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DEDEKIND SUMS AND QUADRATIC RESIDUE SYMBOLS

HIROSHI ITO

1. In this paper we first prove a simple relation between sums of

a certain type and quadratic residue symbols. Then we apply this to

Dedekind sums introduced by Sczech [5]. In particular one of his con-

jectures in [6] will be proved.

2. We will consider congruence relations such as

a == b ( m o d 2 n ) , n>l,

where a and b are algebraic (not necessarily integral) numbers. We take

this to mean that a — b = 2nc with a 2-integral algebraic number c. Let

K be an algebraic number field of finite degree, o its ring of integers,

and c an integral ideal of K prime to 2. Denote by Nc the absolute norm

of c. Let / be a map from o/c — {0} to an algebraic number field con-

taining K.

PROPOSITION 1. If f satisfies the conditions

(1) / ( - * ) = - f(k),

(2) f{k) = l (mod 2),

then, for every aeo prime to c,

Σ f(ak)f(k) ΞΞ Nc + 1 - i{—) (mod 8).

Here (α/c) is the quadratic residue symbol of K.

Proof. Let R be a subset of o/c such that 22 Π (— -H) == 0 and o/c =

flU(-δ)U {0}. By (1),

(/(- ak) - l )(/(- k) + 1)

= (f(ak) - l)(f(k) + 1) + 2(f(k) - f(ak)).

Therefore, from (2),
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(a, Σ (f(ak) - mm +1)
V ° ) kGo/c

= 2Σ 8 ((« - mm +1) + fm -/(o*
(mod 8).

Put

J?κ == R Π ( - l)nai2, /i = 0 , 1 .

Then R = i?0 U Rι and αiϊ = i?0 U (— i?i), the unions being disjoint.

Therefore, by (1) and (2),

2{ Σ /(*) ~ Σ /(*)}

= 4 Σ /(*)

= 4.#B t (mod 8).

A generalization of Gauss' lemma (cf. Reichardt [4]) says

(mod 2).

Because (3) is equal to

Σ /(αA)/(A) -Nc + l,
fe6o/c

we have proved the proposition.

Note that, for every odd integer n,

n - 1 = 2(1 - ( - !)(»--«/•) - 1 + ( - l)(rt~1)/2 (mod 8).

Then the congruence of Proposition 1 can be written as

( 4) Σ f(ak)f(k) ~ 2 (l - (??)) - 1 + ί^-λ) (mod 8).

We also remark that the condition (1) can be replaced by

/ ( - * ) = -f(k) (mod 4).

3 EXAMPLE. We apply Proposition 1 with K = Q and c = cZ, c

being an odd integer. Define

^ = r 1 cot (TCA
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for every integer k not divisible by c. Here

= * - [ x ] _ l , xeR-Z

with [x] the greatest integer not exceeding x. It is easy to see that both

of /Ί and /2, viewed as functions on Z/cZ — {0}, satisfy the conditions for

/ in Proposition 1. Therefore,

4 Σ
JceZ/cZ

IcφO

2_j
keZ/cZ

kΦO
V c )

ΞΞ\C\ + 1 - 2 ^ — ) (mod 8).

These congruences are well-known (cf. Rademacher and Grosswald [3]).

4. In the following K denotes an imaginary quadratic field with dis-

criminant D and o the ring of integers of K. We fix an embedding of K

into C. Here we recall some known facts contained in [5]. Let L be a

lattice in C such that o = {me C; mL c L] and let, for zeC and ne Z,

n> 0,

En(z) = En(z, L) =

where the value at s = 0 is to be understood in the sense of analytic

continuation. These functions are periodic with respect to L, E2n is even,

and E2n+ί is odd. They satisfy

( 5 )

for every c e o, c ^ 0. If p(z) denotes the Weierstrass p-function with re-

spect to L, then

( 6 ) p(z) = Et(z)-EM, z$L.

Let, for a, ceo w i t h c ^ 0,

(
C

Define the map Φ = Φ L : SL(2, o) -• C by
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where I(z) = z — z. Then

Φ(AB) = Φ(A) + Φ(J3), A, Be SL(2, o),

i.e., Φ is a homomorphism. Let g2 and £3 be the coefficients of the equa-

tion

p n = 4p 3 - g2p - g9.

If both g2 and g3 belong to the field F = Q(;) of the j-invariant j =

l&glligl - 27gϊ) of L, then the values of Λ / Ί J - ' Φ are contained in F(see

also [2]). If g2 and g% are both integral, then the values of 2Φ are in-

tegral. Assume D < - 4. Then JB2(O) ^ 0. Since ΦλL = ^"2ΦX and

(1 b\ . f(l + Λ/~D")/2, D = 1 (mod 4)
(7) Φ[ ) = ^DE2(0) if 6 = I V _ y/

\ 1 / W D12, C Ξ O (mod 4).

the values of V-D ~1£2(0)"1Φ depend only on the equivalence class of L

and belong to F. In general they are not integral, as is seen from the

numerical example for the case D = — 23 in [6].

5. To apply Proposition 1 to D(a, c), we prepare some congruences

for division values of Eλ and E2. For the rest of the paper we assume

D Ξ I (mod 8).

Let I be a 4-division point of CjL such that

2o = {m e o 2mψ = 0}.

Put

and

Because 2 splits in i£ the choice of 2ψ is unique and ί is determined by
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L up to the sign. We use the following known facts concerning t and

T(z) (Fueter [1]).

LEMMA 1. Both t and T(a) are algebraic integers prime to 2 if a$L

and nae L with an odd integer n.

LEMMA 2. (i) If a$L and nae L with an odd integer n, then

p(2ψ)~1p(a) is algebraic and

p(2ψ)'1p(a) ΞΞ 1 (mod 4).

(ii) p(2ψ)~1E2(0) is algebraic and

p(2ψ)-ιE2(0) ΞΞ -1 (mod 4).

Proof, (i) follows from Lemma 1 and

P(«) _ ! = 12
tT(a)

Let μeo with μ = V D (mod 8). We see from (5) and (6) that

(// - \μ\*)EM =
keL/μL-{o} \ μ

hence

Σ P[ — )'
k6L/μL-{0} \ n J

k mod ±1 r

Devide both sides by p(2ψ) and use (i). The asserted congruence of (ii)

follows from

iV-I^Ξl (mod 4),

U\μf - 1) = - 1 (mod 4).

LEMMA 3. Let a be a point of CjL of finite, odd order > 1. Then

E2{O)~mEι{a) is algebraic and

EM = 1 (mod 2).

Proof. Denote by n the order of a. By Lemma 2,

E2{G)~ιP(ka) ΞΞ - 1 (mod 4),
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for 1 < k < n — 1. Note that a = 1 (mod 2) if and only if a2 = 1 (mod 4).

Then the assertions follow from the following identities (cf. [5], [6]):

(«) - E1((k + l)a)),

= p(ka) + p(a) + p((k + ΐ)a).

6. From [6] and [7], we know that there is a homomorphism X:

SL(2, o) -> Z/8Z which is uniquely characterized by

and

for c = 1 (mod 2). Here,

o,
1,

- 1,

CΞΞ ± 1

C ΞΞ - V U

(mod 4)

(mod 4)

(mod 4)

and we agree that (0/±l) = 1. This homomorphism 1 describes the eighth

roots of unity which occur in the transformation formula of a certain

theta series. We note here that 1 depends on the choice of the square

root V JD of D; if we change VD to - V ΰ , then X changes to — X.

THEOREM 1. For every A e SL(2, o),

= X(A) (mod 8).

Remark. Although X{A) is a class of Z/8Z the above congruence

obviously makes sense if we consider X(A) as a representative in Z of

the class.

Proof. It suffices to prove the above under the assumption A =

( α ,), CΞΞ 1 (mod 2). Let a be a primitive c-division point of CjL. By

Lemma 3 we can apply Proposition 1 with c = co and

/(*) =

We get, by (4),
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cEM~lD{a, c) = 2 (l - (^j - 1 + (^=-1) (mod 8).

Because 2 splits in K, c2 Ξ 1 (mod 8). Therefore

^ Γ D - 7 ( ^ ) = tr ( ( β ^ * ) (mod 8).

Hence,

The value (— 1/c) is 1 if ε = 0 and — 1 if ε ̂  0. Moreover cV D = ε

(mod 4) if ε ̂  0. This completes the proof.

7. By Lemma 1 and Lemma 2, (ii), the number 12\/TΪΓZ?2(O)

"1 is algebraic and prime to 2. Hence we obtain from Theorem 1

the congruence in the next theorem.

THEOREM 2. For every A e SL(2, o),

77ιe Zβ/ί /ιαnd side and the coefficient of 1 are of the form V — 1 X (an

integer of F).

Proof. Because of (7) it suffices to prove the second assertion for the

left hand side of (8). First we see the integrality. Put

r = tfψ) - p(2ψ), δ =

and

τί(z) γ ^

dz

Then,

T\ = T(4Γ2 + ίT + 4),

cf. [1], From this follows that

p'* = 4p3 - ^2p - ft

with



42 HIROSHI ITO

g2 = 12^2 - 4r2 = 12" W - 4r2,
( 9 £3 = 4r2^ - 8<53 = 3-ψt - 6" W .

Recall that the numbers we are interested in do not change when we

replace the pair (L, ψ) by (λL, λψ). Taking λ = V 6 P 1 , we may assume

r = 6. Then

(10) £2 = 3t2 - 144 , £3 = (72 - *2)Z

and the left hand side of (8) becomes 2Φ(A). Since g2 and gz are integral,

it is also integral. To prove that it is of the form V — lμ (μeF), it suf-

fices to show that g2, \D\ί/2g3 e F for the values of g2 and gz given in (10).

This condition is equivalent to \D\1/2teF. We may assume L = L. It is

known (cf. [1]) that t2 belongs to the Hubert class field F{*JlD) of K and

that t generates over if the ray class field modulo 4 of K, which is

F ( V ~ D , ^ ϊ ) i n o u r c a s e . I t f o l l o w s t h a t t e F { \ D \ 1 / 2 ) , f e F a n d t $ F .

Hence \D\ί/2teF. This concludes the proof.

If our lattice L satisfies

(11) (KΨ)-rt2ψ))2 = 144|Z)|,

then

— L φ(A) = E2(0)X(A) (mod 8)
v D

and V D ~ιΦ(A) and E2(0) are integers of F. Furthermore, E2(Q) is prime

to 2. It can be seen that the lattices considered in [6], § 5 satisfy (11).

Hence we have proved Conjecture 1 of Sczech [6]. The condition (11) is

independent of the choice of ψ.
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