
H. Yokoi
Nagoya Math. J.
Vol. 120 (1990), 51-59

THE FUNDAMENTAL UNIT AND CLASS NUMBER ONE

PROBLEM OF REAL QUADRATIC FIELDS WITH

PRIME DISCRIMINANT

HIDEO YOKOI

§ 0. Introduction

Class number one problem for imaginary quadratic fields was solved

in 1966 by A. Baker and H.M. Stark independently. However, the problem

for real quadratic fields is still unsolved. It seems to us that one of the

most essential difficulties of the problem for real quadratic fields comes

from deep connection of the class number with the fundamental unit.

In this paper, we shall first in § 1 concern ourselves with real quad-

ratic fields of prime discriminant F = QWp) (prime p ~ 1 mod 4), and

give a sufficient condition for an unit ε = (t + u^/~p)j2 corresponding to

a positive integral solution (x, y) — (t, u) of the diophantine equation

x2 — py1 — — 4 to be the fundamental unit (Theorem 1).

In § 2, for the p-invariant np defined by using the fundamental unit

of F

eP - (tp + upλ/J)/2 (>1),

in the case np Φ 0, i.e. £p/ι4>l/2, the class number one problem is con-

sidered, and it will be proved that if np Φ 0 and hp = 1 then p < 4.1 X 106

holds with one possible exception of p and that under the assumption of

the generalized Riemann hypothesis this is true without any exception

(Theorem 2).

Finally, we shall show that for real quadratic fields Q(V d) with dis-

criminant d not necessarily prime the same result is proved (Theorem 3).

Moreover, we shall give three kinds of tables, one of which consists of

30 primes p congruent to 1 mod 4 satisfying hp = 1 and np ^ 1.

§ 1. Fundamental unit

In real quadratic fields Q(VP~) with prime discriminant, p is prime
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congruent to 1 mod 4. Therefore, the fundamental unit of Q(Λ//Γ)

εP = (tp + u^~p)\2 (> 1) ,

has the norm Nep = — 1, and hence (tp, up) is the smallest positive integral

solution of x2 — py2 = — 4.

Conversely, we can prove the following theorem:

THEOREM 1. For any fixed prime p (Φ 5) congruent to 1 mod 4, if a

non-trivial positive integral solution (x, y) = {t, u) (t > 0, u > 0) of diophan-

tine equation x2 — py2 = — 4 satisfies any one of the following:

( i ) */a2 > 1/2,

( π ) * < 2 p ,

(iii) α 2 < 4 p ,

then ε — (t + u^/^p)l2 is the fundamental unit of the real quadratic field

To prove this theorem, we need several lemmas. First we prove the

following:

LEMMA 1. For any prime p congruent to 1 mod 4, let (t, u) be a positive

integral solution of diophantine equation x2 — py2 = — 4.

Then the following are equivalent:

( i ) t\u2 > 1/2,

(ii) t<2p,

(iii) u2 < 4p.

Proof. In the case u = 1, we have p = t2 + 4, and hence t = Vp — 4

< 2p, w2 = 1 <4p, £/a2 ̂  1.

In the case u — 2, we have p = £2/4 + 1, and hence t = 2Vp — 1 < 2p,

u2 = 4 < 4p, */ί*2 ^ 1.

Now we suppose u > 2. Then £2 — pw2 = — 4 implies t Φ 2p, 0 < 8/^2

< 1 and p > p - 4/w2 = t2\u2. Therefore,

t\u2 < 1/2 if and only if p - 4/u2 < t\%

which is equivalent to t > 2p.

Next, p ;> 5 implies 0 < 4/p < 1. Therefore,

t> 2p if and only if pw2 — 4 > 4p2,

which is equivalent to u2 > 4p.
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LEMMA 2. For any prime p congruent to 1 mod 4, let (x, y) =s= (t0, u0)

be any positive integral solution of diophantine equation x2 — py2 = — 4. If

we put

then sequences of natural numbers {tn}, {un} are monotonically increasing

in narrow sense.

Proof If we put

t + UΛ/'P' _ / *o + WoV P* V

2 V 2 / '

then we get easily

t = (ίj + pw§)/2 ̂  3 ,

and hence we have tj2> 1.

On the other hand, from the definition, we have

t +
2 2 2

- {(ttn + puun) + (tun

Therefore, we get

and

Mn + 1 - (ί/2)Mn + {Uj2)tn > Un

for any n = 1, 2, 3, ,

LEMMA 3. For ατιy prime p congruent to 1 mod 4,

the fundamental unit of real quadratic field Q ( V P O tf w e

el = (tp + ΰ

ίp > 2p α7icί Op > 4p

Zio/d except for p — 5.
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Proof. Since

(tp + i

we have

tp =

and

Hence, 2p < £p holds if and only if

p(8 - 3tpUp) < tp ,

which follows from

8 - 3 * χ < 0, i.e. u\tp ^ 3 .

However, iC"vtv ^ 3 holds if and only if up Φ 1 or tp Φ 1, 2, which is equi-

valent to /? Φ 5.

On the other hand, since (tp, Up) is a positive integral solution of

x2 — py2 = — 4, by Lemma 1

ίp > 2p if and only if u\ > 4p .

Proof of Theorem 1. First, we note that three conditions of our theorem

are equivalent by Lemma 1.

Next, we suppose that ε = (t + u^~p)j2 is not equal to the fundamental

unit εp = (tp + up</~p)/2 (>1) of QfVp"), and put

( Λ = l , 2 , •. • ) .

Then there is an uniquely determined positive integer m such that

t = *w and u = um,

and by Lemma 2, we have

tp<tx<L tm and up < ut £ un .

On the other hand, by Lemma 3, we obtain

tλ > 2p and u\ > 4p ,

which contradict with the assumption of our theorem.
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§ 2. Class number

For any prime p congruent to 1 mod 4, denote by

εp = (tp +

the fundamental unit of the real quadratic field Q(VP~) with prime dis-

criminant.

We now define p-inυariant as a mapping from the set of all rational

primes congruent to 1 mod 4 to the set of non-negative rational integers.

In our recent papers ([6], [7], [8]), we defined some new p-invariant,

above all np, which is defined by the inequality

| * > J - 7 i , | < 1/2,

and obtained several interesting results regarding its property. Especially

as a result cJosely related to class number one problem, we proved in [8]

that in the case np Φ 0, there exists only a finite number of prime p

congruent to 1 mod 4 with class number one.

In this section, we prove more precisely the following:

THEOREM 2. If prime p congruent to 1 mod 4 satisfies

p > 4.1 X 106 and np Φ 0 i.e. εp < 2p,

then hp > 1 holds with one possible exception of p.

Moreover, if we assume the generalized Rίemann Hypothesis, this is

true without any exception.

The proof of this theorem depends upon the following lemma:

LEMMA 4. If prime p congruent to 1 mod 4 satisfies np Φ 0, then

ep<2p and hp > ° 3 2 7 5 X JL

'P

(m-2)/2m

m log 2p

hold for any p > em, m >̂ 11.2 with one possible exception of p.

Assuming the generalized Riemann Hypothesis, this is true without

any exception.

Proof. The first part of this lemma follows from Dirichlet's class

number formula by applying the Siegel-Tatuzawa theorem (cf. [1], [5]) and

Lemma 1.

For the second part, Kim [3] shows that if we assume the generalized
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Riemann Hypothesis, the Siegel-Tatuzawa theorem is true without any

exception (cf. [4]).

Proof of Theorem. Put

L(x) = Ί

 X\ , a = α(ro) = (/n - 2)/2m (> 0)
log 2x

for any fixed m >̂ 11.2. Then, since

f (x) - ( g l Qg 2 *) 1

x*-α (log 2x)2

for any x ;> 6, /(x) is increasing on [6, oo).

Moreover, put

gm(x) = _013275̂  χ ^ _

Then, for m = 15 (> 11.2) we have

£15(4.1 X 106) > 1, and em = β15 < 4.1 X 106.

This establishes by Lemma 4 that /ip > 1 holds for all p > 4.1 X 106 except

possibly one p, and without any exception under the assumption of the

generalized Riemann Hypothesis.

For any prime p satisfying 3533 < p < 4.1 X 106, we may confirm that

np Φ 0 implies hp > 1 by using Kida's UBASIC 86. We owe to Y. Tani-

gawa such better upper bound of p and this confirmation. Moreover, in

primes p satisfying 5 ^ p ^ 3533, we find exactly 30 primes p such that

np Φ 0 and hv — 1. Therefore, from Theorem 2 we obtain the following

corollary, which is a generalization of Kim, Leu and Ono's result (cf. [2]):

COROLLARY. There exist exactly 30 primes p congruent to 1 mod 4

satisfying np^l and hp = 1 with one more possible exception of p.

All such primes are listed in the following table I. Furthermore, Y.

Tanigawa kindly informed me that by the same way the following general

result is proved for discriminant d, not necessarily prime:

THEOREM 3. There exist exactly 54 discriminants d of real quadratic

fields Q(V d) satisfying εd < 2d and hd = 1 with one more possible exception

of d.

All such discriminants except primes are listed in the table III.
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Table I
(n

p
 ̂  1, h

v
 = 1)

p

5

13

17

29

37

41

53

61

101

149

157

173

197

269

293

317

461
509

557

677
773

797

941

1013

1493

1613

1877

2477

2693

3533

tp

1

3

Up

1

1

8 2

5

12

1

2

64 | 10

7 ! 1

39 5

20 2

61 5

213

13

28

164

17

89

365

925

236

52

139

367

! 1135

923

! 2357

17
1

2

10

1

5

17
41

10

2

5

13

37

29

61

! 2972 74

1603

647

! 4411

37

13

85

i 2437 41

Up p

1 229

3 |

5

3

1

7
2

5
2

1

13

7
2

17
4

1

1

2

257

401

577

733

1009

1093

1129

1229

1297

1373

1429

1601

1901

2029

2153

2213

2677

ί 2917

13 !

6
2

1

1

1

1

3137

3181

3221

3253

4229

4357

4409

1 ! 4493

4

1

1

4597

4933

5273

Table II

(tjul> 1/2, h

tp «,

15

32

40

48

27
1080

33

336

35

72

37
189

80

436

45

464

47

3777

108

1

2

2

2

1

34

1

10
1

2

1

5
2

10

1

10

1

73

2

112 2

564

3689

57
65
132

664

67

339

2388

1888

10

65

1

1
2

10

1

5

34

26

P> 1)

tplK

15

8
10
12

27

0.93

33

3.36

35

18

37

7.56

20

4.36

45
4.64

47
0.70

27

28

5.64

0.87

57
65
33

6.64

67

13.5

2

3

K
3

3

5

7

3

7

5

9

3

11

3

5

7
3

7
5

3

3

3

9

5

3

5

7
5

9

3

3

3

7

p: prime congruent to 1 mod 4.

£p = (tp + iipy/JΪ) > 1: fundamental unit of
np: p-invariant defined by \tju\ — np\ < 1/2.
hp: class number of Q(\/~p).
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Table III

(d Φ p, tjul > 1/2 i.e. nd ^ 1, hd = 1)

21

33

d

= 3

3

•7

•11

ί

I
!

7 7 = 7-11

93 =

133 =

141 =

3-31

7-19

3-47

213= 3-71

2 3 7 = 3-79

341 = 11-31

413= 7-59

437 = 19-23

453= 3 151

573= 3 191

717 = 3-239

917= 7 131

1077= 3-359

1133 = 11-103

1253= 7 179

1293= 3-431

1757= 7-251

2453 = 11-223

3053 = 43-71

3317 = 31 107

5

46

25

9

29

173

190

73

77

277

61

21

149

766

241

1181

361

101

177

1726

1006

3566

3481

5241

1

8

3

1

3

15

16

5 '

5

15

3

1

7

32

9

39

11

3

5

48

24

72

63

91

tjul

5

0.71

2.77

9

3.20

0.76

0.74

2.92

3.08

1.23

6.77

21

3.04

0.74

2.97

0.77

2.98

11.22

7.08

0.74

1.74

0.68

0.87

0.63

5

1

3

9

3

1

1

3

3

1

7

21

3

1

3

1

3

11

7

2

1

1

d: discriminant of real quadratic Q(V d).

$d = (td + udV d)/2> 1: fundamental unit of Q(V d).
nd: invariandt defined by \tjnl — nd\ < 1/2.
hd: class number of Q(Vd).
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