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§ 1. Introduction

Infinitely divisible probability measures on discrete spaces admitting
a commutative convolution have been studied in various frameworks. For
generalized convolutions related to Delphic structures an important con-
tribution was made by Gilewski and Urbanik in [5]. In [11] Schwartz
based his detailed analysis on convolutions arising from orthogonal series.
Both of these approaches can be included into the framework of discrete
hypergroups chosen f.e. by Gallardo and Gebuhrer in [4]. The main result
common to these sources is the fact that, roughly speaking, all infinitely
divisible probability measures are of Poisson type. Although the double
coset spaces of Gelfand pairs are commutative hypergroups admitting an
extended harmonic anafysis, the analytic methods developed in the theory
of Gelfand pairs (see Dieudonne [3] and Heyer [7]) provide a more direct
access to specific results like the characterization of divisible (idempotent,
infinitely divisible) measures. For discrete Gelfand pairs (and their double
coset spaces) Letac and his school have achieved remarkable results (see
Letac [8], [9] and the references therein). The still unpublished thesis
[1] of S. Ben Mansoor contains much information about divisible proba-
bility measures on cubes. In our exposition we reprove Ben Mansoor's
main theorem 3.5.4 with additional care, and discuss the special case of
the ra-dimensional cube which was the basic object of study already in
Letac, Takacs [10]. It turns out that the main obstacle to be overcome
in establishing the Poisson representation of infinitely divisible probability
measures is the presence of idempotent factors, a problem that has been
excluded f.e. in the work [4] of Gallardo and Gebuhrer.

In the following presentation we aim at a selfcontained analysis of
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44 H. HEYER

the problems of idempotency and infinite divisibility which stresses some

of the technical points neglected in previous publications. This concerns

the sections 4 and 5. Sections 2 and 3 contain preliminaries on the

method of Gelfand pairs and spherical functions along the standard

references Dieudonne [3] and Bougerol [2]. For the theory of probability

measures on locally compact groups the reader is referred to parts of the

author's monograph [6], It is the author's pleasure to pay tribute to

K. Hunzinger who in his Diploma thesis struggled successfully with some

of the sources.

§ 2. Generalities on Gelfand pairs

Let G be a multiplicatively written group and let T be an arbitrary

set. The pair (G, T) is said to constitute a homogeneous space if the

mapping (g, t) —> g(t) from G X T into T has the following properties:

(i) For the neutral element β of G one has e(t) = t for all t e T (ii) For

a l l g,heG a n d te T, gh(t) = g(h(t))9 a n d ( i i i ) F o r e v e r y p a i r { t , s ) e T χ T

there exists a ge G such that g(t) = s. For any fixed t e T the set

{ge G: g(t) — t) is called the stabilizer of t. Note that given a homoge-

neous space (G, T), for any geG the mapping t-»g(t) from T into T is

a bijection.

Let (G, T) be a homogeneous space, t0 e T and K the stabilizer of tQ.

Then K is a subgroup of G, and the mapping gk -> #(£0) from GjK into

Γ is a bijection. There is an equivalence relation defined on T X T by

the requirement that given (£, s) and (t\ s') e TX T there exists a. ge G

such that g(£) = t' and g(s) = s7. The class associated with (t,s)eTχ T

will be abbreviated by x(t, s). The class defined by x(t, t) = (£', t') for all

t,t'eT is denoted by xo Finally we introduce the set X — {x(t, s): (t, s)

eTx T} of all equivalence classes x(t, s) associated with (t, s) e T X T.

Clearly X can be identified with the set G/jK of double coset classes

KgK(g e G) of G with respect to K. More precisely, given (G, T), t0 and

K as above, for every t e T we have X = {x(t, g(i)): geG}, and the mapping

*(*o» g(*o)) -* iζ?^" from X into G\\K is a bijection. Note that for any sub-

group K of G the pair (G, G/i£) constitutes a homogeneous space, with the

G-action on GjK given by (g, hK) ->ghK for all g, heG.

Now let OΓ denote a topology on G such that (G, J7') becomes a locally

compact, unimodular, separable and metrizable group and that if is a

compact subgroup of G. It is known that by this choice of y G\K is a
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locally compact homogeneous space admitting an essentially unique G-
invariant measure π j> 0. By the identification G/K «-> T we therefore
obtain an essentially unique G-invariant measure π >̂ 0 on T. Introducing
in X the final topology with respect to the mapping φ = 0ίo: t->x(t^t)
from T7 into X, we end up with a measure ω: = φ(π) ̂  0 on I

Let xe X and let ( ί , s )eΓx T be such that # = χ(t, s). For any α,
6 € L^X, ω) the number

α * 6(x): = f α(x(ί, r))b(x(r, s))π(dr)

is well-defined, the convolution a * b of a and b lies in L\X, ω), and we
have

j a * &(£ω = i adω j 6<ίω.

Although this convolution in D(X, ω) is associative, in general it is
neither commutative nor admits a unit in L\X, ω). If however, x(t, s) =
x(s, t) for all (ί, s) eT x T, convolution in L^X, ω) is a commutative opera-
tion. Note that the convolution can be extended to the space L\X, ω) U
L°°(X, ω). For a e U(X, ω) and b e U(X, ω) UL°°(X, ω) we have

= abdω ,

where b is defined by

b(x(t, tQ)):= b(x(tQ, t)) for all teT.

The pair (G, iί) is called a Gelfand pair if the convolution in ZXX ω)
is commutative. A Gelfand pair (G, K) is said to be discrete or /mΐte if
T<-> GjK is countable or finite. A Gelfand pair (G, if) is said to be
symmetric if for all (t,s)eTχ T one has

x(t, s) = x(s, ί).

If T is at most countable, tϋe T, K is the stabilizer of t0 and (G, K)
a Gelfand pair, then the discrete topology on T and on X permits us to
choose 7Γ as the counting measure on T. In this particular case

ω(x) = \{teT: x(to,t) = x}\

for all xeX.
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§ 3. Spherical functions

Let (G, K) be a Gelfand pair arising from a homogeneous space (G, T),

a t0 e T and the stabilizer K of t0. A function φ e L°°(X, ω) with 0 =̂ 0 is

said to be spherical for (G, i£) if for all a, be L\X, ω) one has

a * & * 0(xo) = α * φ(x0) - b * 0(JCO).

By S(G, K) we denote the totality of spherical functions for (G, K).

Clearly lx e S(G, K). It is easily checked that according to

3.1 PROPOSITION for any φ e L°°(X, ω) the following statements are

equivalent:

(i) φeS(G,K).

(ii) φ(x0) = 1 and a*φ = a* φ(xQ) φ for all ae L\X9 ω).

In particular, spherical functions for (G, K) are paίrwίse linearly inde-

pendent.

If (G, K) is a discrete Gelfand pair, then L\X, ω) becomes a separable

commutative Banach algebra with unit element 1^.

For any Gelfand pair (G, K) we define for a given function a e L\X9 ω)

the mapping ea: L™(X, ω) -> L°°(X, ω) given by

ea(b):= a*b for all b e L~(X, ω).

The above characterization of spherical functions yields immediately

that for every a e L\X, ω) the set {a * φ(xQ): φ e S(G, K)} contains only

eigenvalues of ea. In the special case of a discrete Gelfand pair (G, K)

we see that given aeU(X,ω), {a*φ(x0): φeS(G,K)} is exactly the set of

eigenvalues of βα. As a consequence we obtain the fact that S(G, K) is

a basis of the subspace of L°°(X, ω) which is spanned by all eigenvectors

of ea.

We shall discuss the case of a finite Gelfand pair in more detail. For

any finite Gelfand pair (G, K) we have

U(X, ω) = Lp(X, ω)

whenever p e N. In particular, we obtain a scalar product < , > in L\X, ω)

defined by

<α, b}: = a * fe(x0)

for all a, b e Lι(X, ω). With this scalar product L\X, ω) becomes a Hubert

space. Note that any φ e S(G, K) satisfies φ — φ.
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3.2 PROPOSITION.

(1) The set ( — 1 : φ e S(G, K)\ forms a
I V(φφ} )

Hilbert basis of L\X, ω), and

(2) any a e L\X9 ω) admits a representation

α =

Returning to an arbitrary discrete Gelfand pairs (G, K) we introduce

the dual Z(G, K) of (G, K) as the set of spherical functions φ e S(G, K)

which are positive definite in the following sense: For every n JΞ> 1, all

choices λl9 , λn e C and tu -,tneT

tj)) ^ o.

Note that if the pair (G, K) is also symmetric then any function a on X

satisfies a = a, and any positive definite a on X satisfies even a = a.

Let us now consider the weak topology σ(L°°, L1) in L°°(X, ω). It turns

out that S(G, K) is σ(L™, L!)-compact. Since Z(G, K) is ί7(L°°, L^-closed in

S(G, K), it is also compact. An application of the Plancherel-Godement

theorem (Dieudonne [3], 22.7.5) for Gelfand pairs yields the

3.3 PROPOSITION. There exists a unique probability measure σ on

Z(G, K) such that any a e L\X, ω) admits the representation

a(x) = α * φ(xo)φ(x)σ(dφ)

valid for all x e X.

The measure σ is called the Plancherel measures of the Gelfand pair

(G, K).

We observe that whenever, given α, fee U(X, ω),

a * φ(xQ) = b * φ(xQ)

for all φ 6 Z(G, K), then a = b.

§ 4. Idempotency

Given a discrete Gelfand pair (G, K) with the corresponding spaces

T ~ G/K and X — G\\K and their canonical measures π and ω respectively.

The spaces of (ω-absolutely continuous) bounded or probability measures
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on X will be identified with the function spaces L\X, ω) and

M\X, ω):= {μ e D(X, ω): μ^O, ||/4 = 1}

respectively. The essentially unique (left) invariant measure on G will

be abbreviated by ωG.

We recall that a measure μ e Mι(X, ω) is called an ίdempotent if μ2 — μ.

4.1 THEOREM. For every ίdempotent λ e M\X, ω) there exists a com-

pact subgroup Kλ with the following properties:

( i ) K is a subgroup of Kλ.

(ii) ωG(Kλ) = \{g(Q: geKλ}\.

if there is a g e Kλ such that g(t0) = t
(iii) λ(x(to,t)) =

[0 otherwise.

Proof. Let λ e M\X, ω) be an idempotent. Then λ(x0) ^ λ{x)λ(x) ̂  0

for all xeX and λ(x0) > 0. Defining λ^g): = λ(x(t0,g(t0)) for all geG we

obtain an idempotent λx e L\(G, ω0). By a well-known result (Heyer [6],

1.2.10) there exists a compact subgroup Kλ of G such that λ^ωG — ωKλ

where, as usual, ωKλ denotes the normed Haar measure of Kλ. Clearly,

0KωG(Kk) < oo. Thus, the measure ωG(K^)~ιlKλ'ωG is a Haar measure on

Kλ. Consequently λx = ωG(K^~xlKλ [ωG], and (iii) follows. Since

0 < λ(x0) - λte) = ωG(Kλ)-ΊKλ(g)

for all g e K, lKλ(g) — 1 for all g e K, and we have (i). (iii) together with

the equality

implies (ii). Π

4.2 COROLLARY. For every ίdempotent λ e Mι(X, ω) there exists a subset

A of X such that

λ = λ(x,)lA .

Proof. Let Λ e M -̂X, ω) be an idempotent. From the theorem we

obtain a subgroup Kλ of G satisfying

if g(t0) = ί for some

otherwise.

Putting
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A:= {x(t0, t): There is a g e K with g(t0) == t}

we observe that x0 e A and that

λ(xQ) if x e A

0 if x & A .

4.3. DISCUSSION. Given Λ e M^X, ω) and i ^ as above we introduce

the sets

Tλ:={g(Q: geKx}
and

Then (G, I7*) becomes a homogeneous space with corresponding double

coset space Xλ. For every xλ e Xλ we define the number

*>,(*,):= K^Γ,): ^ e G and xλ{Tλ,g(Tλ)) = x}\

and obtain a measure ^ on XΛ. Clearly, there is the natural identifica-

tion

Since if is a subgroup of Kλ, every x e X lies in exactly one double coset

class xλ e Xλ. Hence, given v e L\Xλ, ωx) there is a v e L^Z, ω) defined by

v(x):= N^v(χλ)

for all x C X*, ^ e Xλ, where

Nλ:=\{g(t0): geKλ}\.

For the convolution in L\Xh ωλ) we shall use the symbol *λ. The following

4.4. FORMULA is easily established: For all μ, veU(Xλ,ω^) we have

μ *A v = μ * v .

In fact, if 7^ 6 T^ and *' e T^ then

Σ Njp(x(tt,t)Xx(t,tf))
tery
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4.5 CONSEQUENCES.

4.5.1. (G, Kλ) is a discrete Gelfand pair.

4.5.2. (G, Kλ) is symmetric whenever (G, K) is.

The next result concerns the relationship between the sets S := S(G, K)

and Sλ: = S(G, Kλ) by means of the set

Aλ:= {veL\X,ω): λ*v - v}.

4.6 THEOREM. The mapping μ-*μ from L\Xλ,ω^ into D(X, ω) is a

norm-preserving algebra isomorphism from L\Xλ, ωλ) onto Aλ satisfying

{Nλ.φ: φeSλ} = AλΓ)S.

Proof. 1. Clearly, Aλ is a subalgebra of L\X, ω). From the defini-

tion follows directly, that the mapping β->μ is injective. The fact that

it is an algebra homomorphism becomes obvious from Formula 4.4. In

order to obtain the first statement of the theorem it remains to show that

μ -+ μ is surjective. Let v e Aλ. Then, for all gl9 g2eK and t e T we have

g2(t))

tfeτ

= Σ
t'eτ

By Theorem 4.1 it suffices in this last expression to sum only over those

t' eT for which gϊxgι{t') e Tλ. But the hypothesis implies g^g2 6 Kλ, hence

Tλ and therefore

-= Σ λ(x(tQ,t')Hx(t',t))
t'GTχ

= Σ ^(χ«0> ί'))v(χ(ί', ί))
t' eT

^λ*v(x(t0, t))

Now we choose for each T'x 6 Tι a ίj 6 Γ^ and put

whenever T'λ e T\ Then υ e L\XX, ωλ) and by the above computation, v = λ.

I.e. // —> // is surjective onto Aλ.

In order to see that this mapping is also norm-preserving we note

that for all βeL\Xλyωλ) the following equalities hold:
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\βdωt=J = Σ Pi

= Σ ~ ΣNrμ(to,t)T'χeτi N) teτ't

= Σ μfa, t)
ter

= I μdω.

2a. We shall prove the inclusion

{Nrφ: φeSλ}c:A2nS.

Let φ e Sλ. Then, clearly, Nλ-φe Aλ and hence it suffices to prove that
Nx-φeS. If Nλ-φ e A then also φ e Aλ. Thus for all μ e L\Xt ω) we have

that μ * λ and μ*φeAλ and therefore that μ*λ and μ * φ are well-defined.
Applying Formula 4.4 and Proposition 3.1 we get

μ * φ = μ * λ * φ

= μ * λ * λ φ

= Nψ*φ(xo)'φ,

hence

Nλμ*φ = N\μ*φ(xQ) φ

and therefore

μ*(Nrφ) = (^*(iV

Since

another application of Proposition 3.1 implies that Nλ-φeS.
2b. It remains to be shown that

Let φeAiDS. By the surjectivity of β -> μ there exists a ^ in
and for each μ 6 L 1 ^ , ωj we obtain from Proposition 3.1 that
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Since

( L ή , Tt)) = rN

another appeal to Proposition 3.1 implies the desired inclusion. •

4.7 TERMINOLOGY. A measure μ e M\X, ω) is said to divide another
measure v e Mι(X, ω) (in symbols μ\v) if there exists a measure p e M\X, ω)
such that

μ*p = v.

By Ό(y) we denote the set of idempotent factors of v. A measure μ e D{v)
is called a maximal idempotent factor of v if

μ*p = μ

for all p e D(v). Finally v e MX(X, ω) lacks idempotent factors if D(v) = {lxo}.

4.8. Remarks.
4.8.1. Let λ be an idempotent in M\X, ω) and μ e M\X9 ω) such t h a t

λIμ. Then there exists a measure v 6 M^X, ω) satisfying μ •= λ*v and
consequently

4.8.2. For every μ e M\X, ω) there exists a maximal idempotent factor
of μ.

The proof of this last statement is achieved by applying Zorn's Lemma.

§ 5. Infinite divisibility

We start with a discrete Gelfand pair (G, K) having dual space
Z:= Z(G, K) and Plancherel measure a. For the entire section we suppose
that the spherical function φo:= lx belongs to supp(σ). This Godement
property (GP) implies the validity of
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5.1 Levy's continuity THEOREM (Gallardo, Gebuhrer [4], Theoreme 3.1).

For any sequence (μn)n^ι of measures in M\X, ω) such that there exists a

complex-valued function Φ on Z, continuous at φϋ and satisfying

lim μn * φ(x0) = Φ(φ)

whenever φe Z, there is a measure μ e Mι(X, ω) such that

lim μn(x) = μ(x)

for all xe X.

There is a variety of Gelfand pairs admitting (GP), f.e. all pairs (G, K)

where G is compact. But there are also examples of Gelfand pairs

without (GP), f.e. the pair associated with a homogeneous tree.

We recall that a measure μ e MJ(X, ω) is said to be infinitely divisible

if for every n ^> 1 there exists an n-th. root μn e M\X, ω) with the property

that μl = μ.

The set of all infinitely divisible measures in M\X, ω) will be abbre-

viated by I(X, ω).

5.2 THEOREM. For every μ e I(X, ω) the following statements are equi-

valent:

(i) μ lacks idempotent factors.

(ii) μ * φ(x0) φ 0 for all φeZ.

Proof. 1. (i) ^ (ii). Let μ e I(X, ω) with D(μ) = {lxo}, and let

A : = {φeZ: μ*φ(xQ) Φ 0}.

For every n ^ 1 there exists μn e M\X, ω) such that μl = μ. In particular

μ * φ(Xo) = (μn * Φ(Xo)Y

and hence

lim μn * φ(xQ) = lA(φ)
72,—»oo

for all φe Z. Since 1A is continuous in φoe Z and (G, K) admits (GP),

an application of Levy's continuity theorem yields the existence of a

measure v e Mι(X, ω) with

lim μn(x) = v(x)

for all x e X. But (G, K) is a discrete pair, whence
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lim μn * φ(xQ) = v * φ(x0)

and thus lA(φ) = μ * φ(x0) for all φeZ. The idempotency of v follows from

the following inequalities valid for all φ e Z:

= v * 0(xo)j; * 0(#o)

= y * φ(x0).

Analoguously we obtain that v\μ. But by assumption we have that

D(μ) = {1^}, hence v = 1^ and thus A — Z.

2. (ii) => (i). Let μ e M\X, ω) with μ * φ(x0) Φ 0 for all φeZ and let

^ e D(μ). Then

// * ^(x0) = μ * ^ * 0(*o) = i" * ^(^o)^
hence

for all φeZ and thus ^ = 1^. Π

From now on we suppose that (G? K) is a symmetric discrete Gelfand

pair.

5.3 THEOREM. For every measure μ e I(X, ω) lacking an ίdempotent

factor there exist a measure v e M\Xy ω) and a number a > 0 satisfying

μ * φ(x0) = exp [a(v * φ(xQ) — 1)]

for all φeZ.

Proof By hypothesis, for the given μ e I(X, ω) and every n ^ 1 there

is a μn e M\X, ω) such that μn

n = ^. Since (G, if) is a symmetric pair,

μ * 0(xo) e R for all 0 6 Z. The mapping φ-+ μ* φ(x0) from Z into i? is

continuous on the compact space Z, hence there exists a φ1 e Z such that

μ * 0i(*o) ^ μ

for all φe Z. We now apply Proposition 3.3 which yields

μ *

£ \ μ* φ(xQ)φ(xQ)σ(dφ)
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μ was assumed to lack idempotent factors. By Theorem 5.2 we therefore

have

0 < (μ2 * ^(x0))2 = μ* φ(xQ)

whenever φe Z. We put

and for every n >̂ 1,

\ ft/

Clearly, α is well-defined. Moreover for every n ;> 1, ^ra 6 M^Z, ω). In

fact vn(x) ^ 0 for all x e X\{xQ}, and since

μ(xQ) ^ μ * ^!(x0) ,

also *Λ(*o) ̂  0. The fact that \\vn\\ - 1 follows from \\μn\\x - 1.

An easy computation shows that for all n ^ 1 and φ e Z,

a + logμ* φ(xQ) = 7i log I ίexp ί —

with existing limit for n ~> oo. Consequently

α + log μ * 0(xo) = a lim vw * φ(x0)

for all ^ e Z. The mapping

^ -> —(α + log ^ * ^(x0))

from Z into i? is continuous in φQ. By Levy's theorem there exists a

measure v e M^X, ω) satisfying

lim vn(x) = y(x)

for all x e X, and since (G, if) is discrete, also

lim vn * ^(x0) = v * ^(x0)

for all φe Z. Altogether we obtain

a + log μ * 0(xo) (̂)
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for all φ e Z, and the assertion follows. •

5.4 THEOREM. Let μ e I(X, ω) and λ e D(μ) be the maximal ίdempotent

factor of μ. Then there exist a measure v e M\X, ω) and a number a > 0

such that for all φe Z

fexp [a(ι> * φ(x0) - 1)] if λ * φ(x0) Φ 0
μ*φ(xo) = l

[0 otherwise.

Proof. Let μ and λ be chosen according to the assumption. From

Theorem 4.1 we infer the existence of a compact subgroup Kλ of G with

the properties (ii) and (iii) of that theorem. Since μ * λ = μ, we have

that μβ Aλ and by Theorem 4.6 that fi e M\Xλ, ωλ). We first show that

1. μ lacks idempotent factors.

Let p e D(μ). From Formula 4.4 we obtain that p e D(μ). Since λ is

the maximal idempotent with λ\μ9 we have λ = λ * p, whence again by

Formula 4.4, λ = λ*λρ. But λ is the unit element of the Banach algebra

M\Xλ, ωλ) and so is δ̂, which proves the assertion.

We note that Theorem 5.2 implies that

for all φeZλ:=Z(Xλ,Kλ).
Next we show that

2. fie I(Xλ, ωx) (defined analoguous to I(X, ω)).

For every n ^ 1 there exists μn e Mι(X, ω) such that μn

n — μ. Let φe Z

be given with λ * φ(x0) — 0. From μ — 1* μ follows that μ * φ(xQ) = 0, whence

μn * φ(xQ) = 0 and thus

μn * λ * φ(xQ) = 0 = μn *n ^(x0)

for all n JΞ> 1. If on the other hand we pick & φe Z with Λ* ^(x) Φ 0,

then from the idempotency of λ follows λ * φ(x0) — 1, and again we obtain

for all ^ ^ 1. But then Proposition 3.3 implies μn%l = μn and therefore

μn e Aλ for all n ^ 1. Theorem 4.6 and Formula 4.4 yield the assertion.

The main statement is a consequence of Theorem 5.3. At first we

note that (G, Kλ) admits (GP), since (G, K) does, so that Theorem 5.3 is

applicable: There exist a measure veM\X^ωλ) and a number a > 0 such
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that for all φ e Zλ,

fi *, φ(xλ{Tλ, Tλ)) = exp [a(v *a φ(xλ(Tλ, TJ) - 1)]

Again appealing to Theorem 4.6 and to Formula 4.4 yields

μ * (*o) = e x P Wy * 0(*o) — 1)]

valid for all φ e Aλ (Ί Z. If there is a 0 e Z with Λ * 0(xo) Φ 0, then for such

a φ we obtain λ * 0(#o) = 1 and by Proposition 3.1, φ e A*. Π

5.5 COROLLARY. Let μ e I(X, ω). There exist a measure v e Mι(X, ω)

and a number a > 0 such that for all φe Z with μ * φ(xQ) Φ 0 we have the

representation

μ * φ(xQ) = exp [a(v * φ(x0) — 1)].

Proof. Given μ e I(X, ω) there exists by Remark 4.8.2 a maximal

idempotent factor λ e D(μ). For all φe Z satisfying μ * φ(xQ) Φ 0 we then

get

0 ^ ^ * φ(x0) = μ* λ* φ(x0)

hence ^ * ^(x0) Φ 0, and the theorem implies the assertion. •

§ 6. The Gelfand pair of the m-cube

For an application of the Poisson type representation given in the

preceding section we shall discuss the special case of the m-dimensional

cube. In order to identify all infinitely divisible probability measures on

the cube we need only exhibit the idempotents. For this task to be

achieved the spherical functions on the cube have to be characterized.

6.1. The w-cube as a finite Gelfand pair

Let m >̂ 1 and let T denote the set of vertices of a regular polytope

in Rm. For all (s, t) e T X T we define d(s, t) to be the minimal number of

vertices to be passed in moving along the edges from 5 to t, where t is

counted but not s and s Φ t. lΐ s = t we put d(s, t): = 0. Clearly, d is

a metric on T7. The set G of all bijective mappings T—>T which preserve

the distance with respect to d, forms a group, and under the mapping

(g,t)->g(t)

from G X T into T, (G, T) becomes a homogeneous space. Given tQ e T,
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the stabilizer K of ί0 and the double coset space X of (G, T) we see that

f o r ( s , t) a n d (s', tf)eTχT

x{s, t) = x(s', t) φ T h e r e is a geG w i t h #(s) = s ' a n d g(t) = tf

& <Ks, t) - d(s\ g').

Since d(s, t) = d(ί, 5), we obtain that

x(s, t) = x(ί, s)

for all (s, t) eT X T, and hence (G, if) is a symmetric (finite) Gelfand pair.

Specifying T to be the set

{t - (ί1, , r ) 6 Λm: t* = ± 1 for all £ = 0, , w}

of vertices of the ^-dimensional cube and /0: = (1, • -, 1) e T we obtain

the Gelfand pair (G, K) of the m-dίmensίonal cube. It is clear that in

this particular case the metric d takes values in the set {0, 1, , m},

hence X = {x0, , xm} with

Xji= {(s, t)eTx T: d(s, t) = j}

whenever j = 0, , m. In particular x0 = x(t, t) for all teT. We also

note that the measure ω on X is given by

for all j = 0,1, , m.

6.1.1. The convolution in L^X, ω) is given in terms of

for X;, Xj, xfc e X

6.1.2. The spherical functions of (G, K) can be computed as follows:

For all i — 0, 1, , m we introduce functions ^ on X implicitly by the

expression

Σ .

valid for all z e R, or explicitly by
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for all j = 0, 1, , m. The following properties can be verified
( i ) {φt: i = 0,1, .- ,m} = S:=S(G,K).

(ii) φiixj) = 0/#4) for all ij = 0,1, , m .

(iii) <&, ̂ > = - ^ V ^ for all i, j - 0,1, .. ., m .

(iv) The family
r i

===φ: ί — 0,1, ,

is a basis of the Hubert space U(X, ω).

6.2. The idempotents in M\X, ω)
6.2.1. There exist at least two idempotents in Mι(X, ω), namely the

functions 1^ and (ΣXXQχθ){x))~'ίlx,
6.2.2. For every λeM\X, ω) the following statements are equivalent:
( i ) λ is an idempotent.
(ii) For every φe S either <Λ, φ} = 1 or <̂ ? ̂ > = 0 holds.

Indeed, if λ e M\X, ω) is an idempotent, i.e. λ * 1 — λ, then

for all φe S, whence (ii). If, on the other hand, λ e M\X, ω) satisfies (ii)
then by (2) of Proposition 3.2 we have

2 φ
Φes (φ, φ)

= Σ <̂ ? ΦXI Φ> φ
Φes (φ, φ}

== V (^ * ̂  Φ) A
Φes (φ, φ)

= λ * λ7 i.e. (i).

6.2.3. If λ e M\X, ω) is an idempotent then we have for every xe X
and each φe S that λ(x) > 0 and (λ, φ} = 1 imply 0(x) = 1.

Indeed, for the given λ e M\X, ω) fulfilling the hypotheses we obtain

λ(x)ω(x) = l = ( l φ } = Σ ( $ ( ( Σ
xex xex

and thus

Σ ^ ) ( ) ( ^ ( ) )
xex

Since |^(x)| ^ 1 for all xeX, the assertion follows.
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6.2.4. Let i,j e {0,1, , m). The following statements are equivalent:

( i ) φt(xj) = 1.

(ii) We have either i = 0 or j = 0,

or we have i — m and y even,

or we have y = 0 and i even.

(ii)=>(i) follows directly from the equality

valid for all ί, j e {0, 1, , m}. It remains to show (i)=>(ii). For all

i, j e {0,1, , m} such that φi(Xj) = 1 we get

m

= Σ i Σ J I / I I ί 7 Pfe-2ί,oω(xfc)^

and since φ,) = ± Q

which implies φi(2Γ) = 1 for all Z = 0, , j . Noting that

for all Xj e X we conclude the assertion.

6.2.5. There are exactly four idempotents in M\X, ω), namely the

functions 1^, 2"ml x, λ0 denned by

(2'-m if j even

[0 if j odd,

and î denned by

0 if 0 < < m, and

1 if j = m.
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At first we show that the functions λ0 and λx are in fact idempotents (the

remaining ones clearly are). For every j = 0,1, , m we have

0 if j = 1, •••,#» —

1 if j = 0, m.

An application of 6.2.2 shows that Xo is an idempotent. Analogously

one deduces from

if j odd

if j even

that λί is also an idempotent.

Now we assume λ e M\X, ω) to be an idempotent.

1) Let j exist with 0 <Cj <Cm and (λ, φj} — 1. Then for each i = 0,

1, , m with λ(Xi) > 0 we obtain from 6.2.3 that φ3(xΊ) = 1 and from 6.2.4

that consequently i = 0 or i = m. But this implies Λ = λ(xQ)lXQ or ^ =

^(x0)l^o + Λ(xo)l̂ m. Since i is a probability measure, this implies that

either λ = 1^ or λ = J 1-.. + i 1. = λ. Thus Λ is of the asserted form.

2) Let there exist no j with 0 < j < m and <Λ, 0̂ > = 1.

2a) If <7, 0m> = 0 then there is an a e C such that λ — aφQ = α l x ,

and in this case therefore λ = 2" w l z .

2b) If < ,̂ ̂ m> = 1 then there are a, βeC such that λ = aφQ + βφm.

We obtain

and

whence

Since φm(Xj) = ( — l) j for all j = 0, 1, , w, this implies that Λ = /lo
From 1) and 2) follows that all idempotents in M\X, ω) are of the

asserted form.
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