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SOLVABILITY OF SYSTEMS OF ORDINARY DIFFERENTIAL
EQUATIONS IN THE SPACE OF ARONSZAJN AND
THE DETERMINANT OVER THE WEYL ALGEBRA

MASATAKE MIYAKE

§0. Introduction

N. Aronszajn introduced in [4] an abstract Frechét space &z (0<R< ),
which is isomorphic to the space of analytic solutions of the heat equa-
tion in C? X {teC; |t — R|< R} if 0<R< oo, and in C? X {te C; Ret > 0}
if R = oo, and called it the space of traces of analytic solutions of the heat
equation. Hereafter, we call it the space of traces, shortly. Among other
properties, it was shown that the space of tempered distributions &/(R"),
as well as the space of analytic functionals s#/(C"), is identified with a
dense subspace of the space of traces by the formula,

(0.1) f@ 8 = {fx), ez — x,8))  for f(x) e S (R),

where e(z, t) is the heat kernel,

2

ez, t) = —(4—ﬂlt—)mexp(—%>, zeC"*, Ret>0.

Stimulating by his results, M.S. Baouendi [5] studied the space of
traces from a different point of view. As an application, he proved the
solvability of linear partial differential equations with constant coefficients
in the space of traces. Moreover, he proved the solvability of the Mizohata
equation in the space of traces,

ou . ou
— tx—=1,
0x oy f

which is solvable neither in the space of distributions nor in the space
of hyperfunctions.
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He conjectured, in conclusion, that almost all linear partial differential
equations with polynomial coefficients will be solvable in the space of
traces.

This paper is concerned with his conjecture in the case of ordinary
differential equations. More precisely, we shall prove an index theorem
for systems of ordinary differential equations with polynomial coefficients
and related results. To state our results, it is convenient and is essential
to use the determinant associated with the Bernstein filtration for matrices
of differential operators with polynomial coefficients. We have to note
that our results have deep correspondences with those in the space of
hyperfunctions, where the results are stated in terms of the determinant
associated with the filtration by the order of differentiation.

In Section 1, we shall state our results and compare them with those
in the space of hyperfunctions. We shall give a short summary of the
space of traces in Section 2 developed by Baouendi [5], and we shall see
that systems of equations in the space of traces are translated to systems
of differential equations in the space of holomorphic functions, which
enable us to employ the results in Miyake [9, 10]. Moreover, we shall
give the proofs of results in Section 2 under assuming fundamental pro-
position (Proposition 2.3), which will be proved in Section 5. In Section
3, we shall calculate a matrix of differential operators associated with a
differential operator with polynomial coefficients. For the proof of the
fundamental proposition, we shall give a brief summary of the determinant
theory over the filtered rings developed by K. Adjamagbo [1] and others,
in Section 4.

At the end of this section, the author would like to express his
heartfelt thanks to Professor T. Matsuzawa for his suggestion of the
problem and useful discussion.

§1. Statement of results
For 0 <R < oo, we put
Dy:={teC; |t — R|[<R} O<R< ), D.:=1{teC; Ret>0}.
Let H: = 9/ot — 9°/02* be the heat operator, and define
(L.1) Sol (H)s = {f(z, 1) € #(C. X Dy); Hf = 0},

where (22) denotes the set of holomorphic functions in a domain 2 C C¥
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equipped with the uniform convergence topology on every compact set in
Q. As mentioned In the Introduction, the space of traces of Aronszajn
o (0 < R < ) is an abstract Frechét space isomorphic to Sol (H)z,

1.2) A = Sol (H)g, (0 <R L ).

We denote by W(C) the Weyl algebra of dimension 1 over C, that is,
the set of ordinary differential operators with polynomial coefficients,

(1.3) W(C):={P= 2 Gn.x"D"; apn,€C}, D = d/dx.

m+n oo

For an operator P e W(C), we denote by ¢,(P) its Bernstein symbol,
that is, for

P= 3> au.x"D", where a,, # 0 for some m + n = [
m+nsl
we define
(1.4) 0u(P): = 3. @nx"§"eClx, ],
m+n=1

where Cl[x, £] denotes the set of homogeneous polynomials in x and &. We
denote by M(W(C)) the set of N X N matrices with entries in W(C).
Since the polynomial ring Clx, £] is a unique factorization ring, we know
by Adjamagbo [1] that for a matrix P(x, D) € M, (W(C)) we can define the
determinant det, (P) e C[x, &] of P associated with the Bernstein filtration
of W(C), that is, det, is a homomorphism of multiplicative groups,
(1.5) det,: My (W(C)) —> Clx, &].

Let P(x, D) e M,(W(C)), and consider the mapping,
(1.6) P: Ay —> A (0<R<L o).
Then for this mapping, we have the following index theorem, which is the
most important in this paper.

THEOREM 1 (Index theorem). Let P(x, D) e M (W(C)) satisfy
(1.7) det, (P) = p(x, §) = +Z_L UpnX™E" X 0.

Then the mapping (1.6) has finite dimensional kernel and cokernel, and its
index X(P; => o{) (:= dim¢g Ker (P; => &) — codimg Im (P; => &) s
given by
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(1.8) UP; => @) =1—2 2, ord, p(2t 1),
to€EDR

where ord, p(2t, 1) denotes the order of zeros of p(2t,1) at t,. Moreover, if
p(2t,1) #= 0 in Dy, then (1.6) is surjective.

Remark 1.1. If det, (P) =0 in the above theorem, we can prove that
the mapping (1.6) has infinite dimensional kernel and cokernel, by the
same way as in Miyake [10].

Since, </ is an inductive sequence of topological spaces when R | 0
by the natural injection ./ => /5 (densely) for 0 < R’ < R < oo, we can
define an inductive limit & of {&Zz}zso,

(1.9 &/ = ind-limg |, o5 .
Then we have the following existence theorem.
CororLrArY (Existence). Under the assumption (1.7), the mapping
P: Y —> IV
is surjective, and dim, Ker (P; => &%) = L.

To state a result of regularity of solutions, we introduce a notion of
regular trace following Aronszajn [4]. A trace fe &y is called a regular
trace if the defining function f(z, ) € Sol (H)z of f, which is defined by the
isomorphism (1.2), can be extended holomorphically at ¢ = 9. Moreover,
fe o is called a regular trace if it is represented by a regular trace in
o for some R > 0. Now, we have the following,

TueoREM 2 (Regularity). Let P(x, D) e M, (W(C)) satisfy the assump-
tion (1.7). Then the following statements are equivalent:

(a) Every ue " such that Pu is regular trace is regular.

(b) p(0,1) # 0.

It will be useful to compare our results with those in the space of
hyperfunctions, which we can not find in any references in our general
form (see Komatsu [8]).

For a matrix P(x, D) e M (W(C)), we denote by det,(P) the determi-
nant of P associated with the filtration of W(C) by the order of differ-
entiation, that is, det, is a homomorphism of multiplicative groups,

(1.10) det,: M (W(C)) —> {a(x)t™; a(x) e C[x], m =0,1,2, -- -},

where C[x] denotes the set of polynomials in x.
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We denote by %(2) the set of hyperfunctions on an open interval
Q2 c R Let P(x, D)e M, (W(C)), and consider the mapping

(1.11) P(x, D): #¥(Q2) —> #"(2).
Then we have the following,
TueoreM 1’ (Existence). For a matrix P(x, D), we assume
(1.12) det, (P) = a(x)é™ # 0.
Then the mapping (1.11) is surjective, and it holds that
(1.13) dim¢ Ker (P; => #Y(2)) = m + ZZGJ'Q ord, a(x) .

TueoreM 2' (Regularity). Under the assumption (1.12), the following
statements are equivalent:

(a) Every u e Ker (P; => #%(Q2)) is real analytic in 2.

(b) Every uc #"(Q)) such that Pu is real analytic in 2 is real analytic
in 9.

(¢) a(x) #0 in Q.

Remark 1.2. In Theorem 2, it is obvious that the condition that
p(0, 1) # 0 implies that every element in Ker (P; => o/") is regular trace.
However, we do not know whether the converse does hold or not. We
only note that the idea of the proof of Theorem 2 is rather similar to
that of the equivalence of (a) and (c) in Theorem 2/, which is an essential
part in the theorem.

§2. Reduction of the problem and the proofs of theorems

The following observation by Baouendi [5] makes it easy to study the
differential equations in the space of traces.
For a couple (@,(t), @,(t) € #(Dy)* we define i(z, t) by

oo

@) e ) = 33 o Di) + 33 s Dl

Then it is easily seen that the right hand side converges uniformly on
every compact set in C, X Dy, and hence i(z, t) € Sol (H)z. Therefore the
following isomorphism is obtained.

2.2 c: Sol (H)p ————> #(Dy)

(V)

uz, 1) —> (), l't:(if)) = (@0, ), D.u(0, ?))



212 MASATAKE MIYAKE

Thus we have a commutative diagram of isomorphisms,

oA g —=—> S0l (H)z
N

H (D) .

Let P(x, D) e W(C) and ue€ &s. Then the defining function P?t(z, t)
€ Sol (H); of Pu is given by

(2.3) Pu(z, t) = P(z, t; D,)ii(z, ?),

where

ﬁ(za t; Dz) = i % k(za Dz), Po(z, Dz) = P(z9 Dz)y

k=0

Pk(zs Dz) = [DZ? Pk-—l(29 Dz)] (k= 1’ 2, 3) "‘)1

where [A, B]: = AB — BA is the commutator of A and B. To see this
expression of P(z, ¢; D,), it is sufficient to notice that &'(R) is dense in
&5 and the formula (0.1). It is also important that P(z,t; D,) commutes
with the heat operator H = D, — D2

Thus, an equation Pu = f in &/ is translated to an equivalent one
in Sol (H); for defining functions i(z, t) and f(z, ),

(2.4) Pz, t; D)u(z, t) = f(z,t)  in Sol (H)z.

Next, substitute the expressions (2.1) for # and f in the above equa-
tion, and compare the coefficients of 2° and z' in both hand sides. Then
we obtain an equivalent system of equations in s (Dg)* for functions
(@, @) = (@(0, 8), D,a(0, ) and (f, ) = (F(0, 1), D,f(0, 1), which we ex-
press by

(2.5) 2, D)(Z) - (”:0) . 2(t, D)) e M{W(C)).

We note that the equivalence of (2.5) with (2.4) is proved by the com-
mutativity of P(z, t; D,) with the heat operator and the uniqueness of the
Cauchy problem for the heat equation in the z direction.

For a matrix P(x, D) = (P,;) € M\(W(C)) we consider the mapping,

(2.6) P: oA ——> ).

Then by the above argument, we know that this mapping is equivalent
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to the following one.
2.7 P H(Dp) —> H#(Dp)™,

where Z = (2, (t, D,)) € M,,(W(C)), and Z,; e M(W(C)) is defined from P,
as in the formula (2.5). Therefore, Theorem 1 is equivalent to the
following,

Prorosition 2.1. Under the assumption in Theorem 1, the mapping
(2.7) has a finite index XWP; => #(Dp)*") =1— 23 e, 0rd, p(2t, 1).
Moreover, if p(2t,1) + 0 in Dy, then (2.7) is surjective.

On the other hand, this proposition is an immediate consequence of
the following theorem.

THEOREM 2.2 (Miyake [9]). Let 2 be a simply connected domain in C,
and P(x, D) be an N X N matrix of differential operators with holomorphic
coefficients in Q. Let assume det,(P) = a(x)é™ £ 0, and zero points in 2 of
a(x) be finite. Then the mapping

P: # QN —> #(Q),
has a finite index X(P;=> A#(2)") =m — } ., co0rd, a(x). Moreover, if
a(x) #+= 0 in 2, then the above mapping is surjective.

Therefore, to prove Theorem 1, it is sufficient to show the following,

ProposiTioN 2.3. Let P(x, D) e My, (W(C)) and det,(P) = p(x, &) =
Dimin=t CnaX"8"  Let P(t, D,) € My (W(C)) be a matrix defined from P by
(2.7). Then it holds that

(2.8) det, (#) = (p(2t, 1))'(— 7)*.

We note that (2.8) holds even when p(x, £) = 0.

Therefore, our main purpose in the following is to prove (2.8), and it
will be proved in Section 5.

We remark here that there is no relations between det, (P) and
det, (P) in general, except the trivial one that det, (P) =0 if and only if
det, (P) = 0. However, in a special case we can prove the following,

ProposiTioN 2.4. Let P(x, D) e M (W(C)) and put det, (P) = p(x, &).
If p(0,1) 0, then det, (P) = p(0, &).

We give, here, the proofs of results by assuming above results.
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Proof of Corollary (Existence). Let P(x, D) e M,(W(C)) and put det,, (P)
= p(x, &). The assumption that p(x, &) == 0 implies that p(x, 1) £ 0, since
p(x, &) e C[x, £]l. Hence for a sufficiently small R, > 0, it holds that
p2t,1) #0 in Dy. Therefore, by Theorem 1, for any R such that
0 < R <R, the mapping P: & — o/ is surjective, and it holds that
dimg Ker (P; => /') = [ (see (1.7)). Therefore corollary is obvious, since
& is an inductive limit of {/z}zs,. 0

Proof of Theorem 2 (Regularity). For P(x, D) e M, (W(C)) and u ¢ o/,
we put Pu=few¥. Let iz, t) =iy, ---, iiy) € Sol(H)” and f(z, 1) =
(fr, -+ -, fv) €S0l (H)F be vectors of defining functions of components of
u and f, respectively. Here, ‘(---) denotes the transposed vector of (- .).
We put U t) = (@0, ), D,if0,8) G =1, ---, N) and put U® = (U0,

o, Uy@®) € #(DR)™.  Let F(t) e #(Dn) be a vector defined similarly
from f. Then the system of equations Pu = f is equivalent to

2(t, D)U@) = F@),

where 2(t, D,) € M,,(W(C)) is the one defined by (2.7).

From the assumption that det,, (P) = p(x, &) % 0, we can choose small
R, such that for any 0 < R < R, the mapping P: oF — o is surjective,
and hence the mapping Z: # (D) — H#(Dy)*¥ is also surjective. We
note that for det, () = b(t)r' (see Proposition 2.3), we may assume b(f) #0
in D

We remark here that the trace ue &% is regular if and only if U(t)
e # (D) can be extended holomorphically at ¢ =0, in view of the
formula (2.1).

Under these preparations, we know that it is sufficient to show the
equivalence of the following statements:

(a’) Every U@®) e #(Dz)* such that #U can be extended holomor-
phically at ¢ = 0 can also be extended holomorphically at ¢ = 0.

®) p,1) #0, 1.e., b0)+0,
where 0 < R < R,.

It is almost evident that (b’) implies (a), in view of Theorem 2.2. To
show that (a’) implies (b’), let assume b(0) = 0. Then we can take a simply
connected open set V including D U {0} so that b() =0 in V\{0}. By
Theorem 2.2, it holds that dimg Ker (#; <> #(Dg)*") = I, codim;Im (Z;
=> #(Dx)¥) =0 and AUZ;=>#(V)™) <I. Therefore, if the mapping
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P #(VYY — # (V) is not surjective, there exists an element F(t) e s#(V)?
such that 2U(f) = F(?) for some U(t) e #(Dy)*™\# (V). On the other
band, if it is surjective, there is an element in Ker (Z; => s#(D3)*") which
can not be extended at ¢ = 0 holomorphically, since dim;Ker(Z; => #(V)¥)
= WP, => #(V)?) < 1. These facts contradict the statement (a’). O

We omit the proofs of Theorems 1/ and 2/, since they are done by the
same way as in Komatsu [8] by using Theorem 2.2.

§3. Calculation of the matrix & in (2.5)

To calculate the matrix & for an operator P(x, D)e W(C), it is

sufficient to consider an operator P of monomial, in view of the linearity.
Let

(3.1) P(x, D) = x"D*, D =d/dx.
We, first, calculate P(z, t; D,) defined at (2.3). By the definition,

~ o k
(3.2) B(z,t;D,) = >, L Py, D),

=0 k!
where P(z, D,) = P(z, D,) = 2"D? and Pz, D,) = D:P,_, — P,_,D? (k =1,
2, --+). It is obvious that
Pz, D,) = 2mz""'D*' + m(m — 1)z"~*Dr.

For general k, we set

(33) Pz, D)= C,— T gmerspreei p>1,
7= (m — k —j)!

Then we obtain the following recursion formula,
Cko = Zcra—l,o, ij = Ck—l,j-—l + 2Ck-l,j (1 é] <k-— 1) ’ Ckk = Ck—],k-] .
It is easily obtained that

k!

C,,=2k9__ 7
* jW(k = j)!

Hence we have

p LA k-9 .m) ,
(34) P(Z, t, Dz) e Z Z 2 m! tkzm—-k—yD:Hk..j .

For i(z, t) € Sol (H)r we put its representation by
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oo

3.5 t Diii . A—— ) TR
(35) e, ) = 5 £ D0 + 5 D,
where i,(2), @#,(t) € #(Dy). To calculate the coefficients of 2° and 2z' of
P(z, t, D,)i(z, t), we consider two cases as follows.

1°) The case of m+n=2p (p =0, 1, 2, ---). The coefficient of 2°
is given by

[m/2] m! (2)m-?
= jlm — 2j)! 27

Dg?—‘jl‘zo(t) ’

where [-] denotes the Gauss symbol for real numbers. The coefficient of
2! is calculated as follows.

t
2 iim o D E0

[(m=1)/2] m! (2tym-1-1
=0 jli(im — 1 — 2j)! 2/

[(M+ /2] (m + 1)! (2t)m—.1 e
Dr-ig,(t) .
= B Gimiiooy w a0

Dy==iq,(t)

Therefore, in this case we obtain

w2y @hm-i
, 0
;ﬁwn—wn 2

8.6) Z(, D, = = &(m, n;p).

[(m+1)/2] (m + 1)| (2t m-J DP"I put

0, -
=0 jlm+1-=2)! 2 !

2°) The case of m+n=2¢+1(=0,1,2, ---). By the same way
as the above, we obtain

[m/2] m! @)™ 1)

@D@@m—o’ Ailm—opt 2 O o( ).

. PTE T | tmem (m + 1! @y-? Deti-i 0 Tha e
t ’

=0 jlm+1—2)! 2

In special cases, we have the following correspondences:

(3.8) m«»@ 32%’
D, 0/
0 o
3.9 xeﬁ< ):y
3.9 %D, +1 0™
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These correspondences will play an important role in proving Pro-
position 2.3.
Summing up the above results, we obtain the following,

ProrositioN 3.1. Let P(x, D) e W(C) be

P(x, D) = i > lamnx”‘D" + i > buux™D.

1=0 m+n=2 1=0 m+n=20+1

Then the matrix 2(t, D,) € My(W(C)) in (2.5) is given by
310) 20D)=3 3 auémn;D+> X bulm n;l).
A l

1=0 m+n=2 =0 m+n=20+1

Remark 3.2. In the case of N = 1, Propositions 2.3 and 2.4 are obvious
from above considerations and results in Section 4. In fact,
1) If p> q, then det,(P) = pu(%, &) = 2 inin-2p Anax"6" and

det, (Z) = {Xin 1 notp Gna(2)"}(2)" = (Pu(@t, D)(— 7).

Moreover, p,(0, 1) # 0 means a,,,, = p,(0, 1) ## 0 and a,,, = 0 (m + n>2p),
and hence det,(P) = a2, = p.(0, &).

2) If p<q, then det, (P) = pu(%,8) = Zninatgs1 Onax™E" and
det, (?) = — {Znsn-20410ma(2)" ()" = (pu(2t, 1)(— o)****.
As the above, we see that p,(0, 1) = 0 implies det,(P) = p,(0, &).

§4. Review of the determinant theory over the filtered rings

We give here a brief summary of the determinant theory over the
filtered rings or the ring of differential operators, since it seems to be
not familiar to the researchers of differential equations.

Let R be a filtered ring with filtration F,R (j =0,1,2, ---), which
we denote by (R, F). Here, R is a non commutative unitary ring without
zero divisors. That is, F,R (j =0, 1, 2, - - -) are additive groups satisfying,

R=UFR, FRCFRCFRC--.,
(4.1) 7=

FR-F,RCPF,,R (jk=0,1,---) and F,R>1.
We, further, assume the following relation,
(4.2) [F,R, F,R] C F,._.R,

where [a, b] = ab — ba. Let gr” R be the graded ring associated with the
filtration F, that is,
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(4.3) griRk: = j(—?ol_i?j, R,: = F,R|F, \R.

Then, obviously, gr” R is a commutative ring.

Moreover, we assume that R satisfies the so called left Ore property,
that is, every finite non trivial left ideals have non empty intersection,
or equivalently every non zero two elements have left non zero common
multiples. Then, R is embedded in a non commutative field K canonically
by constructing left quotients of R. Let K*: = K\{0} be the muliplicative
group of K, C be a commutator subgroup of K* and K: = K*/C. Then,
by Dieudonné [7], for matrices in M,(R) the determinant, which we de-
note by 4, is defined as a homomorphism of multiplicative groups,

(4.4) 4: My(R)—> K U {0},

which is a natural extension of the canonical map 4: R — K U {0} (see
Dieudonné [7] or Miyake [9] for detail).
In our purpose, we need further consideration. Let

(4.5) gp: R—> gr" R

be the canonical homomorphism, and call it the symbol map. Then the
symbol map (4.5) induces naturally the symbol map

(4.6) op: K—>gr" K,

by or(a ' b): = gx(a) ' -0x(b) for an element a '-be K (a,beR). Here,
gr” K is a field of quotients of commutative ring gr” R. It is obvious
that ox(a) = ¢,(b) for any a, b € K* such that ¢ = b (mod C).

Now, the determinant for matrices in M,(R) associated with the
filtration F, which we denote by det;, is defined by dety: = 6o 4. Thus,
det, is defined as a homomorphism of multiplicative groups,

4.7 dety: M(R)—> gr" K.

We remark that when IV = 1 the determinant of an element a € R is
so defined that det(a) = o5 (a) € gr¥ R.
The following result due to Adjamagbo is fundamental.

ProrositioN 4.1 (Adjamagbo [1]). If gr” R is a unique factorization
ring, then the determinant det, is gr® R valued.

It was already shown that the ring of (partial) differential operators
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with holomorphic coefficients satisfies the left and right Ore properties,
and is also for the Weyl algebra of any dimension (see Bjork [6] and
Schapira [12]). In our case, the proof is easily done by the Euclidean
algorithm for ordinary differential operators.

The Bernstein filtration of the Weyl algebra is given by Fy(W(C)): =
{P= 2 ning;Onu¥™D"}(j =0,1,2, ---), and its graded ring is nothing but
Clx, £]. Hence, in this case the determinant, which we denote by det.,
is a homomorphism of multiplicative groups,

(4.8) det,: My (W(C)) — Clx, £&].

Let 2(2) denote the set of differential operators with holomorphic
coefficients in a domain Q € C. Then the natural filtration of 2(2) by
the order of differentiation F,2(2): = {P(x, D) = } u<; @n(x)D™; an(x) €
KD} (G=0,1,2 ---) induces the determinant det, for matrices in
M, (2(£2)) as a homomorphism of multiplicative groups,

(4.9) det,: My(2(2)) —> {a(x)é™; a(x) e #(2), m=0,1,2, -- -},

(see Miyake [9], and Sato and Kashiwara [11] for general case of dimension).
We give here fundamental properties of the determinant.
For an element a € R the order of a, ord;(a), is defined by

@10 ord, (@) = min Ui e PR if a0,
— if a=0.
That is, ordy (a) = deg (¢x(a)), where deg (¢5(a)) denotes the degree of ox(a)
in gr” R.
Let A = (a,,) € My(R) and put m,, = ordp(a;). Then the total order
of A, ord(A), is defined by

N
(4.11) ordy(A) = max > myue{— 0} U{0,1,2,3, -},
T€GN 1=1
where ©, denotes the permutation group of {1,2, ---, N} and we define
— 00 + ] = — oo for any [

Let ord,(A) = m > 0. Then, by Volevi¢’s lemma (cf. Miyake [9])
there is a system of integers {s;, ¢,} such that

(4.12) my;<t,—s;, and m= 2t — > s;.
Moreover, A is said to be non degenerate if

(4.13) degree of det (ox(a;;)) = m.
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We note that det (s#(a;,)) € gr” R is well defined, since gr” R is commuta-
tive.
Now we have

THEOREM 4.2. We assume that gr® R is a unique factorization ring.
Then we have:
(a) dety (Triang {A,, - - -, A} = [li-idet(4)),

where Triang {A,, ---, A;} denotes the block wise triangular matrix with
the j-th diagonal block A;e My(R) (j=1,2, ---, k).

(b) Let A = (ai)eMy(R) be of ordp(A) =m >0. Then A is non
degenerate if and only if

dety (A) = the homogeneous part of degree m of det(az(a;,)) .
Moreover, in this case, we have

det, (A) = det (65 (as),

where
o ) = UF(aij) if my; =t; — S,
o+(a:) {O if my; <t,—s,.
(¢) If ord(A) = — oo, then detp(A) = 0. Conversely, if detp(A) = 0,
then there is a matrix B with detp (B) + 0 such that ord; (BA) = — oo (or

ordy (AB) = — o).

§5. Proofs of Propositions 2.3 and 2.4

Let #°(C)(C MW(C)) be an algebra over C generated by 2, and
7, where 9, and J are matrices defined by (3.8) and (3.9) respectively.
The following obvious relation

61 [2,9=99 —T9, =1, (the identity matrix of size 2),
implies immediately the following,

LemMA 5.1. The correspondences (3.8) and (3.9) induce an isomorphism
of W(C) and #°(C), and we denote this isomorphism by

(5.2) o: W(C)—> #(C).

Lemma 5.2. For a matrix P(x, D) e W(C), let #(t, D,) € My(W(C)) be
the one defined by (3.10). Then it holds that ¢(P) = P(J, 2,) = P(t, D,).

Proof. It is sufficient to prove J™Z¥ ™ = &(m,2p — m; p) and
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Tm@lri-m — O(m, 29 + 1 — m; q) respectively. We shall prove only the
former equality, since another one is proved similarly.

We put m 4+ n = k and consider x™D". When k = 1, there is nothing
to prove. We assume the equalities are proved up to k2 <2p, and con-
sider the case £ = 2p. When m = 0 and 1, it is more easy, so we assume
m > 2. The right hand side of the relation ¢(x™D? ™) = o(x)p(x™ ' D**~™)
is written by the induction assumption as

0, [(m—1)/2] (m _ 1)! (Zt)m—l—j D{"'j

( 0 2t) =ojlm—1-2) 2

2tD, +1 0/ |t _ml @) oy 0
i=v jl(m — 2j)! 27 )

(B P,
pus P 21 P 22

Therefore P, = P, = 0, and

[m/2) ! @ym-9 .
P, = m De-i
TS m =2 2 Tt

b/l (g — 1)) Q)m-1-1
P, = (2tD + 1 Dp-1-i
w = @D +1) JZ:=0 jlm — 1 —2j)! o '

[mh (g — 1)) otymi
=X j!(n(z—lle)!(2’ D
Lm=br (g — 1)1

=0 jlm —1—2))!
D/l (g 4 1)1 (2t

— Dr-4
jZ:=o jim +1—2j)! 2 '

(2m — 1 - j) + 1 EL ppes,

This completes the proof. O

The isomorphism ¢ defined by (5.2) induces an isomorphism of rings
of matrices by,

(4.3) 91 My(W(C)) —> My(#(C)) (C Mon(W(C))),
w w
P = (P;;) —> o(P) = (p(P:y))
where ¢(P) = 2(t, D,) given in (2.7).

Proof of Proposition 2.3. A matrix Q(x, D) e My(W(C)) is said to be
of elementary type if
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g
Q: Dlag{]_’ cee 1, QJ’ 1, ,1} or Q:Triang{l, ...,1},

where Diag{@,, - - -, @y} denotes the diagonal matrix with the j-th diagonal
component @,.
For a matrix @Q(x, D) of elementary type,

det,, () = gz, &) = {ow(Qj) for the dl‘agonal case,
1 for the triangular case.

We put deg q(x, &) = k (g(x, §) € C[x, &]). Then by Remark 3.2 and Theo-
rem 4.2, it holds that
(5.9 det, (p(@) = (q(2¢, 1))*(— 2)*.

An effective method of calculation of determinant of a matrix P(x, D)
€ M (W(C)) is done as follows. In view of the left Ore property of W(C),
there are matrices Q,(x, D) e My(W(C)) (j =1, ---, k) of elementary type
such that

Q- - - QP = Triang {R,, - - -, RN}ﬁR(x, D), R,eW().

This implies
(5.5) P(Qu)- - - p(@)p(P) = Triang {p(Ry), - - -, o(Ry)} = ¢(R) .
We put

det, (@) = q,(x, §) ,  degqyx, §) = q,,

det., (B) = [] detu (B) == r(x,€),  degr(x, &) = 7.

Then we have

jom 3

det. (P) = det (R)-{[] detu(@)} " = r(x. ©)-{[] 0. 0}

J

a

;T;p(x, §), degp(x,§)=p=r— Jg q;-
Considering the relations (5.4) and (5.5), we obtain

det, (¢(P)) = det, (o(R))-{]] det, (@)}
= ezt D) (= o -] (@2t DY (= )
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& —172
= [r(zt, 1)' {Z qj(Zt, 1)} ] -(— T)T“‘ll"'-qk
=1
= (p(2t, D (—2)*.
This completes the proof. O

Proof of Proposition 2.4. For a matrix P = (P,;) € My(W(C)), we put
ord, (P;;) = p;; and ord,(P;,) = q,;. Also, we denote by ord, (P) and
ord, (P) the total orders of P with respect to the Bernstein filtration and
the filtration by the order of differentiation respectively.

By the definition, it is obvious that ord, (P) > ord, (P). Let det, (P)
= p(x, &) and put ! = deg p(x, &). Then P(x, D) is non degenerate in the
Bernstein filtration if and only if ord, (P) = I

We shall prove our proposition dividing into two cases.

1) The case where P is not degenerate in the Bernstein filtration.
We choose a system of integers {s,, ¢,} such that

(5.6) Py <t,—s, and Il=ord,(P)=Xt,— 3.s;.
We put

(5.7 {P 1%, &) = 6,(P;;)  (see Theorem 4.2),

P(x,8) = (P,(x,9)).

Then p(x, &) = det P,(x, £). By the assumption that p(0, 1) # 0, we have
det P,(0, £) = p(0, 1)&* = p(0, £) £ 0. This implies that ord,(P) > ord,(P),
and hence ord,(P) = ord, (P). Moreover, this equality means that for
any permutation = € &, such that >,q., = [, it holds that

U(Piz(i)) = ai,(“(x)Sq"'“’ and a,,,(i)(x) = Const .

These imply that det, (P) = det P,(0, &) = p(0, £), since Diy = Quye
2) The case where P is a degenerate matrix in the Bernstein filtration.
By the assumption, it holds that ord,(P)> [ = degp(x, & and
det f’w(x, €) = 0. Therefore, there is a non zero left null vector I(x, &) =

(L(x, &), -+, Ly(x, &) of P,(x, &) of relatively prime l(x, &) eClx, & (j = 1,
+++, N). We may assume that there exist i and r such that

Iz, &) = & + zcxs ,  ceC.

We put
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1
o0
1
Qx,D): = |1, -+, 1, -+, Iy| G.
1

0 "
Then we have det, () = I(x, &), ord, (®) = r and ord, (QP) < ord,, (P) +

r— 1. If QP is degenerate in the Bernstein filtration, we continue this
operation. Then we obtain matrices of above type {Q,(x, D)}i., such that

ord, (@, --@P) < ord, (P) + 3. 7, — k,
=1

where r, = ord, (@,). It should be remarked that the inequality & < ord, (P)
does hold. In fact, the following equality

et (P) = det, (P) - {[] detu Q)] (Pui = Qu--@P)
implies
deg (det,,(P)) = deg (det,, (P,)) — ﬁ deg (det,, (@) < ord, (P) — k.

Therefore, det, (P) = 0 if k> ord, (P), which is a contradiction. Now,
we may assume that P, is non degenerate in the Bernstein filtration. We
note also that for matrices Q,x,D) (j =1, ---, k) and P.(x, D), the as-
sertion of the proposition is true. Hence, our assertion does hold for a
matrix P(x, D) in view of the relation,

det, (P) = det, (Py) - {ﬁ det, (Q,.)}" . O

Added in proof. The author has proved, recently, the converse of
the statement in Remark 1.2 holds. Therefore, Theorem 2 corresponds
completely to Theorem 2. The detail will be given in the forthcoming
paper.
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