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DEDEKIND SUMS AND QUADRATIC RESIDUE SYMBOLS
HIROSHI ITO

1. In this paper we first prove a simple relation between sums of
a certain type and quadratic residue symbols. Then we apply this to
Dedekind sums introduced by Sczech [56]. In particular one of his con-
jectures in [6] will be proved.

2. We will consider congruence relations such as
a=b (mod2%), n>1,

where ¢ and b are algebraic (not necessarily integral) numbers. We take
this to mean that a — b = 2"¢c with a 2-integral algebraic number c¢. Let
K be an algebraic number field of finite degree, o its ring of integers,
and ¢ an integral ideal of K prime to 2. Denote by N¢ the absolute norm
of c. Let f be a map from of/c — {0} to an algebraic number field con-
taining K.

ProposiTioN 1. If f satisfies the conditions
(1) f(—= k) = —f(R),
(2) f(h=1  (mod2),

then, for every a €0 prime to ¢,
ST f(ak)f(R) = Ne + 1 — z(_“_) (mod 8) .
k€o/c ¢
k#0

Here (a/c) is the quadratic residue symbol of K.
Proof. Let R be a subset of o/c such that RN (— R) = @ and o/c =
RU(—R) U{0}. By (D,
(f(— ak) — D(f(— k) + 1)
= (f(ak) — D(f(k) + 1) + 2(f(k) — f(ak)) .
Therefore, from (2),
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(3) 3 (flak) = (B + 1)

k+0

= 2}%3 {(f(ak) — 1X(f(R) + 1) + f(k) — f(ak)}
= Z{k;]e f(k) — L;‘,R f(R)} (mod 8) .
Put
R,=RN(— DR, n=201.

Then R = R, UR, and aR = R, U (— R,), the unions being disjoint.
Therefore, by (1) and (2),
2{ 2. f(k) — 2 f(R)}
kER k€aR
=4 2, f(k)
k€ Ry

=4-%R, (mod 8) .

A generalization of Gauss’ lemma (cf. Reichardt [4]) says

4R, = %(1 _ (%)) (mod 2) .

Because (3) is equal to
2. f(ak)f(kR) — Ne + 1,
we have proved the proposition.
Note that, for every odd integer n,
n—1=21— (= 1)™-9%) — 1 4 (— 1)r-br2 (mod 8) .

Then the congruence of Proposition 1 can be written as

[

(49 zfaprw=2(1— (%) -1+ (L) mods).
5 :
We also remark that the condition (1) can be replaced by

f(— k) =—fk) (mod4).

3. ExampLE. We apply Proposition 1 with K=Q and ¢=cZ, ¢
being an odd integer. Define

fik) = 2(( k )) . Fk) = il cot (n%)

c
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for every integer % not divisible by ¢. Here

(%) = x — [x] —_;_, xeR—Z
with [x] the greatest integer not exceeding x. It is easy to see that both

of f, and f,, viewed as functions on Z/cZ — {0}, satisfy the conditions for
f in Proposition 1. Therefore,

5 (E)(E)

=— >, cot (n%") cot (n:—k—)
kEZ/cZ I c
k+0

le] + 1 — 2(%) (mod 8) .

If

These congruences are well-known (cf. Rademacher and Grosswald [3]).

4. In the following K denotes an imaginary quadratic field with dis-
criminant D and o the ring of integers of K. We fix an embedding of K
into C. Here we recall some known facts contained in [6]. Let L be a
lattice in C such that 0 = {me C; mL C L} and let, for ze C and ne Z,
n>0,

E@)=EaL)= 5 W+ w+z| .

weL
w+ 250

where the value at s = 0 is to be understood in the sense of analytic
continuation. These functions are periodic with respect to L, E,, is even,
and E,,., is odd. They satisfy

(5) Py E(% + 2) = CEy(c2)

for every ceo, ¢ % 0. If p(2) denotes the Weierstrass p-function with re-
spect to L, then
(6) p(2) = Ey(2) — E(0), zeL.

Let, for a,ce o with ¢ x 0,

D, c)=%_ 5 E,(@)El(ﬁ).

kEL/cL c 9

Define the map @ = @,: SL(2,0) — C by
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- EZ(O)I(“_*C"_Q —D(a,¢), c¢x0
T
¢ Ez(O)I(g) , c=0,

where I(2) = z — 2. Then
O(AB) = ©(A) + O(B), A, Be SL(2,0),
i.e., @ is a homomorphism. Let g, and g, be the coefficients of the equa-
tion
pr=4p' —gh — & .
If both g, and g, belong to the field F = Q(j) of the j-invariant j =
12°g3/(g% — 27g2) of L, then the values of ¥ D ~'@ are contained in F (see

also [2]). If g, and g, are both integral, then the values of 20 are in-
tegral. Assume D < — 4. Then E,0) % 0. Since @,, = 17’0, and

1+ + D)2, D=1 (mod4)

1 b _ _
(") ¢< 1 >=«/DE2(O) it bz{Jﬁ/Z, D = 0 (mod 4).

the values of v D "'E,0)"'®@ depend only on the equivalence class of L
and belong to F. In general they are not integral, as is seen from the
numerical example for the case D = — 23 in [6].

5. To apply Proposition 1 to D(a, c), we prepare some congruences
for division values of E, and E,. For the rest of the paper we assume

D=1 (mod 8) .
Let + be a 4-division point of C/L such that
20 = {meo; 2my = 0}.
Put

_12029)
P — 9(29)

and

T(e) — POW) = D20)
p(2) — p(2¥)

Because 2 splits in K the choice of 2v is unique and ¢ is determined by
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L up to the sign. We use the following known facts concerning ¢ and
T(z) (Fueter [1]).

LemmA 1. Both t and T(a) are algebraic integers prime to 2 if a& L
and na e L with an odd integer n.

LEmma 2. (1) If e«&L and naeL with an odd integer n, then
P(29)'p(e) is algebraic and

pC¥) () =1 (mod4).
(i) p(2y)'E,0) is algebraic and
PV TE0) = —1  (mod4).
Proof. (i) follows from Lemma 1 and

pla) 1= 12

p(2) tT(e)

Let #eo with =+ D (mod8). We see from (5) and (6) that

@~ uPEO = > (%),

ke L/aL-{0} 17

hence

o -nio=_5 o{t).

EeL/pL—{0
kmgd *1 ' H

Devide both sides by p(2¢) and use (i). The asserted congruence of (ii)
follows from

S —lup =1 (mod 4),
_;_(w ~D=—1  (mod4).

LEMmMA 3. Let o be a point of C/L of finite, odd order > 1. Then
E,(0)-E\(«) is algebraic and
E,0)"E(x) = 1 (mod 2) .
Proof. Denote by n the order of «. By Lemma 2,

E0) 'p(ka) = — 1 (mod 4) ,
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for 1 < k< n—1. Note that a = 1 (mod 2) if and only if ¢* = 1 (mod 4).
Then the assertions follow from the following identities (cf. [5], [6]):

nEy(a) = kzl (Ey(ka) + Exe) — E((k + D)),
(E(ka) + Efa) — E((k + D)) = p(ka) + p(2) + p((k + Da) .

6. From [6] and [7], we know that there is a homomorphism X:
SL(2, 0) — Z/8Z which is uniquely characterized by

)

x(Z 2) - 2% + 2(1 - (‘%‘—‘)) Ftr (%J%—d)f) mod 8

for ¢ = 1 (mod 2). Here,

and

H

0, c

e = 1, c

+1 (mod 4)
v D (mod 4)
-1, c=—+D (mod4)

il

and we agree that (0/+1) = 1. This homomorphism X describes the eighth
roots of unity which occur in the transformation formula of a certain
theta series. We note here that X depends on the choice of the square

root ¥ D of D; if we change v D to — + D, then X changes to — .

TuEOREM 1. For every A e SL(2,0),
vV D TEN0)-'®(A) = X(A) (mod 8) .

Remark. Although X(A) is a class of Z/8Z the above congruence
obviously makes sense if we consider X(A) as a representative in Z of
the class.

Proof. It suffices to prove the above under the assumption A =
(g 3), c=1 (mod2). Let a« be a primitive c-division point of C/L. By
Lemma 3 we can apply Proposition 1 with ¢ = co and

f(k) = Ex0)"""E(ka) .
We get, by (4),
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cE(0)-D(a, ¢) = 2(1 - (2_“)) 14 (:i) (mod 8) .
c c
Because 2 splits in K, ¢* = 1 (mod 8). Therefore

\/D'II(a+d>~tr<(ajl;i)C> (mod 8) .

Hence,

v D T E0)7'0(A)
() 2 () - () o,

The value (— 1/c) is 1 if e=0 and — 1 if ¢ 5 0. Moreover ¢/ D =¢
(mod 4) if ¢ 2 0. This completes the proof.

7. By Lemma 1 and Lemma 2, (ii), the number 12v D E,0) (p(y) —
p(2y))~! is algebraic and prime to 2. Hence we obtain from Theorem 1
the congruence in the next theorem.

THEOREM 2. For every A e SL(2,0),

12 _ 12/ D EY0)
v — 5@n P = ) Z e

The left hand side and the coefficient of %X are of the form +—1 X (an
integer of F).

(8) 21(A) (mod 8) .

Proof. Because of (7) it suffices to prove the second assertion for the
left hand side of (8). First we see the integrality. Put

T =p() —p2¥), 5 =p2)

and
—pap @
T(z) =1""2T(2).
dz
Then,
= T@AT* 4- tT + 4),
cf. [1]. From this follows that

p/z = 4'p3 — &P — &
with
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& = 120° — 47 = 12°'°¢ — 41*,

9
(9) g = A7% — 83° = 371*t — 67,

Recall that the numbers we are interested in do not change when we
replace the pair (L,v) by (AL, 4y). Taking 2 = + 67", we may assume
¥ = 6. Then

(10) G =23 —144, g, = (12—t

and the left hand side of (8) becomes 20(A). Since g, and g, are integral,
it is also integral. To prove that it is of the form v/ —1p (z¢ F), it suf-
fices to show that g, |D|"*g; € F for the values of g, and g, given in (10).
This condition is equivalent to |D|"*te F. We may assume L = L. It is
known (cf. [1]) that # belongs to the Hilbert class field F(v D) of K and
that ¢ generates over K the ray class field modulo 4 of K, which is
FW D, ¥=1) in our case. It follows that te F(D|"*), #¢F and t&F.
Hence |D["*¢e F. This concludes the proof.
If our lattice L satisfies

(1) () — p(29))* = 144|DJ,
then

%@(A) = E(0)X(A)  (mod 8)

and v D “'@®(A) and E,0) are integers of F. Furthermore, E,(0) is prime
to 2. It can be seen that the lattices considered in [6], § 5 satisfy (11).
Hence we have proved Conjecture 1 of Sczech [6]. The condition (11) is
independent of the choice of .
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