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SOLVABILITY OF SYSTEMS OF ORDINARY DIFFERENTIAL

EQUATIONS IN THE SPACE OF ARONSZAJN AND

THE DETERMINANT OVER THE WEYL ALGEBRA

MASATAKE MIYAKE

§ 0. Introduction

N. Aronszajn introduced in [4] an abstract Frechet space s/B (0<i?<oo),

which is isomorphic to the space of analytic solutions of the heat equa-

tion in C? X {t e C; \t - R\ < R} if 0 < R < oo, and in C? X {t e C; Re t > 0}

if R = oo, and called it the space of traces of analytic solutions of the heat

equation. Hereafter, we call it the space of traces, shortly. Among other

properties, it was shown that the space of tempered distributions &"(Rn),

as well as the space of analytic functionals £ί?'{Cn), is identified with a

dense subspace of the space of traces by the formula,

(0.1) f(z, t) = (f(x), e(z - x, ί)> for f(x) e <?'(Rn),

where e(z, t) is the heat kernel,

K-S)' zeCn' Reί>0

Stimulating by his results, M. S. Baouendi [5] studied the space of

traces from a different point of view. As an application, he proved the

solvability of linear partial differential equations with constant coefficients

in the space of traces. Moreover, he proved the solvability of the Mizohata

equation in the space of traces,

iϊL + teSϊL^/,
dx dy

which is solvable neither in the space of distributions nor in the space

of hyperfunctions.
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He conjectured, in conclusion, that almost all linear partial differential
equations with polynomial coefficients will be solvable in the space of
traces.

This paper is concerned with his conjecture in the case of ordinary
differential equations. More precisely, we shall prove an index theorem
for systems of ordinary differential equations with polynomial coefficients
and related results. To state our results, it is convenient and is essential
to use the determinant associated with the Bernstein nitration for matrices
of differential operators with polynomial coefficients. We have to note
that our results have deep correspondences with those in the space of
hyperfunctions, where the results are stated in terms of the determinant
associated with the filtration by the order of differentiation.

In Section 1, we shall state our results and compare them with those
in the space of hyperfunctions. We shall give a short summary of the
space of traces in Section 2 developed by Baouendi [5], and we shall see
that systems of equations in the space of traces are translated to systems
of differential equations in the space of holomorphic functions, which
enable us to employ the results in Miyake [9, 10]. Moreover, we shall
give the proofs of results in Section 2 under assuming fundamental pro-
position (Proposition 2.3), which will be proved in Section 5. In Section
3, we shall calculate a matrix of differential operators associated with a
differential operator with polynomial coefficients. For the proof of the
fundamental proposition, we shall give a brief summary of the determinant
theory over the filtered rings developed by K. Adjamagbo [1] and others,
in Section 4.

At the end of this section, the author would like to express his
heartfelt thanks to Professor T. Matsuzawa for his suggestion of the
problem and useful discussion.

§ 1. Statement of results

For 0 < R < oo, we put

DB: = {teC; \t-R\<R] (0 < R < <χ>), OM: = {t e C; Re t > 0}.

Let H: = djdt — d2jdz2 be the heat operator, and define

(1.1) Sol (H)R = {f(z, t) e j f (C, X Ds); Hf = Q}9

where Jf(Ω) denotes the set of holomorphic functions in a domain Ω C CN
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equipped with the uniform convergence topology on every compact set in

Ω. As mentioned In the Introduction, the space of traces of Aronszajn

<stfR (0 < R < oo) is an abstract Frechet space isomorpbic to Sol (H)R,

We denote by W(C) the Weyl algebra of dimension 1 over C, that is,

the set of ordinary differential operators with polynomial coefficients,

(1.3) W(C): = {P = Σ ^nXmDn; amneC}, D = d\dx.

For an operator P e W(C), we denote by σw(P) its Bernstein symbol,

that is, for

P = Σ amnXmDn , where amn Φ 0 for some m + n = I

we define

(1.4) σw(P):= Σ amnx
mξn eC[x, ξ],

l

where C[x, ξ] denotes the set of homogeneous polynomials in x and ξ. We

denote by MN(W(C)) the set of N X N matrices with entries in W(C).

Since the polynomial ring C[x, ξ] is a unique factorization ring, we know

by Adjamagbo [1] that for a matrix P(x, D) e MN(W(C)) we can define the

determinant detw(P) e C[x, ξ] of P associated with the Bernstein filtration

of W(C), that is, detw is a homomorphism of multiplicative groups,

(1.5) άetw: MN(W(C)) • C[x, ξ] .

Let P(x, D) e MN(W(C)), and consider the mapping,

(1.6) P: sό£ > J / / (0 < R < oo).

Then for this mapping, we have the following index theorem, which is the

most important in this paper.

THEOREM 1 (Index theorem). Let P(x, D) eMN(W(C)) satisfy

(1.7) άetw(P)=p(x,ξ)= Σ W T ^ O .
m+n=l

Then the mapping (1.6) has finite dimensional kernel and cokernel, and its

index X(P; <=-> J / / ) (: = dimc Ker (P; =-> sί/) - codimc Im (P; ^> J / / ) ) is

given by
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(1.8) 1(P; - > J * / ) = 1-2 Σ oτdtop(2t, 1),
toβDx

where ordtop(2t, 1) denotes the order of zeros of p(2t, 1) at t0. Moreover, if

p(2t, 1) Φ 0 in DR, then (1.6) is surjectίve.

Remark 1.1. If detw(P) Ξ O in the above theorem, we can prove that

the mapping (1.6) has infinite dimensional kernel and cokernel, by the

same way as in Miyake [10].

Since, siB is an inductive sequence of topological spaces when R j 0

by the natural injection sίB ^^>siR, (densely) for 0 < R! < R < oo, we can

define an inductive limit si o? {siB}B>(i,

(1.9) si = ind-limff ϊ 0 siR .

Then we have the following existence theorem.

COROLLARY (Existence). Under the assumption (1.7), the mapping

P: siN >s/N

is surjectίve, and dim^ Ker (P; c=̂ > siN) = I.

To state a result of regularity of solutions, we introduce a notion of

regular trace following Aronszajn [4]. A trace fe^R is called a regular

trace if the defining function f(z, t) e Sol (H)R of /, which is defined by the

isomorphism (1.2), can be extended holomorphically at t = 0. Moreover,

/ e si is called a regular trace if it is represented by a regular trace in

s/B for some R > 0. Now, we have the following,

THEOREM 2 (Regularity). Lei P(x, D) eMN(W(C)) satisfy the assump-

tion (1.7). Then the following statements are equivalent:

(a) Every u e siN such that Pu is regular trace is regular.

(b) p ( 0 , l ) # 0 .

It will be useful to compare our results with those in the space of

hyperfunctions, which we can not find in any references in our general

form (see Komatsu [8]).

For a matrix P{x, D) e MN{W(C)), we denote by det,(P) the determi-

nant of P associated with the filtration of W(C) by the order of differ-

entiation, that is, detσ is a homomorphism of multiplicative groups,

(1.10) detσ: MN(W(C)) • {a(x)ξm; a(x) e C[x], m = 0, 1, 2, . . •},

where C[x] denotes the set of polynomials in x.
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We denote by &(Ω) the set of hyperfunctions on an open interval

Ω c R. Let P(x, D) e MN( W(C)), and consider the mapping

(1.11) P(x, D):

Then we have the following,

THEOREM Γ (Existence). For a matrix P(x, D), we assume

(1.12) detσ(P) = α(x)? w ξέ0.

Then the mapping (1.11) is surjectίve, and it holds that

(1.13) dimc Ker (P; - > 3SN(Ω)) = m +

THEOREM 2' (Regularity). Under the assumption (1.12), ίΛβ following

statements are equivalent:

(a) Every u e Ker (P; <=-> &N(Ω)) is real analytic in Ω.

(b) Every u e &N(Ω)) such that Pu is real analytic in Ω is real analytic

in Ω.

(c) a(x) Φ 0 in Ω.

Remark 1.2. In Theorem 2, it is obvious that the condition that

p(0, 1) Φ 0 implies that every element in Ker(P; c=-> s/N) is regular trace.

However, we do not know whether the converse does hold or not. We

only note that the idea of the proof of Theorem 2 is rather similar to

that of the equivalence of (a) and (c) in Theorem 2', which is an essential

part in the theorem.

§ 2. Reduction of the problem and the proofs of theorems

The following observation by Baouendi [5] makes it easy to study the

differential equations in the space of traces.

For a couple (S0(*X &i(t)) 6 2?(DR)2 we define ύ(z, t) by

(2.1) u{z, t) = ± ^ f T
ι=o (21 + 1)!

Then it is easily seen that the right hand side converges uniformly on

every compact set in Cz X DR, and hence ύ(z, t) eSol(H)R. Therefore the

following isomorphism is obtained.

(2.2) c: Sol (H)R

ΰ(z, t) i • (ΰo(ί), mff) = (S(0, <), Z),S(O, <))
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Thus we have a commutative diagram of isomorphisms,

Let P(x, D) e W(C) and ues/B. Then the defining function Pu(z, t)

e Sol ( # % of Pw is given by

(2.3) Pu(z, t) = P(z, ί; Z),)fi(*, *),

where

P(z, t; D.) = Σ -£rftfe A), P0(z, Dz) - P(z, D.),
fc=o ft!

Λ(s, !>,) = [Dl PkΛz9 D,)] (k = 1, 2, 3, •),

where [A, B]: = AJB — BA is the commutator of A and B. To see this

expression of P(z, t; Dz), it is sufficient to notice that Sf\ΈS) is dense in

s/B and the formula (0.1). It is also important that P(z, t; Dz) commutes

with the heat operator H = Dt — D\.

Thus, an equation Pu = f in sίB is translated to an equivalent one

in Sol (H)R for defining functions ύ(z, t) and f(z, t),

(2.4) P(z, t; D.)ύ(z, t) = f(z, t) in Sol (H)Λ .

Next, substitute the expressions (2.1) for ύ and f in the above equa-

tion, and compare the coefficients of z° and z1 in both hand sides. Then

we obtain an equivalent system of equations in J^(DR)2 for functions

(flo, ύx) = (S(0, t), Dzύ(0, <)) and (/o, Λ) = (f(0, t), Daf(0, t))9 which we ex-

press by

(2.5) <?(*, A ) ( ?°) = (?β) , ^(ί, A ) €

We note that the equivalence of (2.5) with (2.4) is proved by the com-
mutativity of P(z, t; Dz) with the heat operator and the uniqueness of the
Cauchy problem for the heat equation in the z direction.

For a matrix P(x, D) = (Pi3) e MN(W(C)) we consider the mapping,

4 N1 R '(2.6) P: s/f —

Then by the above argument, we know that this mapping is equivalent
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to the following one.

(2.7) g>

where 0 = (0>φy Dt)) e M2N(W(C)), and 9U e M2(W(Q) is defined from Pυ

as in the formula (2.5). Therefore, Theorem 1 is equivalent to the

following,

PROPOSITION 2.1. Under the assumption in Theorem 1, ί/iβ mapping

(2.7) /ιαs α /mite index X(&; --> JP(DB)*N) = 1-2 ΣtQeDli orάhp(2t, 1).

Moreover, if p(2t, 1) ^ 0 iτι DΛ, ί̂ era (2.7) is surjective.

On the other hand, this proposition is an immediate consequence of

the following theorem.

THEOREM 2.2 (Miyake [9]). Let Ω be a simply connected domain in C,

and P(x, D) be an N X N matrix of differential operators with holomorphic

coefficients in Ω. Let assume det,(P) = a(x)ξm ~Φ 0, and zero points in Ω of

a(x) be finite. Then the mapping

P: 3f(Ω)N >3f(Ω)N ,

has a finite index X(P; <=-> jf(Ω)N) = m — ΣXoeΩθrάXQa(x). Moreover, if

a(x) Φ 0 in Ω, then the above mapping is surjective.

Therefore, to prove Theorem 1, it is sufficient to show the following,

PROPOSITION 2.3. Let P(x, D) e MN(W(C)) and det, (P) = p(x, ξ) =

+n^amnx
m$n. Let &>(t, Dt) e M2N(W(C)) be a matrix defined from P by

(2.7). Then it holds that
/ irn

(2.8) det.(^) = ( p ( 2 U ) ) 2 ( - τ ) ' .

We note that (2.8) holds even when p(x, ξ) ΞΞ 0.

Therefore, our main purpose in the following is to prove (2.8), and it

will be proved in Section 5.

We remark here that there is no relations between detω (P) and

detσ (P) in general, except the trivial one that detw (P) Ξ 0 if and only if

detσ (P) = 0. However, in a special case we can prove the following,

PROPOSITION 2.4. Let P(x, D) e MN(W(C)) and put άetm (P) = p(χ, ξ).

If p(0,1) φ 0, then det, (P) = p(0, ξ).

We give, here, the proofs of results by assuming above results.
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Proof of Corollary {Existence). Let P(x, D) e MN( W(C)) and put detw (P)

= p(x, ξ). The assumption that p(x, ξ) ^ 0 implies that p(x, 1) ^ 0, since

p(x, ξ) eC[x, ξ]. Hence for a sufficiently small Ro > 0, it holds that

p(2ί, 1) =£ 0 in DRQ. Therefore, by Theorem 1, for any R such that

0 < R < Ro, the mapping P: <$// -> <*// is surjective, and it holds that

dimc Ker (P; <=-> J / / ) = / (see (1.7)). Therefore corollary is obvious, since

s4 is an inductive limit of {s/B}B>0. •

Proof of Theorem 2 (Regularity). For P(x, D) e MN(W(C)) and a e ^ / ,

we put Pu = fes//. Let u(z, t) = '(fi^ , S )̂ e Sol (H)/ and /fe t) =

^/l? - - ',?N) ^ Sol (fl*)^ be vectors of defining functions of components of

z/ and /, respectively. Here, '(•••) denotes the transposed vector of ( •).

We put Ui(t) = (ύt(091), DM0, t)) (ί = 1, , N) and put U(t) = '(^(ί),

•- ,UN(t))e3tf>{DR)2N. Let F(t)eje(DR)2N be a vector defined similarly

from /. Then the system of equations Pu = f is equivalent to

where &(t, Dt) eM2N(W(C)) is the one defined by (2.7).

From the assumption that detw (P) = p(x, f) φ. 0, we can choose small

RQ such that for any 0 < R < RQ the mapping P: s/^ -> J / / is surjective,

and hence the mapping ^ : ^(DR)2N ->je(DR)2N is also surjective. We

note that for det σ (^) = 6(£)r* (see Proposition 2.3), we may assume b(t)Φ0

in DRQ.

We remark here that the trace u e J/B is regular if and only if U(t)

e Jf(DR)2N can be extended holomorphically at t = 0, in view of the

formula (2.1).

Under these preparations, we know that it is sufficient to show the

equivalence of the following statements:

(a') Every U(t)e^(DR)2N such that 0>U can be extended holomor-

phically at t = 0 can also be extended holomorphically at t = 0.

(bθ p(0,1) ^ 0, i.e., 6(0) ^ 0,

where 0 < R < Ro.

It is almost evident that (bθ implies (a7), in view of Theorem 2.2. To

show that (a7) implies (b;), let assume 6(0) = 0. Then we can take a simply

connected open set V including DR U {0} so that b(t) Φ 0 in V\{0}. By

Theorem 2.2, it holds that dimcKer(^;-=^Jf(DR)2N) = I, coding I m ( ^ ;

<=-> je(DR)2N) = 0 and X(&>; <=^34?(V)2N)< I Therefore, if the mapping
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&\ Jf(V)2N -> Jf(V)2N is not surjective, there exists an element F(t) e 3f(V)2N

such that 0>U(t) = F(t) for some U(t) eje(DR)2N\jf(V)2N. On the other

hand, if it is surjective, there is an element in Ker (^ <=> j f (DR)2N) which

can not be extended at t = 0 holomorpbically, since dim c Ker(^; c =^ e ^( V)22V)

= X(&>; ^->Jf(V)2N) < I. These facts contradict the statement (a'). D

We omit the proofs of Theorems 1' and 2', since they are done by the

same way as in Komatsu [8] by using Theorem 2.2.

§ 3. Calculation of the matrix &> in (2.5)

To calculate the matrix & for an operator P(x, D) e W(C), it is

sufficient to consider an operator P of monomial, in view of the linearity.

Let

(3.1) P(x, D) = xmDn, D = d/dx.

We, first, calculate P(z, t; Dz) defined at (2.3). By the definition,

(3.2) P(2, t;D,) = t>4rP«(z> Dz)'

where P0(z, Dz) = P(z, D9) = zmD^ and Pk(z, D.) = DIP,., - P^Dl (k - 1,

2, •)• It is obvious that

P^z, Dz) = 2mzm'λDTι + m(m - l)zm~2D?.

For general fe, we set

(3.3) Pfcfe A ) - Σ C,, 7 ^ _2f-*-'Z)ί+*-', Λ > 1.

Then we obtain the following recursion formula,

Cfco ^ 2C f c _ 1 ) 0 , Cfcj- = Cfc_1;^_i + 2C f c _!^ (1 < j < & — 1 ) , Oft*; =

It is easily obtained that

Hence we have

(όΛ) r\Z, t, JJZ) — ZJ 2-i ~^rn Λ T T 7 ^ΓΓ z

For ώ(2, ί) e Sol (H)R we put its representation by
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(3.5) = 5 Mϊ D i5 D i m '

where ύo(t), ύx{t) e J?(DR). To calculate the coefficients of z° and z1 of

P(z, t, Dz)ύ(z, t), we consider two cases as follows.

1°) The case of m + n = 2p (p = 0, 1, 2, •)• The coefficient of z°

is given by

[m/2] m T

Δ-i
ml

j\(m-2j)\ 2*

where [•] denotes the Gauss symbol for real numbers. The coefficient of

z1 is calculated as follows.

ψi ml (2t)m'j

 DP_jft

h j\(m-2j)\ % * Ul

-l)/2]
ml (2t)m-1-1-}

J=i y ! ( T O _ l _ 2 ; ) ! 2s

fe j\(m + 1 - 2;)! 2j *

Therefore, in this case we obtain

(3.6) 0>(t, Dt) =
=o j\(m - 2j)\ 2s

)P-S
t

_ 2j)! 21

= S(m,n;p).
put

2°) The case of m + n = 2q + 1 (q = 0, 1, 2, •)• By the same way

as the above, we obtain

(3.7)
o,

tψP ml (20"

(m + 1)!
= Θ(m,n;q).

In special cases, we have the following correspondences:

(3.9)
2iDi + 1 0 / p u
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These correspondences will play an important role in proving Pro-

position 2.3.

Summing up the above results, we obtain the following,

PROPOSITION 3.1. Let P(x, D) e W(C) be

P(x,D) = ± Σ amnx
mDn + ± Σ± Σ

1=0 m+n=2l +

Then the matrix 9>(t, Dt) e M2(W(C)) in (2.5) is given by

(3.10) 0 (ί,A) = έ Σ a».*(.m,n;I) + ί Σ bmnΘ(m, n; I).
1 = 0 m + n = 2l ϊ=0 m + n = 2l + l

Remark 3.2. In the case of N = 1, Propositions 2.3 and 2.4 are obvious

from above considerations and results in Section 4. In fact,

1) If p > q, then det w (P) =pw(x, ξ) = Σχm+n=2P amnx
mξn and

d e t . ( ^ ) = {Σm+n=2Pamn(2tr}Xτy* = (pw(2t, 1)) 2 (- τf».

Moreover, pw(0, 1) Φ 0 means aQ>2p = pw(0, 1) Φ 0 and am>n = 0 (m + n > 2/?),

and hence detσ(P) = αo,2l)f
2* = pw(0, f).

2) If p < q, then detw (P) = pw(xy ξ) = Σ r o n = 2 ? + i δ m 7 l x^ w and

As the above, we see that pw(0,1) Φ 0 implies detσ(P) = pw(0, ξ).

§ 4. Review of the determinant theory over the filtered rings

We give here a brief summary of the determinant theory over the

filtered rings or the ring of differential operators, since it seems to be

not familiar to the researchers of differential equations.

Let R be a filtered ring with filtration FjR (j = 0,1, 2, •)> which

we denote by (R, F). Here, R is a non commutative unitary ring without

zero divisors. That is, F3R (j = 0, 1, 2, •) are additive groups satisfying,

(R = U F.R, F0J? dFίRaF2Rc:
(4.1)

{F3RFkR c F i+iJB (Λ * = 0,1, •) and Foi? 3 1.

We, further, assume the following relation,

(4.2) [Fβ, FkR]aFj+k^R,

where [a, b] = ab — 6α. Let gr^ i? be the graded ring associated with the

filtration F, that is,
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(4.3) grFR: = Θ R,, R,: =
= 0

Then, obviously, grFi? is a commutative ring.

Moreover, we assume that R satisfies the so called left Ore property,

that is, every finite non trivial left ideals have non empty intersection,

or equivalently every non zero two elements have left non zero common

multiples. Then, R is embedded in a non commutative field K canonically

by constructing left quotients of i?. Let Kx: = K\{0} be the muliplicative

group of K, C be a commutator subgroup of Kx and K: = Kx/C. Then,

by Dieudonne [7], for matrices in MN(R) the determinant, which we de-

note by Δ, is defined as a homomorphism of multiplicative groups,

(4.4) Δ: MN{R) > f U { 0 } ,

which is a natural extension of the canonical map Δ: R -> K U {0} (see

Dieudonne [7] or Miyake [9] for detail).

In our purpose, we need further consideration. Let

(4.5) σF: R > gvF R

be the canonical homomorphism, and call it the symbol map. Then the

symbol map (4.5) induces naturally the symbol map

(4.6) σF:K > grF K,

by σF{a~λ b): = σF(a)~ι σF(b) for an element α"1 6 e K (α, b e R). Here,

gτF K is a field of quotients of commutative ring grF R. It is obvious

that σF(a) = σF(b) for any a, b eKx such that a = b (mod C).

Now, the determinant for matrices in MN(R) associated with the

filtration F, which we denote by detF, is defined by detF: = σFoΔ. Thus,

detF is defined as a homomorphism of multiplicative groups,

(4.7) det^: MN(R) > g*F K.

We remark that when N = 1 the determinant of an element a e R is

so defined that deti, (α) = σF (a) e gτF R.

The following result due to Adjamagbo is fundamental.

PROPOSITION 4.1 (Adjamagbo [1]). // gr^ R is a unique factorization

ring, then the determinant άetF is grF R valued.

It was already shown that the ring of (partial) differential operators
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with holomorphic coefficients satisfies the left and right Ore properties,

and is also for the Weyl algebra of any dimension (see Bjork [6] and

Schapira [12]). In our case, the proof is easily done by the Euclidean

algorithm for ordinary differential operators.

The Bernstein filtration of the Weyl algebra is given by F^WiC)): =

{P = Σm+n<jamnXmDn} (j = 0, 1, 2, -), and its graded ring is nothing but

C[x, ξ]. Hence, in this case the determinant, which we denote by άetw,

is a homomorphism of multiplicative groups,

(4.8) det w : MN(W(C)) • C[x, ξ].

Let Sι(Ω) denote the set of differential operators with holomorphic

coefficients in a domain Ω C C. Then the natural filtration of @(ίΐ) by

the order of differentiation Fβ{Ω)\ = {P(x, D) = Σ w ^ am(x)Dm; ajx) e

Jf(Ω)} (j = 0, 1, 2, •••) induces the determinant det, for matrices in

MN(@(Ω)) as a homomorphism of multiplicative groups,

(4.9) detσ: M^3(Ω)) • {a(x)ξm; a(x) e tfψ\ m = 0, 1, 2, •},

(see Miyake [9], and Sato and Kashiwara [11] for general case of dimension).

We give here fundamental properties of the determinant.

For an element a eR the order of α, ord^(α), is defined by

(4.10) o r d F ( a ) = ( m i n ^ ; a e i ; ^ i f a ψ °'
I— oo if a = 0.

That is, ord^ (a) = deg (σF(ά)), where deg (σF(ά)) denotes the degree of σF(ά)

in grFR

Let A = (atJ) e MN(R) and put mέ j = ord^ (α^). Then the total order

of A, ordF(A), is defined by

(4.11) ord^(A) = m a x Σ % ( ί ) e { - oo} U {0,1, 2, 3, •},

where (&N denotes the permutation group of {1,2, , N} and we define

— oo + / = — oo for any /.

Let ordF (A) = m > 0. Then, by Volevic's lemma (cf. Miyake [9])

there is a system of integers {si913} such that

(4.12) niij < tj — Si and m= Σts — Σsi.

Moreover, A is said to be non degenerate if

(4.13) degree of det (σF{ai^) = m .
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We note that det (σjp(α )̂) e gτF R is well defined, since grF R is commuta-

tive.

Now we have

THEOREM 4.2. We assume that gτF R is a unique factorization ring.

Then we have:

(a) det,(Triang{Λ, , Ak}) = Π*.

where Triang {Au , Ak} denotes the block wise triangular matrix with

the j-th diagonal block As e MNj(R) (j = 1, 2, , k).

(b) Let A = (α^) e MN(R) be of ord^ (A) = m > 0. TT&en. A is raw

degenerate if and only if

άetF (A) = the homogeneous part of degree m of det (^(α* ̂ )).

Moreover, in this case, we have

άetF (A) = det (σF (atj)),

<Ό i/ TTΊ^ < ί7 — Si.

(c) 1/ ord(A) = — oo, then άetF(A) = 0. Conversely, if det^(A) = 0,

then there is a matrix B with άetF (B) Φ 0 such that ovάF (BA) = — oo (or

oτάF(AB) = - oo).

§ 5. Proofs of Propositions 2.3 and 2.4

Let ί^(C) (a M2(W(C)) be an algebra over C generated by 2% and

^", where 2d% and & are matrices defined by (3.8) and (3.9) respectively.

The following obvious relation

(5.1) \βt, &~\ = 2^ — F^t = I2 (the identity matrix of size 2),

implies immediately the following,

LEMMA 5.1. The correspondences (3.8) and (3.9) induce an isomorphism

of W(C) and iΓ(C\ and we denote this isomorphism by

(5.2) φ: W(C) >1T(C).

LEMMA 5.2. For a matrix P(x,D)eW(C), let 0>(t, Dt) e M2(W(C)) be

the one defined by (3.10). Then it holds that φ(P) ΞΞ P ( J Γ , 2t) = &(t, Dt).

Proof It is sufficient to prove 3Γm^-m = ^(m, 2p — m; p) and
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-m _ φ^ 2q + 1 — m; q) respectively. We shall prove only the

former equality, since another one is proved similarly.

We put m + n = k and consider xmDn. When k = 1, there is nothing

to prove. We assume the equalities are proved up to k < 2py and con-

sider the case k = 2p. When m = 0 and 1, it is more easy, so we assume

m > 2. The right hand side of the relation φ(xmD2p-m) = φ(x)φ(xm-1D2p-m)

is written by the induction assumption as

0 2A

2t Dt + 1 0 /

P p
_ . 11 -*12

0 ,
(m - 1)!

ml

m - i - 2j)\

(2t)m-ί-i

y-o j\(m-2j)\ 2j Df-},

Therefore Pn = P21 = 0, and

H j\(m- 2j)\
-DΓ1,

= (2tD (m - 1)! (2t)m-1-
ί=ΐ ;!(m - 1 - 2j)!

(m - 1)! (2Qm-J n,,,

Σ ^ - — {2(m-l-/) +
-l-3

(TO + 1)! (2Qm-J

/=4 j ! (m + 1 - 2j)\ V

This completes the proof.

Df-}.

Π

The isomorphism ψ defined by (5.2) induces an isomorphism of rings

of matrices by,

φ: MN(W(Q) >MN(iT(C)) (cz MiN(W(C))),
CD CD

(4.3)

where φ(P) = ^(ί, A ) given in (2.7).

Proof of Proposition 2.3. A matrix Q(x, D) e MN(W(C)) is said to be

of elementary type if
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Q = Diag{l, . . . ,1 ,Q, ,1 , " . , 1 } or Q = Triang{l, • , 1} ,

where Diag{Q1? , QN} denotes the diagonal matrix with thej-th diagonal

component Q5.

For a matrix Q(x, D) of elementary type,

detM (Q) = q(x, ξ) = {'• W f o r the diagonal case,
I 1 for the triangular case.

We put deg q(x, ξ) = k (q(x, ξ) e C[x, £]). Then by Remark 3.2 and Theo-

rem 4.2, it holds that

(5.4) detσ (φ(Q)) = (qr(2ί, I))2 ( - τf .

An effective method of calculation of determinant of a matrix P(x, D)

β MN(W(C)) is done as follows. In view of the left Ore property of W(C),

there are matrices Q}(x> D) e MN(W(C)) (j = 1, , β) of elementary type

such that

Q* -Q&iP = Triang{ft, . , ^ } = R(x, D), i?, 6 W(C).

put

This implies

(5.5) φ(Qk) -φ(Qί)φ(P) = Triang {^(ft), , ^ft,)} = ^ B ) .

We put

detw (Qj) = gr/x, ξ) , deg g/x, f) = q,,

άetw (R) = f[ detw (Rά) = r(x, ζ), deg r(x, ξ) - r .
y=i put

Then we have

J } " 1 - r(x, ©
A;

= p ( x , £), degp(x, f) = p = r - 2]

Considering the relations (5.4) and (5.5), we obtain

det, (φ(P)) = det, (φ(R)) {Πχ detff

= (K2ί, I ) ) 2 ( - r)' {Π (ϊ/2ί, I ) ) 2 ( - r)^
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= \r(2t, 1). ( Σ qβt, 1)) T (- τ)r-βl—β*
L ly=i J J

= (P(2t,i)y(-&.

This completes the proof. D

Proof of Proposition 2.4. For a matrix P = (P^) e MN(W(C)), we put

ord^ (P^) = pi} and ord^ (P^ ) = qtJ. Also, we denote by ord^, (P) and

ordp (P) the total orders of P with respect to the Bernstein filtration and

the filtration by the order of differentiation respectively.

By the definition, it is obvious that ordω (P) > ord^ (P). Let detw (P)

= P(x9 ζ) and put / = degp(x, ξ). Then P(x, D) is non degenerate in the

Bernstein filtration if and only if ord«, (P) = /.

We shall prove our proposition dividing into two cases.

1) The case where P is not degenerate in the Bernstein filtration.

We choose a system of integers {st9 ts} such that

( 5 6) pυ <tj- Si and I = ordω (P) = Σ *i - Σ s< •

We put

/ r _. fPtXx, ξ) = *W(P1#) (see Theorem 4.2),
(5.7)

Then p(χ, ξ) = det Pw(x, ξ). By the assumption that p(0,1) ^ 0, we have

det Pw(0, ξ) = p(0, ΐ)ξι = p(0, ξ) φ 0. This implies that ord,, (P) > ordw(P),

and hence ord^ (P) = ordω (P). Moreover, this equality means that for

any permutation πe<&N such that Σi0<*«> = ^ ^ holds that

(̂-P<«(*>) = <*<««)(*)?***(<) and αίff(ί)(x) = const.

These imply that detσ(P) = detPω(0, ζ) =p(0, f), since Pij > qtJ.

2) The case where P is a degenerate matrix in the Bernstein filtration.

By the assumption, it holds that ordω (P) > I = degp(x, £) and

det Pw(x, ξ) Ξ 0. Therefore, there is a non zero left null vector l(x, ξ) =

(h(x, £), , Z,v(x, f)) of Pw(x, ξ) of relatively prime lt(x, ξ) e C[x, ξ] (j = 1,

• , JV). We may assume that there exist i and r such that

lt(x, ξ) = ξr + Σckxψ-k, ckeC.
k=l

We put
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Q(x, D): =

0

h,

0

Then we have detw (Q) = lt(x, ξ), ordw (Q) = r and ordw (QP) < ord,,, (P) +

r — 1. If QP is degenerate in the Bernstein filtration, we continue this

operation. Then we obtain matrices of above type {Qj(x, D)}*^ such that

< ord*, (P) +Σ r} - k ,

where rs = oτάw (Qj). It should be remarked that the inequality k < ordw(P)

does hold. In fact, the following equality

w (P) = άetw (Pk) ft
implies

deg(detw(P)) = deg(άetw(Pfc)) - Σ deg(dettt (Q3)) < oτdw
yi

Therefore, detw (P) = 0 if k > ordw (P), which is a contradiction. Now,

we may assume that Pfc is non degenerate in the Bernstein filtration. We

note also that for matrices Q3{x, D) (j = 1, , k) and Pk(x, D), the as-

sertion of the proposition is true. Hence, our assertion does hold for a

matrix P(x, D) in view of the relation,

det, (P) = detσ (Pfc) {ft D

Added in proof. The author has proved, recently, the converse of

the statement in Remark 1.2 holds. Therefore, Theorem 2 corresponds

completely to Theorem 2'. The detail will be given in the forthcoming

paper.
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