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A CHARACTERIZATION OF THE LEVY LAPLACIAN IN TERMS

OF INFINITE DIMENSIONAL ROTATION GROUPS

NOBUAKI OBATA

Introduction

P. Levy introduced, in his celebrated books [21] and [22], an infinite

dimensional Laplacian called the Levy Laplacian in connection with a

number of interesting topics in variational calculus. One of the most

significant features of the Levy Laplacian is observed when it acts on

the singular part of the second functional derivatives. For this reason

the Levy Laplacian has become important also in white noise analysis

initiated by T. Hida [12]. On the other hand, as was pointed out by H.

Yoshizawa [29], infinite dimensional rotation groups are profoundly con-

cerned with the structure of white noise, and therefore, play essential

roles in certain problems of stochastic calculus. Motivated by these

works, we aim at developing harmonic analysis on infinite dimensional

spaces by means of the Levy Laplacian and infinite dimensional rotation

groups.

The significant property of the Levy Laplacian mentioned above ap-

pears typically when it acts on particular quadratic functions on infinite

dimensional spaces. This fact leads us naturally to the notion of normal

functions which will be taken as the domain of the Levy Laplacian, and

thereby we find many characteristic properties of the Levy Laplacian.

The main purpose of this paper is to investigate the structure of the

rotation group describing the invariance of the Levy Laplacian and to

give its characterization by means of this invariance. Our main results

are stated in Sections 3 and 4.

Here is a summary of the paper.

Throughout the paper H denotes the real Hubert space L\T, v) with

(T, v) being a probability space satisfying some conditions prescribed in

Section 1. The Levy Laplacian Δ is defined by
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JF(ξ) = lim - L t <F"(ξ)en, en) ,

where {en}̂ =1 is an equally dense CONS (= complete orthonormal sequence)
in H and F is a normal function on H introduced below. It will be noted
that the limit always exists and does not depend upon the choice of such
a CONS.

We now introduce normal functions which will play an essential role
in the study of the Levy Laplacian. Let Jί be the set of all multiplication
operators M(φ) with φ e L°°(Ty v), JΓ the set of all compact operators on
H and put <$/ = Jί + Jf. It is known that J/ becomes a norm closed
subalgebra of the algebra 3& = @{H) of bounded operators on H. A
normal polynomial on H is by definition a member of the algebra generated
by constant functions, linear functions and quadratic functions of the
form (Aξ, $>, Ae-s/. Taking the completion of the normal polynomials
with respect to the topology of uniform convergence on bounded subsets
together with all the derivatives, we obtain the space ϋft of normal func-
tions (see Section 1). It is noted that 31 becomes a Frechet space and is
closed under pointwise multiplication.

As we mentioned before, the main purpose of this paper is to establish
a relation between the Levy Laplacian and infinite dimensional rotation
groups. To our goal we first investigate the structure of the rotation
group describing the invariance of the Levy Laplacian. Set

O(H; d) = {ge O(H); U{g)Δ = ΔU(g)},

where the action of the orthogonal group O(H) on functions F on H is
defined by

(U(g)F)(ξ) = F(g->ξ), ξeH, geO(H)

It is very interesting that the structure of O(H; Δ) is completely determined.
We now prepare some notation. The most important subgroup of

O(H) comes from transformations of the probability space (T, v). With
each transformation a of T we associate a rotation ga e O(H) defined by
the formula:

(^f^T ?(«-'«)), ξ e H, t e T.

The group %(T) of all transformations is then regarded as a subgroup of
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O(H). The subgroup of all measure-preserving transformations will be

donoted by %{T, v). Let OC(H) denote the subgroup of all rotations which

are the identity modulo compact operators and we set Oa(H) — O(H) 0

Jt, which becomes a maximal abelian subgroup of O(H). With these

notations, we shall prove the following result in Section 3.

THEOREM A (Invariance of the Levy Laplacian). The rotation group

O(H; Δ) admits a factorization into a semidirect product of three subgroups:

O(H; Δ) = %(T, v) K (Oa(H) K OC(H)) - (%(T, v) K Oa(H)) x OC{H).

The result suggests that %(T, v) is indispensable to the analysis of

the Levy Laplacian and, in fact, we shall illustrate this in the problem

of characterizing the Levy Laplacian. While, it is also interesting that

O(H; J)-invariant eigenfunctions of the Levy Laplacian are determined

using the subgroup OC(H) (Proposition 3.6).

We then discuss characterization of the Levy Laplacian by means of

the invariance described in Theorem A. To this end we notice the fol-

lowing properties of the Levy Laplacian.

(LI) Δ is a continous linear operator from 91 into itself;

(L2) Δ is a derivation on 9i, i.e., for any Fu F2 e 31,

(L3) Δ annihilates linear functions;

(L4) for any non-negative quadratic function F(ξ) = (Aξ, ξ) with

A 6 .si/, ΔF(ξ) is a non-negative constant.

The proofs of (LI) and (L2) are given in Section 1. On the other hand,

(L3) and (L4) are immediate consequences from the definition. Finally,

by Theorem A we have

(L5) Δ is invariant under %(T, ι>).

Among others, properties (L2) and (L5) are very noticeable, and thereby

a clear discrimination is made between the Levy Laplacian and another

Laplacians on infinite or finite dimensional spaces. We prove in Section

4 the following assertion.

THEOREM B (Characterization of the Levy Laplacian). // an operator

on %l satisfies the properties (L1)-(L5), it is a constant multiple of the Levy

Laplacian.

In Section 5 we establish a formula which links the Levy Laplacian
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and asymptotic spherical mean. A noteworthy feature of normal func-
tions is observed here again (Proposition 5.1).

In Appendix we construct CONS's which are equally dense independent
of the arrangement and discuss rearrangement of equally dense CONS's
in general. The last topic is somewhat related to a similar problem in
uniformly distributed sequences ([25]).

ACKNOWLEDGEMENTS. I acknowledge with special thanks stimulations
that came from Professors K. Aomoto, T. Hirai, H. Nomoto and H.
Yoshizawa. Most cordial thanks are due to Professor T. Hida whose
influence on my development and direction has been both beneficial and
far-reaching.

§ 1. The Levy Laplacian and normal functions

Let T be a separable complete metric space and v a Borel probability
measure on it. Let H be the real Hubert space L\T, v) with the inner
product < , •> and the norm || ||. In order to avoid inessential argument
we assume that the measure space (T, v) = (T, &~, v) is complete. We
further put the following two assumptions on (T, v)\

(Al) every non-empty open subset of T has positive measure;
(A2) the probability space (T, v) admits no atoms.
Let & = &(H) denote the algebra of all bounded operators on H

equipped with the operator norm topology. With each φ e L~(T, v) we
associate a multiplication operator M(φ) e ^ by

(M(φ)ξ)(t) ̂  φ(t)ξ{t), ξeH, teT.

Let Jί be the set of such multiplication operators M(φ) and JΓ the set
of compact operators on H. Note that (A2) is equivalent to

(A20 JίΠ^ = {0}.

We set

sί = Jί + X = {M(φ) + K φ e L~(T, v), KeX),

which becomes a closed subalgebra of 08 (cf. [4, §1.8]).
As is well known, one of the most significant properties of the Levy

Laplacian is observed when it acts on particular quadratic functions on
infinite dimensional spaces ([22]). These quadratic functions lead us the
notion of normal functions which will be taken as the domain of the
Levy Laplacian.
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DEFINITION. A function on H is called a normal polynomial if it

belongs to the algebra generated by constant functions, linear functions

and quadratic functions of the form (Aξ, £>, Aesf. Let 31 be the com-

pletion of the normal polynomials with respect to the topology of uniform

convergence on bounded subsets in H together with all the Frechet deriva-

tives. A member of 31 is called a normal function.

Note that 31 become a Frechet space and remind that 31 is closed

under pointwise multiplication. In fact, we may prove a more general

result below with no difficulty.

PROPOSITION 1.1. Let f be a C^-functίon on Rm. Then for any Fu

- - , Fm e 31 the function F(ξ) = fiF^ξ), , Fm(ξ)) is again a normal

function.

As usual we identify the derivatives F'(ξ) and F"(ξ) with an element

of H and a symmetric operator in $1, respectively, by the formula:

F(ξ + η) = F(ξ) + (F'(ξ), η} + 1 (F"(ξ)v, ,> + ofllίlp)
Li

for ξ e H and small η e H.

PROPOSITION 1.2. If F is a normal function, then F"(ξ) e sd for any

ξeH. More precisely, for each ξeH there exist unique φ(ξ) = φ(ξ; -)e

Lr(T, v) and K(ξ) e X such that

(1-1) F'\ξ) = M{ψ(ξ)) + K(ξ),

Proof. It is easy to see by a direct calculation that F"(ξ) e sd for

any normal polynomial F. Since stf is a closed subalgebra of J*, the

same is true for arbitrary normal functions. The uniqueness of the ex-

pression (1-1) follows from (A2') Q.E.D.

DEFINITION ([22, Part 3, §30]). A complete orthonormal sequence

(=CONS){βn}?βl in H=U(T, v) is called equally dense if

Hm-4- Σ f φ(t)eMdv{t) = ί Ψ(t)dv(t),

or equivalently,

(1-2) l im-L Σ (M(φ)en, en) = f ψ{t)dv{t)
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for any φ e L°°(T, v).

Generally speaking, the property of being equally dense depends upon

the arrangement of the CONS. In this connection we mention a few re-

sults in Appendix. From now on we fix an equally dense CONS in H

and denote it by {en}ζ=1.

LEMMA 1.3. For any Fe$l we have

(1-3) lim J - Σ <F"(£)en, en) = ί φ(ξ t)dv(t),
iV-oo jty 71 = 1 J T

where φ(ξ; •) is given by (1-1).

Proof. By Proposition 1.2 we have F"(ξ) = A%>(£)) + #(?), where

e L°°(T, v) and if (ξ) e JΓ. Since {en}ζ^ is equally dense, we have

(1-4) lim - i - Σ <M(^(f))βn, βn> = f p(f

On the other hand, since iί(f) is compact,

and therefore,

(1-5) ^

Then (1-3) follows from (1-4) and (1-5). Q.E.D.

We now come to the following

DEFINITION. For a normal function F e 3ϊ we put

ΔF(ξ) = lim _ L £ <F;/(f )βn, en) , ξe H.
V iV

(By Lemma 1.3 the limit always exists and is independent of the choice

of an equally dense CONS.) The operator Δ is called the Levy Laplacίan.

PROPOSITION 1.4. The Levy Laplacian A is a continuous linear operator

from 3ΐ into itself.

Proof. For brevity we put

(1-6) L(A) - l im-1. Σ <Aen, O , A e i .
iv ]y i
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The limit always exists (cf. the proof of Lemma 1.3). Suppose that F is
a normal polynomial given by

(1-7) F(ξ) = P((au ξ), , (alf f>, (A£, ξ), , (Amξ,ξ}\ ξeH,

where al9 , ateH, Aί9 , Am e stf and P is a polynomial in I + m
variables. Then by a direct calculation, we obtain

ΔF(ξ) = ±2L(Aj)dι+jP.

Hence ΔF is also a normal polynomial.
We next show the continuity. For any bounded set BczH and non-

negative integer n we put

(1-8) ||F|U,n = sup{||F<»>(ί)||; ξeB},

where ||F(Λ)(f)|| is the usual norm of î-linear forms, i.e.,

\\F™(ξ)\\ = suv{\F^(ξ)(ξu , f»)|; llfill < 1, , HfJI < 1}.

The topology of 9Ϊ is by definition given by the seminorms || |kπ A di-
rect calculation implies that \\JF\\Bi7l < \\F\\B,n+2 for any normal polynomial
F. Since the normal polynomials form a dense subspace of 3ΐ, the same
inequality holds for any F in 31. Consequently, the Levy Laplacian is a
continuous linear operator from 31 into itself. Q.E.D.

PROPOSITION 1.5. The Levy Laplacian is a derivation, i.e., for any
pair of normal functions Fx and F2 we have

ΔiF^m = ΔF&) Ft(ξ) + F&) ΔF2(ξ), feff.

This illustrates a striking contrast to the finite dimensional Laplacian.
The proof is easy and omitted (see also Lemma 3.5).

Finally we remind that the normal functions cover many important
functions on Hubert space. For example, Hilbert-Schmidt polynomials
([1]), regularly analytic functions ([26]) and ordinary Brownian functionals
through the S-transform ([18]) are normal functions. Moreover, the ex-
ponential function F(ξ) = exp(— \\ξ||2) which corresponds to a physically
important Brownian functional is also a normal function.

§ 2. Infinite dimensional rotation groups

The group of all orthogonal operators (or rotations) on H is denoted
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by O(H) and equipped with the norm topology. Subgroups of O(H) are

generally called (infinite dimensional) rotation groups.

The most important subgroup of O(H) arises from transformations of

T. A transformation on (T, v) is by definition a measurable automorphism

a on T such that v°a~ι and v have the same class of null sets. A

transformation a is called measure-preserving if voa'1 = v. Let S£(T) and

%(T, V) denote the group of all transformations and its subgroup of

measure-preserving ones, respectively. With each ae%(T) we associate

a rotation gae0(H) by the formula:

(2-1) (gjξ)(f) =

By means of the mapping a->ga we identify S£(T) with a subgroup of

O(£T) which will be denoted by the same symbol.

We put

0c(H) = {ge0(H); I-geJT},

where I denotes the identity operator on H, and

Oa(H) = O(H) Π Jί.

Note that OC(H) is a normal subgroup of O(H). Note also an obvious

relation

(2-2)

Then we have the following assertion.

LEMMA 2.1. The three rotation groups %(T), Oa(H) and OC(H) con-

stitute a semidirect product: %(T) tx (Oa(H) tx OC(H)) == (S(T) K Oα(iF/))

K OC(H).

We next show that the semidirect product is the automorphism group

of J / : O(iί; sί) = {^6 O(F); ^ J / ^ " 1 = J/}, namely

PROPOSITION 2.2. Jί holds that

O(H; si) = ̂ (T7) K (Oβ(fl) <̂ Oe(H)) - (K(Γ) ix Oβ(f0) x

Before we come to the proof some preliminary results are given.

LEMMA 2.3. Let Ψ be an algebra automorphism of the Banach algebra

lr(T, v). Then there exists a unique aeX(T) such that Ψ(φ) = φoa'1 for

any φ e L°°(T} v).
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LEMMA 2.4. If A e& commutes with every multiplication operator

M e i modulo compact operators, i.e., AM—MAe$Γ for any MeJΐ,

then A belongs to stf = Jί + X.

These are easily verified with the help of the corresponding results

for complex algebras, see [3], [17] and [28].

LEMMA 2.5. For ge O(H) the following two conditions are equivalent:

(i) gMg-1 - MeX for any M e i ;

(ii) g belongs to Oa(H) K OC{H)

Proof. The implication (ii) => (i) is obvious. We show that (i) implies

(ii). Now suppose that gMg'1 — Me X for any J l ί e i . Then by Lemma

2.4, g belongs to Jί + JΓ, say, g = M + K. Since

I=tgg = (<M + ιK)(M + K) = 'MM + ιMK + CMK +

/ - ιMM = '.MίΓ + 'iOf + 'UΓUL belongs ^ Π ^Γ = {0}. Hence M belongs

Oa(H) and ίiW^ = ιM{M + K) = I + ιMK belongs to OC(H). Consequently,

we obtain the factorization g = M(I + ιMK) e Oa(H) K OC(H). Q.E.D.

Proof of Proposition 2.2. It is easily seen that any rotation g e %(T)

K (Oa(H) K OC(H)) induces an automorphism of si. We shall prove the

converse assertion. Suppose that g e O(H) induces an automorphism of

si. In particular, gJCg~ι + CriΓ = Jί + X. Hence g induces an auto-

morphism g of LOO(77

) v) determined uniquely by the condition that

(2-3) gM(φ)g-i - M(g(φ)) e X, φ e L~(T, v).

By Lemma 2.3, there exists a transformation a e 5£(5T) such that

(2-4) g(φ) = φoa-\ φeL-(T,v).

In view of (2-2), (2-3) and (2-4) we have

gM(φ)g-> - gaM(φ)g~ι e JΓ .

Hence, by Lemma 2.5, we have g~λg e Oa(H) IX OC(H). Consequently, g

belongs to %(T) K (Oa(H) tx Oβ(fl)). Q.E.D.

§ 3. In variance of the Levy Laplacian

In this section we find a very noticeable result which makes us

possible to study the Levy Laplacian from the viewpoint of harmonic

analysis. Namely, we determine the structure of the rotation group
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describing the invariance of the Levy Laplacian:

O(H; Δ) = {geθ(m; U(g)Δ = ΔU(g)),

where an operator U(g) on functions F on H by

(U(g)F)(ξ) = F(g-*ξ), ξeH.

The main result is the following

THEOREM A (Invariance of the Levy Laplacian). The rotation group

O(H; Δ) admits a factorization into a semidirect product of three subgroups:

O(H; Δ) = %{T, v) K (Oa(H) K OC(H)) = (£(Γ, v) K Oa(H)) K OC(H).

It is interesting and important that the invariance of the Levy Lap-

lacian is completely described with the three rotation groups each of

which is structurally very well known. Furthermore, the factorization of

O(H; Δ) suggests particular importance of 5E(T, v). In fact, we shall give

a group-theoretical characterization of the Levy Laplacian in the next

section. For the proof we begin with the following

LEMMA 3.1. For a rotation g e O(H) the following two conditions are

equivalent:

(i) U(g)9talft; (ii)

Proof First we suppose (ii). Let F be a normal polynomial given

as in (1-7). Then

(U(g)F){ξ) = F(g~'ξ) = FQgξ) =

= P((gau £>,••., (gah f>, (gAxg-% f>, , (gAmg-'ξ, f » .

Hence, by the assumption (ii) we see that U(g)F is also a normal poly-

nomial. Since U{g) is a continuous operator on C^(H)y the assertion (i)

follows. Here C%(H) is equipped with the seminorms || \\Btn defined in

(1-8).

We next show that (i) implies (ii). Consider a normal function F(ξ)

= (Aξ, £> with A € eί/. Then, by assumption U(g)F is also normal. Hence

(U(g)F)"(ξ) = ZgAg'1 belongs to si by Proposition 1.2. Consequently,

C Λ/. Q.E.D.

LEMMA 3.2. For a rotation g e O(H), U(g)3l = 3ΐ /ιo/ds i/ α̂ irf onfy i/

Proof. Immediate from Lemma 3.1. Q.E.D.
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LEMMA 3.3. Let ae%(T). Then U(ga)Δ = ΔU(ga) holds if and only

if ae %(T, v).

Proof. Let F e 9ί with F"(ξ) = M(φ(ζ)) + K(ξ). Then by Lemma 1.3

we obtain

(3-1) (U(ga)ΔF)(ξ) = f φ(g^ξ; t)dv(t).
J T

On the other hand, noting (2-2) we have

(U(ga)F)"(ξ) = gaF"(g

and therefore,

(3-2) (JU(ga)F)(ξ) = j τ ψig-Λ; a-\t))dv{t)

;t)
dv(t)

If a € X(Γ, î ), apparently (3-1) and (3-2) are in coincidence. Conversely,

suppose that (3-1) coincides with (3-2) for any FeSΪ. Then, taking F(ξ)

= \{M{ψ)ξ, £>, φeL~(T, ^), we have

ί φ(t)dv(t) = f φ{t) *4Ά dv(t) , p 6
dv(t)

This means that a e Z(T, v). Q.E.D.

Proof of Theorem A. It follows from Lemma 3.2 that O(H; Δ) C

O(H; <$/). Then, with the help of Lemma 3.3 we need only to show that

U(g)Δ = ΔU(g) for any g e Oa(H) K OC(H). LetFeΐfl with F"(ξ) = M(φ(ξ))

+ K(ξ), φ(ξ)eL-(T,v), K(ξ)eJf. Then, for any g e Oa(H) K OC(H) we

have

(U(g)F)"(ξ) = gF"{g-*ξ)g-* = g(M(φ{g-'ξ)) + K(g-^))g-> = M(φ(g'>ξ)) + K'

with some Kf e JΓ. It then follows from Lemma 1.3 that

(ΔU(g)F)(ξ) = f ^fe-1? 0dv(0 = ^f^"1?) = (t/(ff)JF)(f).

This completes the proof. Q.E.D.

Remark 3.4. There arises a natural question of translation invariance

of the Levy Laplacian. However, this is not so interesting as rotation
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invariance because the Levy Laplacian is invariant under arbitrary trans-

lations on H in the sense that Δ V{ή) = V{ΎJ)Δ for any η e H, where an

operator V(η) is defined as

(3-3) (V{η)F){ξ) = F(ξ - rj), ξeH.

The proof is straightforward.

As a simple application of Theorem A, we investigate O(H; J)-invariant

eigenfunctions of the Levy Laplacian. To this end we need the following

lemma which generalizes Proposition 1.5. For the proof we only need to

recall the definition of the Levy Laplacian and the fact that l im^^ <α, en)

= 0 for a e H.

LEMMA 3.5. Let f be a C™-function on Rm and let Fu , Fm be normal

functions. Put F(ξ) = f(Ft(ξ)9 , Fm(f)). Then

AF(ξ) = ty(m), , FJg)).ΔFβ).

PROPOSITION 3.6. Any O(H; Δ)-invariant eίgenfunctίon of Δ with eigen-

value λe R is of the form:

(3-4)

where C e R is a constant.

Proof. Suppose that F e 9Ϊ is invariant under O(H; Δ). Then F is

invariant under OC(H) by Theorem A and therefore, we may write

(3-5) F(f) = /(||e|p), ξeH,

with some function / on [0, oo). Since F i s infinitely many times Frechet

differentiable, / is of C°°-class on (0, oo) and is continuous at 0. With the

help of Lemma 3.5 we have

(3-6) JF(f) = 2f(||f||2), ξeH, ξ*0.

Suppose in addition that F is an eigenfunction of Δ with eigenvalue λ e

R, i.e., ΔF = λF. Then by (3-6) we come to the equation:

λf(t) = 2f(t) , t>0.

The solution is given by f(t) = Ceu/2, t > 0, for some C e R. Hence from

(3-5) we obtain (3-4). Q.E.D.
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§ 4. A characterization of the Levy Laplacian

Having discussed in the previous section the structure of the rotation

group O(H; Δ) describing the invariance of the Levy Laplacian, we now

start on the problem of characterizing the Levy Laplacian by means of

the invariance. To our goal we recall the following properties:

(LI) Δ is a continuous linear operator from 31 into itself (Proposition

1.4);

(L2) Δ is a derivation on 9ΐ (Proposition 1.5);

(L3) Δ annihilates linear functions, i.e., ΔF = 0 for any linear func-

tion F(f) = <α,f>, aeH;

(L4) for any non-negative quadratic function F(ξ) = <Af, ξ) with

Aessf, ΔF(ξ) is a non-negative constant;

(L5) Δ is invariant under %(T, v) (Theorem A).

By definition (L3) and (L4) are apparent. Needless to say, properties

(L2) and (L5) are particularly interesting. We note here that under (Ll)

and (L2) the statement (L3) is equivalent to the following

(L30 Δ annihilates cylindrical functions.

Here by a cylindrical function we mean a function F of the form:

F(ξ) = f((au ξ >, -- ,<αm, ?>), f efΓ,

where / is a C°°-function on Rm and au , ameH.

The rest of this section will be devoted to the proof of the following

THEOREM B (Characterization of the Levy Laplacian). // an operator

on 9ΐ satisfies the properties (L1)-(L5), it is a constant multiple of the Levy

Laplacian.

Suppose that we are given an operator A on 3ΐ satisfying the five

properties (L1)-(L5).

LEMMA 4.1. If F is a quadratic function given by F(ξ) = (Kξ, £>,

K e Jf, then ΛF(ξ) = 0 for any ξeH.

Proof. We may assume without loss of generality that K is symmetric.

Choose a sequence {Kn}^=1 of finite rank operators such that \\Kn — K\\-+0

and put Fn(ξ) = (Knξ, ξ). Then Fn becomes a normal polynomial and

Fn->F in 9ϊ. Hence from (Ll) we see that

(4-1)
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On the other hand, note that Fn is a cylindrical function for Kn is an

operator of finite rank. We therefore see from (L3') that ΛFn(ξ) = 0 for

any ξ e H. Consequently, ΛF(ξ) = 0 by (4-1). Q.E.D.

We next consider a quadratic function

Since φ can be written as difference of two non-negative functions in

L°°(T, v), it follows from (L4) that ΛFφ(ξ) is a constant which will be de-

noted by λ(φ). Obviously, λ becomes a continuous and non-negative linear

functional on L°°(T, v). While, for any a e SE( T, v) we have

*;..-. = u(ga)Fφ.

Hence by (L5) we have

Mφoa-*) = AF^-r = ΛU(ga)Fφ = U(ga)ΛFφ = %>).

Namely, λ is invariant under %(T, v). We shall prove that such a func-

tional is unique.

PROPOSITION 4.2. Let λ be a continuous and non-negative linear func-

tional on L°°(T, v). Ifλ is invariant under %(T, v), i.e., λ(φ°a~λ) = λ(φ) for

any φ e L°°(T, v) and a 6 %{T, v), then

(4-2) Xφ) = c[ φ(t)dv(t), φeL~(T,»),
J T

with some constant c ^ 0.

For the proof we need the following

LEMMA 4.3. Set T = [0,1] and let v the Lebesgue measure on T. Let

λ be a finitely additive set function on the Lebesgue measurable subsets

such that (i) λ is non-negative; (ii) λ(S) = 0 for any S with v(S) — 0;

(iii) λ is invariant under %(T, v). Then for any pair α, b with 0 < a < b

< 1 we have

(4-3) λ([a, b]) = cib - a)

with c = λ(T).

Proof. For any positive integers n and j with 1 < j < n there exists
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a measure-preserving transformation aje%(T, v) such that #,( IZJZ—9 JL\\
\L n n\)

= [o, JL1. Hence \l\Lzλ, Σ\) = £_ with c = a(T). Therefore (4-3) is
L nJ \L n nJ/ n

true for any pair of rational numbers α, 6 with 0 < a < b < 1. For the

assertion we only need to approximate a and 6 by rational numbers and

to note the non-negativity of λ. Q.E.D.

Proof of Proposition 4.2. The functional λ is canonically identified

with a finitely additive set function on the <7-field 3Γ which is absolutely

continuous with respect to v (e.g., [6, Chap. IV, Theorem 8.16]). It is

therefore sufficient to prove that

(4-4) λ(S) = cv(S)

for any S e J with c = λ(T). First suppose that S is an open subset of

T. Then there is an isomorphism φ from T onto [0, 1] such that

(i) the image measure voφ~ι is the Lebesgue measure on [0, 1];

(ii) v*S) = [0, KS)).

It then follows from Lemma 4.2 that λ(S) = cv(S). Hence (4-4) is valid

for any open subset S of T, and therefore, so is for any closed subset.

Moreover, (4-4) is valid for any Borel subset S of T. For there are

sequences {Fn} of closed subsets and {Gn} of open subsets of T such that

FίczF2c: . . . c S c czGzCiG, with l im π _ v(Fn) = l im w _ v(Gn) - i<S).

Finally, (4-4) is true for any SeT because every measurable subset

S e ^ " coincides to a Borel subset modulo null sets and because λ is abso-

lutely continuous with respect to v. Q.E.D.

LEMMA 4.4. Assume that an operator Λ satisfies the conditions (Ll)~

(L5). Then there exists a constant c > 0 such that ΛF = cΔF for any

quadratic function F of the form F(ξ) — (Aξ, ξ} with Aes/.

Proof Put A = M(φ) + K. Then by Lemma 4.1 and the discussion

before Proposition 4.2 we see that AF(ξ) = 2λ(φ). It follows immediately

from Proposition 4.2 that

ΛF(ξ) = 2c f φ(t)dv(t) = cdF(ξ).
J T

This proves the assertion. Q.E.D.

Proof of Theorem B. Since A is a derivation by assumption (L2), it
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annihilates constants as well as the Levy Lapalcian Δ. Taking (L3) and

Lemma 4.4 into account, we see that

(4-5) AF = cΔF

for any normal polynomial F of degree < 2. Using (L2) again, we see

easily that (4-5) is true for arbitrary normal polynomials. Finally the

property (LI) implies that (4-5) is also valid for any normal function

Fe$l because the normal polynomials form a dense subspace of 9ΐ.

Q.E.D.

§ 5. The Levy Laplacian in terms of spherical mean

In this section we discuss another approach to the Levy Laplacian

in terms of spherical mean due to Levy. This approach is also inter-

esting to discuss certain problems of stochastic calculus. In addition,

we shall observe that the notion of normal functions is quite natural

from this viewpoint as well.

For each n = 1, 2, , the unit sphere S71""1 C Rn is regarded as a

compact subset of H by means of the mapping:

h = (hu - ,hn) i > Σ hkek eH, he S71'1.

We denote by dSn_i(/&) the normalized uniform measure on Sn~\ Then

the (asymptotic) spherical mean of a function F over the sphere of radius

p e R with center at ξ e H is defined by

MF(ξ, p) = lim f F(ξ + ph)dSn_x(h)

provided the limit exists. We shall prove the following

PROPOSITION 5.1. Every normal function Fe3l admits the spherical

mean MF(ξf p) for any ξ e H and pe R, and the identity

(5-1)
P-o p"

holds.

LEMMA 5.2. Let Fi be a quadratic function given by F/f) = (Afc, ξ>

with Aj erf, j = 1,2, •••,<?, and put F(ξ) = f]?=iFά(ξ). Then

(5-2) MF(0, p) = Π MF,(0, p), peR.
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Proof. We define a symmetric p-form F on H with p = 2g by

(5-3) A f 1, , f p) - Λ Σ Π <^jf .(2,-D, f .<£„> >
p ! 6 ® l

where <SP stands for the permutation group of p symbols. Then F(ξ) —

F(ξ, •••,!) and

(5-4) MF(0, p) = p?{p - 1)!! lim Λ-« Σ F(e i l ( β ( l, , e v e l f ).

This formula is due to [26, Lemma 3.1], In view of (5-3) we have

(5-5) τι-< Σ A

Here R is a sum of finitely many (p! — q\2q) terms of the form:

( 5 " 6 ) -̂ -f- ^ Σ _γ <Aeil9 ejx) . <A,e v ejq} ,

where (yΊ, , jq) = (iσ(1), , iβ(β)) for some σ e ©β, α ^ e . Using the

Schwarz inequality we have

7,-1/2

and therefore,

,-1/27,-1/2

|Λ| < (pi - g!29) -5—- | | A, || . || Aq || > 0 as n
p !

Consequently,

MP(0, p) = ί>p(p - 1)!! -^f- lim n - Σ (Λe,,, eiL>
p\

where L is defined by (1-6). Since MF/0, p) = ^(A^), we obtain (5-2).
Q.E.D.

Proo/ o/ Proposition 5.1. Evidently, MF(0, p) = 0 if F is a homoge-

neous polynomial of odd degree. Using this fact we see that the spherical

mean MF(0, p) always exists for any normal polynomial and that (5-2) is
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also valid for any normal polynomials Fu , Fq. Moreover, this is true
for any normal function because every normal function can be approxi-
mated by normal polynomials uniformly on the sphere of radius p with
center at 0. Note that, for any F e 9ϊ the translated function V{η)F is
also normal for any η e H (cf. (3-3)). Moreover, it is obvious from the
definition that M(V(η)F)(ξ, p) = MF(ξ — η, p). Hence, we conclude that
MF(ξ, p) = M(V(-ξ)F)(0, p) exists. Since ΔF(ξ) exists by Lemma 1.3,
we obtain the identity (5-1) with the help of the result [26, Proposition
1.1]. Q.E.D.

COROLLARY 5.3. For any pair of normal functions Fx and F2 we have

ξ, p) = Mflfc, p)-MF2(ξ, p), ξeH, peR.

Proof During the proof of Proposition 5.1 we have already estab-
lished that the assertion is true for ξ = 0. For an arbitrary ξ e H we
need only to apply the translation operator V(—ξ). Q.E.D.

Remark 5.4. For a quadratic function F(ξ) = (Aξ, ξ} with A e srf it
holds that MF(ξ, p) = F(ξ) + p2L(A). From this we see that a quadratic
function possesses the mean value property if and only if it is harmonic
with respect to the Levy Laplacian (see also [26]).

Remark 5.5. There is an interesting relation between the Levy
Laplacian and another infinite dimensional Laplacian introduced by Gross
[8]. The latter will be called the Gross Laplacian and defined as

JaF(ξ) = Trace F"(ξ), ξeH,

if F"(ξ) is an operator of trace class. Then we may prove with no
difficulty that

ΔF{ξ) = \ i ±

where IN is an integral operator on H with integral kernel

In this connection, see also [20].
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Appendix. Construction of equally dense complete orthonornial

sequences

As is easily expected, generally speaking, the property of a CONS

being equally dense depends upon the arrangement. In the first half of

this appendix we construct CONS's which are equally dense independent

of the arrangement. For technical simplicity we specialize our consid-

erations to the case where T = [0, 1] equipped with the Lebesgue measure.

Let G be the countably infinite direct product of the identical additive

group Z2 = {0, 1}:

G = te = 0 Ί , r 2 , •••); r n e z 2 ) .

Equipped with the product topology, G becomes a compact abelian group.

We denote by v the normalized Haar measure of G. The binary expansion

yields an isomorphism (in the sense of measure theory) from G onto [0, 1]

by means of the mapping:

β:g = (ϊu r2, • •) i—> Σ y e [0, 1], geG.

The image of the Haar measure v under β coincides with the Lebesgue

measure.

It is known that the dual group GA becomes a CONS in L\G, v)

(see e.g., [11, Remarks 27.4 and Theorem 27.40]). Since every feGA and

therefore f°β~ι takes values in {±1}, we have

PROPOSITION A.I. The set {f°β~ι\ feGA} is an equally dense CONS

independent of the arrangement.

An equally dense CONS is also obtained from differential equations.

PROPOSITION A.2. Let r = r(t) be a continuous function on [0, 1],

Denote by un = un(t) the normalized n-th eigenfunction of the following

second order differential equation:

u"(t) - r(t)u{t) + λu(t) - 0

with the boundary condition: u(0) — u(ί) = 0. Then {un}ζ^ becomes an

equally dense CONS in H = L2(0, 1) independent of the arrangement.

Proof. It is sufficient to show that

l i m 4 r Σ ί1 φ(t)ugin)(tfdt = Γ φ{t)dt
Λ'-oo JV n = l JO Jo
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for any φ e L°°(0, 1) and geAut(7V), where Aut(iV) stands for the group

of all permutations on the set N = {1, 2, •}. For simplicity we put

en(t) = V~2 sin πnt and wn(<) = en(t) + ι>»(*) .

With the help of the Riemann-Lebesgue theorem we may prove that

{eg(n)}n=i is an equally dense CONS for any geAut(iV). We then need

only to show that

lim - L f; f φit)ugin)(t)*dt = Hm -Ir Σ f Ψ{t)egUtfdt.

But this is immediate from the following inequalities:

where Λ ί > 0 is a constant such that \υn{t)\ < M/τι for all ί e [0, 1], For

the existence of such a constant, see [2, Chapter V, § 11]. Q.E.D.

Finally we make two remarks on relation between equally dense

CONS's and infinite dimensional rotation groups.

PROPOSITION A.3. // {en}~=1 is an equally dense CONS, so is {gen}^

for any g e O(H; Δ).

Proof. According to Theorem A, any g e O(H; Δ) is factorized as

g = gagig2 with ae%(T9v), g,eOa{H) and g2e0c(H). Then, for any

φ e L°°(T, v) we have

(M(φ)gen, gen) = (g-1M(φ)gen, en) = (M(φoa)en, en> + (Ken, en}

with some K e JΓ. Hence

n,gen}= ί φ(a(t))dv(t) = ί
JΓ JΓ

This proves that {gew}~=1 is also equally dense. Q.E.D.

On the other hand, it is interesting to consider permutations which

preserve the property of a CONS being equally dense. Following [23] we

introduce the Levy group:

& = ίgeAut(Λ0; lim —1{1 < n < N; g(ή) > N}\ =
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Then the following result is easy to see.

PROPOSITION A.4. // {en}ζ^ is an equally dense CONS, so is the

rearranged CONS {eg{n)}^ for any ge&.

This suggests some similarity of equally dense CONS's and uniformly

distributed sequences, in this connection see [25].
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