Sι) K*(S'JIK*(SL).

It is also known by class field theory that

corresponds to

by ακ where ^#(SL) = ¥• Y[pesuK a n ( i ^ ^s ^he kernel of the Artin map

αk of ^. Therefore by ακ,

(*) Gal ((K *\S)/k)c™ n KΛ(SJIKΛ(S) &ab(S J )

is isomorphic to

XK; St)«-K*(S'J

; S^-KK

'(K; S.)Π

LEMMA. (1) C7'(ίΓ; So)4' = ^'(if; So) Π iVί}»(l).

(2) £7'(ΛΓ; So) fl K*(S'J = if(ίΓ; S).

Proof. (1) Let p be a non-Archimedian prime divisor of £. The

p-part of U'(K; £>0) is trivial if fieS, by definition. Suppose that p i SO.

Then p is unramified in Kjk. Therefore Kvlkf is cyclic for ψ\p. The Im-

part of U'(K;S0) is (9x(K®λ;^). Fix a prime divisor 5β of p in K and

denote the norm map of the local extension Kv/kv by Np. Then it is clear

that

Since K%/kp is unramified, we have
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where φ) = Gal (£,/&,) ̂ - * β (cf. Iyanaga [I], Ch V, Th, 1.2). This shows

that

for every p g So, and proves (1).

(2) By Shimura [Sh], 2.2, we easily see that

Suppose that Λ;is an element U'(K; So)ΠK*(SL) and x = e a u,ee E0(K; Sf),

α 6 i£ x , W e (UL* + Π -K"?)- Let α = (vα^ be the decomposition of α in K%

into its non-Archimedian part α0 and its Archimedian part α^. Then

a^-u = 1, and JC = β α0 6 U'(K; So). Hence α is a unit of i ί such that

α — u'1 = 1 mod β̂ for every 3̂ e Sf, i.e. α e E(K; Sί). Therefore we have

* = β α0 e # 0 (#; Sί)Π [/'(A:; SO) - &(K; S),

and proved that the left hand side of (2) lies in the right hand side.

The converse inclusion is clear. The proof of the lemma is completed.

By this lemma, we see that the Galois group (*) is isomorphic to

the quotient group,

(**) U'(K; So) Π Nϊ)kmS'J)l&(K; S) -(U'(K; So) Π Nκ)k(l)).

This is isomorphically mapped by Nκ/k onto

Nκ/k(U'(K; S0))nk*(Sί)INκ/k(J?(K; S)).

Since a non-Archimedian prime p £ So is unramified in K/k, we have

Nx/k(U'(K; So)) = U'(k;S0).

By (2) of the above lemma for k in place of K, we have

U'(k;S0)Γ\k*(S'J = J2?(Jfe;S).

The proof of Theorem 1 is now completed by taking the p-primary parts.

§ 4. The main theorem

The maximal nilpotent extension of k which is unramified outside S

is denoted by knil(S).

THEOREM 2. There exist surjective homomorphisms,

βk<s: J?(k; S) > Gal((£nil(S)/&)cen Π k»ύ(SJIk»n(S)'kΆ\SJ\
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and

βί%: J^p)(k; S) > Gal((/^(S)/£)cen Π * ( ^ S J / * ( P W * a b ( p )(SJ)

the kernels of which are, respectively,

Kevβk,s= Π. Nx/t(<?(K;S)),
kcKczknil(S)
[J5Γ: * ] < + «>

and

= Π Nκ/k(J?«KK; S)).
kzKczk

Furthermore, the following diagram is commutative for every finite Galois

subextensίon K/k of kip)(S)/k:

β^8 ™ n

projection (restriction)

βτί Π i ί a b ( p ) (

where the last horizontal isomorphism is the one given by Theorem 1.

Proof. It is sufficient to show the p-case. (However it is to be noted

that ifab(S)/^ and (KΆh(S)/k)cen are not nilpotent extensions in general

even if Kjk is a p-extension.) Let Kjk be a finite Galois subextension of

k{p)(S)/k. Then it is clear that

and that

»n n ̂ a b ( r t ( S j n ( ^ ( s j
θn n Λra b ( Λ(Sj n

Therefore the natural homomorphism, (restriction) of the diagram (defined

by taking the restrictions), is surjective.

Let x be an element of the field (k™(S)lk)°*n Π Λ(P)(SJ. Then ft(x) and

its Galois closure F over k is a finite p-extension of k. Put if = F Π kip)(S).

Since F<k(p)(S) is an abelian extension of k{p)(S), it is clear that F is

contained in (iΓ/^)cβn Π K&h(p)(SJ and hence also in (ifab(2))(S)/AOcen Π ifab(2>)(SJ.

This shows that the field (k(p)(S)lk)cen Π fe^ίSJ is the composition of all

of (iΓab(p)(S)/^)cen Π # a b ( p ) (S J for finite Galois subextensions Kjk of
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Take another finite Galois subextension Ljk of k{p)(S)/k and suppose that

L contains K. Using the notation introduced in the proof of Theorem 1,

denote the p-primary part of (**) by X{Kjk), and also

G a l \\K& ^p\S)lk)cen Π K& ^p\Soo)jKa' ^ ( S ) • /2ab(ί^(Soo))

by G(K/k) for simplicity. The pro-p-group G(K/k) is canonically isomor-

phic to the p-primary part of the abelian profinite group (*) in the proof

of Theorem 1. We have the following diagram by class field theory:

X(Ljk) • G(L/k)

NL/K (restriction)

X(Klk) > G(K/k).

Since NL/lc = NKΠcoNL/Kί we have another commutative diagram,

S)) <^^~ X(L/k)

projection | NL/K
y

;S))

where the left vertical homomorphism is the projection which is naturally

defined because

Nκ/k(^p)(K; S)) 3 NLlk(^\L; S)).

Combining these two diagrams, we have two isomorphic projective systems

{^p)(k; S)INKΊk(S?™(K; S))} and {G(K/k)} both of which are parametrized

by finite Galois subextensions Kjk of k(p)(S)/k. We now see Theorem 2

at once if we take the projective limits.

COROLLARY (Heider [H 2], Satz 10). Suppose that the set S contains

all of the real Archίmedian prime divisors of k, i.e. SL 3 Si(k). Then the

Schur multiplier tP(Gsl(knil(S)lk),QlZ) is dual to 3?(k; S)/Ker βktS, and

H2(Gal(fcp)(S)lk), Q/Z) to ^p)(k; S)/Ker βi% for every prime p.

Proof. By the assumption we have £niI(Soo) = kni\ the maximal nil-

potent extension of k, and k(p)(S^) = k(p). Therefore we see the corollary

by Theorem 2 in a similar way to the one explained in Introduction

using the result of Tate and the Hochschild-Serre exact sequence.
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§ 5. The case related to the Leopoldt conjecture

Here we take S = So US*,, S, = {p e SQ(k)\p\p}, SL = Si(k), and denote

the Leopoldt kernel ^p)(k; S) simply by &p(k).

LEMMA (Heider [H2], Lemma 10). Let k^ = UΓ»o^« be the cyclotomic

Zp-extension of k — k0. Then we have

Proof. Heider [H 2] showed the case where a primitive p-th root ζp

or Λ/^Λ if p = 2 belongs to &. If not, put k' = Λ(Q or £(Λ/~=:"Ϊ). Then

the cyclotomic Zp-extension &L = \Jm^Kι is the composite field k'-k^.

It is easy to see that

Nkn/k(J?p(kn)) a Nw&piK))

if k'm = ^-A^. Therefore we have

Π Nkn/k(J?p(kn)) c n NtyΛ&Jίk'J) - 1. Q.E.D.
7Ϊ — 1 TO — 1

Since the cyclotomic Zp-extension k^ of k is contained in k{p)(S) in our

case here, we have by Theorem 2 and the corollary to it at once

THEOREM 3. Let the notation and the assumptions be as above. There

exists a natural isomorphism

βί*: sep(k) • Gal ({¥p\S)lk)e™ f] k^lk^\S) k&Hp)).

In particular, therefore, the Schur multiplier H2(Gal (k{p)(S)lk), Q/Z) is

naturally dual to the Leopoldt kernel £?v{k).
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