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§1. Introduction

Infinitely divisible probability measures on discrete spaces admitting
a commutative convolution have been studied in various frameworks. For
generalized convolutions related to Delphic structures an important con-
tribution was made by Gilewski and Urbanik in [56]. In [11] Schwartz
based his detailed analysis on convolutions arising from orthogonal series.
Both of these approaches can be included into the framework of discrete
hypergroups chosen f.e. by Gallardo and Gebuhrer in [4]. The main result
common to these sources is the fact that, roughly speaking, all infinitely
divisible probability measures are of Poisson type. Although the double
coset spaces of Gelfand pairs are commutative hypergroups admitting an
extended harmonic analysis, the analytic methods developed in the theory
of Gelfand pairs (see Dieudonné [3] and Heyer [7]) provide a more direct
access to specific results like the characterization of divisible (idempotent,
infinitely divisible) measures. For discrete Gelfand pairs (and their double
coset spaces) Letac and his school have achieved remarkable results (see
Letac [8], [9] and the references therein). The still unpublished thesis
[1] of S. Ben Mansoor contains much information about divisible proba-
bility measures on cubes. In our exposition we reprove Ben Mansoor’s
main theorem 3.5.4 with additional care, and discuss the special case of
the m-dimensional cube which was the basic object of study already in
Letac, TakA4cs [10]. It turns out that the main obstacle to be overcome
in establishing the Poisson representation of infinitely divisible probability
measures is the presence of idempotent factors, a problem that has been
excluded f.e. in the work [4] of Gallardo and Gebuhrer.

In the following presentation we aim at a selfcontained analysis of
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44 H. HEYER

the problems of idempotency and infinite divisibility which stresses some
of the technical points neglected in previous publications. This concerns
the sections 4 and 5. Sections 2 and 3 contain preliminaries on the
method of Gelfand pairs and spherical functions along the standard
references Dieudonné [3] and Bougerol [2]. For the theory of probability
measures on locally compact groups the reader is referred to parts of the
author’s monograph [6]. It is the author’s pleasure to pay tribute to
K. Hunzinger who in his Diploma thesis struggled successfully with some
of the sources.

§ 2. Generalities on Gelfand pairs

Let G be a multiplicatively written group and let 7 be an arbitrary
set. The pair (G, T) is said to constitute a homogeneous space if the
mapping (g,f) — g() from G X T into T has the following properties:
(1) For the neutral element e of G one has e(f) = ¢ for all te T (ii) For
all g, he G and te T, gh(t) = g(h(t)), and (ii1) For every pair (¢, 8)e T X T
there exists a ge G such that g(f) =s. For any fixed ic T the set
{ge G: g(t) = t} is called the stabilizer of t. Note that given a homoge-
neous space (G, T), for any ge G the mapping ¢ — g(f) from T into T is
a bijection.

Let (G, T) be a homogeneous space, ¢, ¢ T and K the stabilizer of #,.
Then K is a subgroup of G, and the mapping gk — g(f,) from G/K into
T is a bijection. There is an equivalence relation defined on T X T by
the requirement that given (¢,s) and (¢,s)e T X T there exists a ge G
such that g(¢) = t’ and g(s) = ¢’. The class associated with (,8)e T X T
will be abbreviated by x(¢, s). The class defined by =x(¢, t) = (¢, ¢t) for all
t,t’e T is denoted by x,. Finally we introduce the set X = {x(¢, s): (¢, s)
e T X T} of all equivalence classes x(f,s) associated with (¢,s)e T x T.
Clearly X can be identified with the set GJK of double coset classes
KgK(ge G) of G with respect to K. More precisely, given (G, T, ¢, and
K as above, for every te T' we have X = {x(¢, g(?)): g € G}, and the mapping
x(ty, g(t,)) — KgK from X into G[/K is a bijection. Note that for any sub-
group K of G the pair (G, G/K) constitutes a homogeneous space, with the
G-action on G/K given by (g, hK) - ghK for all g, heG.

Now let 7 denote a topology on G such that (G, 9°) becomes a locally
compact, unimodular, separable and metrizable group and that K is a
compact subgroup of G. It is known that by this choice of 9 G/K is a
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locally compact homogeneous space admitting an essentially unique G-
invariant measure = > 0. By the identification G/K <« T we therefore
obtain an essentially unique G-invariant measure 7 >0 on 7. Introducing
in X the final topology with respect to the mapping ¢ = ¢, t — x(t, ?)
from T into X, we end up with a measure w:= ¢(z) > 0 on X.

Let xe X and let (¢,s)e T X T be such that x = x(¢,s). For any a,
be LY(X, w) the number

axb(x):= f a(x(t, r))b(x(r, s))x(dr)

is well-defined, the convolution a+b of a and b lies in L'(X, »), and we
have

fa*bdwzfadmfbdw.

Although this convolution in LXX, ») is associative, in general it is
neither commutative nor admits a unit in L'(X, »). If however, x(¢, ) =
x(s, t) for all (¢,5)e T X T, convolution in LY(X, w) is a commutative opera-
tion. Note that the convolution can be extended to the space LY(X, w) U
L*(X, ). For aeL(X, »w) and be LY(X, 0) UL*(X, ) we have

a* bx,) = I abdo,
where b is defined by

b(x(t, t,)): = b(x(t, ©))  for all te T.

The pair (G, K) is called a Gelfand pair if the convolution in LY(X, w)
is commutative. A Gelfand pair (G, K) is said to be discrete or finite if
T+ G[K is countable or finite. A Gelfand pair (G, K) is said to be
symmetric if for all (¢,s)e T X T one has

x(t, 8) = x(s, 1) .

If T is at most countable, #,e¢ T, K is the stabilizer of #, and (G, K)
a Gelfand pair, then the discrete topology on 7T and on X permits us to
choose 7 as the counting measure on 7. In this particular case

wo(x) = |{te T: x(t, t) = x}|
for all xe X.
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§ 3. Spherical functions

Let (G, K) be a Gelfand pair arising from a homogeneous space (G, T),
a t,e T and the stabilizer K of #,, A function ¢e L*(X, w) with ¢ %0 is
said to be spherical for (G, K) if for all a, be L'(X, w) one has

axbxdlx) = ax x) bxplxy) .

By S(G, K) we denote the totality of spherical functions for (G, K).
Clearly 1, € S(G, K). It is easily checked that according to

3.1 ProposITiION for any ¢e L=(X, w) the following statements are
equivalent:

(i) ¢¢eS(G, K).

(i) ¢(x) =1 and axd = ax@(x)-¢ for all ae LX(X, w).
In particular, spherical functions for (G, K) are pairwise linearly inde-
pendent.

If (G, K) is a discrete Gelfand pair, then L'(X, w) becomes a separable
commutative Banach algebra with unit element 1.

For any Gelfand pair (G, K) we define for a given function a ¢ L'(X, 0)
the mapping e,: L°(X, w) - L*(X, w) given by

e,(b):=axb for all be L (X, w).

The above characterization of spherical functions yields immediately
that for every ae LY(X, ») the set {ax*d¢(x): ¢e S(G, K)} contains only
eigenvalues of e,. In the special case of a discrete Gelfand pair (G, K)
we see that given ae LY(X, ), {a* ¢(x,): ¢ € S(G, K)} is exactly the set of
eigenvalues of e,. As a consequence we obtain the fact that S(G, K) is
a basis of the subspace of L*(X, w) which is spanned by all eigenvectors
of e,.

We shall discuss the case of a finite Gelfand pair in more detail. For
any finite Gelfand pair (G, K) we have

(X, o) = LX(X, )

whenever p e N. In particular, we obtain a scalar product {-, - » in L\(X, w)
defined by

{a,by: = ax I;(xo)

for all a, be LY(X, w). With this scalar product L'(X, o) becomes a Hilbert
space. Note that any ¢ e S(G, K) satisfies ¢ = 5
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3.2 ProOPOSITION.

(1) The set {

W: e S(G, K)} forms a

Hilbert basis of LX(X, v), and
(2) any ac LN(X, w) admits a representalion

a = _(a, ¢> -S.
$e3G.5) (P, p)
Returning to an arbitrary discrete Gelfand pairs (G, K) we introduce
the dual Z(G, K) of (G, K) as the set of spherical functions ¢ e S(G, K)
which are positive definite in the following sense: For every n > 1, all
choices 4, ---,4,€C and ¢, ---,t, €T
224t 1)) = 0.

n
=1

Note that if the pair (G, K) is also symmetric then any function ¢ on X
satisfies ¢ = @&, and any positive definite ¢ on X satisfies even a = a@.

Let us now consider the weak topology ¢(L”, L') in L*(X, »). It turns
out that S(G, K) is a(L~, L*)-compact. Since Z(G, K) is o(L*, L')-closed in
S(G, K), it is also compact. An application of the Plancherel-Godement
theorem (Dieudonné [3], 22.7.5) for Gelfand pairs yields the

3.3 ProrosiTiON. There exists a unique probability measure ¢ on
Z(G, K) such that any a € L'(X, w) admits the representation

a@) = [ ax gx)io(dg)
valid for all xe X.

The measure ¢ is called the Plancherel measures of the Gelfand pair
(G, K).
We observe that whenever, given a, b € L'(X, o),
a * ¢(x,) = b x ¢(x,)
for all ¢ € Z(G, K), then a = b.

§4. Idempotency

Given a discrete Gelfand pair (G, K) with the corresponding spaces
T = G/K and X = GJK and their canonical measures = and o respectively.
The spaces of (w-absolutely continuous) bounded or probability measures
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on X will be identified with the function spaces L'(X, w) and
M(X, 0):i= {pe (X, o): p =0, |l =1}

respectively. The essentially unique (left) invariant measure on G will
be abbreviated by .

We recall that a measure pe M (X, o) is called an idempotent if p* = p.

4.1 TeEOREM. For every idempotent Ae MY(X, w) there exists a com-
pact subgroup K, with the following properties:

(i) K is a subgroup of K,.

(i) (&) = l{g(t): ge K}

i) At 2) = {wG(Kl)“ if there‘ is a ge K, such that g(t,) =t
0 otherwise.

Proof. Let ie M'(X,») be an idempotent. Then 2(x,) = A(x)i(x) = 0
for all xe X and A(x,) > 0. Defining A(g): = A(x(t, g(t,)) for all ge G we
obtain an idempotent 2, e L1(G, w;). By a well-known result (Heyer [6],
1.2.10) there exists a compact subgroup K; of G such that 2,-w; = wg,
where, as usual, oy, denotes the normed Haar measure of K,. Clearly,
0<we(K,;) << oo. Thus, the measure ws(K;) '1x,-w; is a Haar measure on
K,. Consequently 2, = wg(K,) 1, [w¢], and (iii) follows. Since

0 < A(xy) = 4,(8) = wa(K,) 14 (8)

for all ge K, 1,,(g) =1 for all ge K, and we have (i). (iii) together with
the equality

5 Aty ) = 1
implies (ii). O

4.2 CoroLLARY. For every idempotent 2 € M'(X, w) there exists a subset
A of X such that

2= Ax)l, .

Proof. Let 1e M'(X, w) be an idempotent. From the theorem we
obtain a subgroup K, of G satisfying

K -t .f t) = t f K
Ax(ty, b)) = {:!))G( ) if' g(t) or some ge K,

otherwise .

Putting
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A:= {x(t,, t): There is a ge K with g(t,) = t}
we observe that x,€ A and that

A(x,) if xe A

Z(x):{o if xeA.

4.3. DiscussioN. Given 1e¢ M'(X, w) and K, as above we introduce
the sets

T,:= {g(to): g€ Kz}
and

T*:= {g(T): geG}.

Then (G, T% becomes a homogeneous space with corresponding double
coset space X,. For every x;, € X, we define the number

o (x):= |{g(T)): ge G and x,(T;, g(Ty)) = «x}|

and obtain a measure w, on X,. Clearly, there is the natural identifica-
tion

X, «—> GJK,.

Since K is a subgroup of K,, every x ¢ X lies in exactly one double coset
class x, € X;,. Hence, given v e L\(X,, w;,) there is a p e LY(X, v) defined by

w(x):= N;5(x,)
for all x C X,, x, € X;, where
N;:=|{gt): ge Ki}|.
For the convolution in L'(X;, w,) we shall use the symbol x,. The following

4.4. ForMULA is easily established: For all p, ve L'(X,, »,) we have

~
A0 = puxyp.

In fact, if T,e T* and # € T then

AT T = 2 plo(To, TOWA(T, T3)

= > L5 Nttt 9)ux(t, )

rirerr N, €Ty

= N, 3 ulaty, )(x(t, 1)
= Ny s o(xlty, ) = por o(x(Toy T).
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4.5 CONSEQUENCES.
45.1. (G, K)) is a discrete Gelfand pair.
4.5.2. (G, K,) is symmetric whenever (G, K) is.

The next result concerns the relationship between the sets S: = S(G, K)
and S;:= S(G, K,) by means of the set

A= e (X, 0): 2xv=1}.

4.6 THEOREM. The mapping i — p from LN(X,, w,) into L(X, w) is a
norm-preserving algebra isomorphism from LXX;, w,) onto A, satisfying

{N,-¢: g S} = ANS.

Proof. 1. Clearly, A, is a subalgebra of L'(X, w). From the defini-
tion follows directly, that the mapping g — p is injective. The fact that
it is an algebra homomorphism becomes obvious from Formula 4.4. In
order to obtain the first statement of the theorem it remains to show that
f— p is surjective. Let ve A,. Then, for all g,, g,€ K and ¢te T we have

v(x(g,(t), &) = 2xv(g(t), 8&(1)
= ;’;T A(x(gi(80), )w(x(E), (D))

t%]T Aty 87 GLMW((, 1)) .

By Theorem 4.1 it suffices in this last expression to sum only over those
t' e T for which gi'g,(t") e T,. But the hypothesis implies g;lg, € K,, hence
g:'g(T) = T, and therefore

Wx(ei(t), O = 35 A, V(x(E, 1)
— 3 it DU, 1)

= A% u(x(t,, 1)
= v(x(t, 1)) -

Now we choose for each T}e T* a t,e T} and put
ﬁ(xl(Tb T:I)):: M'V(x(to’ tl))

whenever T;e T% Then p e L'(X], w,) and by the above computation, v = 4.
Le. ji— p is surjective onto A,.

In order to see that this mapping is also norm-preserving we note
that for all ge L'(X;, »,) the following equalities hold:
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~ ~ 4
[ pdo= 3, teem, T)
ﬁe

D N L O

rier: N, (&7

= tlev_}' ﬂ(t()v t)

- jydw :
2a. We shall prove the inclusion
(N,-¢: §eS)C AN S.
Let ¢ S,. Then, clearly, N,-¢e A, and hence it suffices to prove that

N, ¢eS. If N;-gc A then also ge A,. Thus for all pe L'(X, ») we have

that px2 and px ¢4 e A; and therefore that m and ;;;_;S are well-defined.
Applying Formula 4.4 and Proposition 3.1 we get

= pxdn (T, T)-3
= L An (T, T3
= 1w (T, T3

= N * ¢(xo)¢~5’
hence

Nypx ¢ = Nipx g(x0)- ¢
and therefore
px (N 9) = (px (V- @) - (N3 )«
Since
N, () = $aei(T, TD) = 1,

another application of Proposition 3.1 implies that N,-¢¢€ S.
2b. It remains to be shown that

A,NSC{N;-¢: $e8,}.

Let e A,N S. By the surjectivity of ;i — u there exists a ¢ in L'(X,, w)),
and for each i€ L'(X,, w,) we obtain from Proposition 3.1 that
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()
=”];l_6'/:;;ﬁ(xo)¢

= i 58) (T T;»-(%q?) -

Since
(o B) T T) = o Nergd) = 1,
N, N,
another appeal to Proposition 3.1 implies the desired inclusion. O

47 TERMINOLOGY. A measure pe MY(X, v) is said to divide another
measure v € M'(X, o) (in symbols p|v) if there exists a measure p € M(X, w)
such that

pxpo=v.

By D(v) we denote the set of idempotent factors of v. A measure pe D(y)
is called a maximal idempotent factor of v if

prp=p
for all pe D(y). Finally v e M'(X, w) lacks idempotent factors if D(v) = {1,,}.

4.8. Remarks.
4.8.1. Let 2 be an idempotent in M'(X, w) and px e M*(X, w) such that

Alp. Then there exists a measure ve M'(X, 0) satisfying g = 2xv and
consequently

p=2Axy=2A%xAxyv=2Axpu.
4.8.2. For every pe M'(X, w) there exists a maximal idempotent factor
of p.

The proof of this last statement is achieved by applying Zorn’s Lemma.

§5. Infinite divisibility

We start with a discrete Gelfand pair (G, K) having dual space
Z.= Z(G, K) and Plancherel measure ¢. For the entire section we suppose
that the spherical function ¢,:= 1y belongs to supp(e). This Godement
property (GP) implies the validity of
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5.1 Lévy’s continuity THEOREM (Gallardo, Gebuhrer [4], Théoréme 3.1).
For any sequence (1,).=; of measures in M'(X, ) such that there exists a
complex-valued function @ on Z, continuous at ¢, and satisfying

lim g, * §(x) = 0(g)
whenever ¢ € Z, there is a measure pe M'(X, w) such that

Lim p1,(x) = p(x)
for all xe X.

There is a variety of Gelfand pairs admitting (GP), f.e. all pairs (G, K)
where G is -compact. But there are also examples of Gelfand pairs
without (GP), f.e. the pair associated with a homogeneous tree.

We recall that a measure pe M (X, w) is said to be infinitely divisible
if for every n > 1 there exists an n-th root p, € M(X, ») with the property
that (1 = p.

The set of all infinitely divisible measures in M'(X, w) will be abbre-
viated by I(X, w).

5.2 THEOREM. For every pe I(X, w) the following statements are equi-
valent:

(i) p lacks idempotent factors.

() pxd(x) #=0 for all ¢ Z.

Proof. 1. (i) = (ii). Let pe I(X, w) with D(y) = {1,,}, and let
A:={peZ: pux¢(x,) + 0}.
For every n = 1 there exists y, € M'(X, w) such that 2 = . In particular

¥ ¢(xo) = (F‘n * ¢(x0))n
and hence

}ilil ttn % (20) = 1,(8)

for all ¢ Z. Since 1, is continuous in ¢,e Z and (G, K) admits (GP),
an application of Lévy’s continuity theorem yields the existence of a
measure v e M'(X, w) with

lim p,(%) = (%)

for all xe X. But (G, K) is a discrete pair, whence
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Lim g1, % g(x) = v * (%)

n—co

and thus 1,(¢) = g ¢(x,) for all e Z. The idempotency of v follows from
the following inequalities valid for all ¢ Z:

vx v (%) = vk $(X)v * Ba,)
= 1,($)1.(8)

= 1A(¢)
= v (%) .

Analoguously we obtain that v|p. But by assumption we have that
D(p) = {1,,}, hence v =1,, and thus A = Z.

2. (i)=>(@). Let pe M(X, w) with pxg(x;) =0 for all $eZ and let
2€ D(p). Then

u* ¢(xo) = px A% @) = pr G(x)A % B(xo)
hence

Ax ¢(xo) =1=1,% ¢(xo)
for all ¢e Z and thus 1 =1, O

From now on we suppose that (G, K) is a symmetric discrete Gelfand
pair.

5.3 THEOREM. For every measure pe I(X, w) lacking an idempotent
factor there exist a measure v e M'(X, w) and a number a > 0 satisfying

p*x P(x) = exp [a(v  ¢(x;) — 1]
for all ¢ Z.

Proof. By hypothesis, for the given pe I(X, w) and every n = 1 there
is ¢ p,e M((X, w) such that g = p. Since (G, K) is a symmetric pair,
pxp(x)e R for all ¢eZ. The mapping ¢ — pxd(x,) from Z into R is
continuous on the compact space Z, hence there exists a ¢, € Z such that

UY* ¢1(xo) S opx ¢(x0)
for all ¢ € Z. We now apply Proposition 3.3 which yields

() = j 1 x $i(x)F(x)a(dg)

< [ ux spdxotds)
= p(x,) .
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¢ was assumed to lack idempotent factors. By Theorem 5.2 we therefore
have

0< (/12 * ¢(xo))ﬁ = g% ¢(x0)
whenever ¢ Z. We put
o= —log ux* ¢(x,)

and for every n > 1,

ftn — €Xp (—3“—>1z<,
n

Yt =
1-— exp(—ﬁ)
n

Clearly, « is well-defined. Moreover for every n>1, v, e M(X, w). In
fact v,(x) = 0 for all xe X\{x,}, and since

/J(xo) = px ¢1(xo) ’
also v,(x;) = 0. The fact that |v,|| = 1 follows from |z, = 1.
An easy computation shows that for all n > 1 and ¢e Z,

a + log px ¢(x,) = nlog [(exp (%) — 1>v,, * (%) + 1] ,

with existing limit for n -+ . Consequently
a + log px ¢(x,) = a ilril v, % $(2)
for all ¢ € Z. The mapping
6= L+ log px )
from Z into R is continuous in ¢, By Lévy’s theorem there exists a

measure ve MY(X, w) satisfying

lim v,(x) = v(x)

n—co

for all xe X, and since (G, K) is discrete, also

lim vy, * ¢(x,) = v * $(x,)

n—co

for all g€ Z. Altogether we obtain

a + log px P(x,) = aw * $(x,)
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for all ¢ € Z, and the assertion follows. O

5.4 THEOREM. Let pe I(X, w) and 2€ D(y) be the maximal idempotent
factor of p. Then there exist a measure v e M'(X, w) and a number a >0
such that for all g Z

exp [‘X(V * ¢(xo) - 1)] if 2% ¢(xo) # 0
0 otherwise .

MH* ¢(xo) = {

Proof. Let p and 2 be chosen according to the assumption. From
Theorem 4.1 we infer the existence of a compact subgroup K, of G with
the properties (ii) and (iii) of that theorem. Since px2 = p, we have
that pe A, and by Theorem 4.6 that jie M'(X,, ;). We first show that

1. # lacks idempotent factors.

Let ge D(g). From Formula 4.4 we obtain that pe D(y). Since 2 is
the maximal idempotent with 1|p, we have 1 = 21xp, whence again by
Formula 4.4, 1 = 1%, 5. But 1 is the unit element of the Banach algebra
M'(X,, w;) and so is g, which proves the assertion.

We note that Theorem 5.2 implies that

£ %, Sg(x/z(Tz, T)) +0

for all ge Z;:= Z(X,, K)).

Next we show that

2. jpel(X,, w,) (defined analoguous to I(X, w)).

For every n =1 there exists y, € M'(X, w) such that ;2 = p. Let g€ Z
be given with 1 x ¢(x,) = 0. From p = 2 x p follows that p x ¢(x;) = 0, whence
o % $(%,) = 0 and thus

#n * '2 * ¢(x0) = O = fln *u ¢(x0)

for all n > 1. If on the other hand we pick a ¢ Z with 1x¢(x) =+ 0,
then from the idempotency of 2 follows 2 x ¢(x,) = 1, and again we obtain

i # Ak §(X) = pr ¢ P(%0)A % P(%0)
= /'ln * ¢(x0)

for all n = 1. But then Proposition 3.3 implies p, x2 = p, and therefore
. €A, for all n = 1. Theorem 4.6 and Formula 4.4 yield the assertion.
The main statement is a consequence of Theorem 5.3. At first we
note that (G, K,) admits (GP), since (G, K) does, so that Theorem 5.3 is
applicable: There exist a measure 5 ¢ M'(X,, »;,) and a number « > 0 such
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that for all g e Z,
f%; ‘ﬁ(xz(Tz» T,)) = exp [“(g *2 Sg(xz(Tu T)) — 1)]

Again appealing to Theorem 4.6 and to Formula 4.4 yields

o (x5) = exp [y * $(x;) — 1)]

valid for all g€ A; N Z. If there is a ¢ € Z with 2 x ¢(x,) += 0, then for such
a ¢ we obtain 21x¢(x,) = 1 and by Proposition 3.1, ¢ ¢ A,. O

5.5 CoroLLARY. Let peI(X,w). There exist a measure ve M'(X, w)
and a number a >0 such that for all ¢ € Z with px ¢(x,) + 0 we have the
representation

o d(xg) = exp [a(v x glag) — D]

Proof. Given pelI(X, ) there exists by Remark 4.8.2 a maximal
idempotent factor 2¢ D(p). For all ¢e Z satisfying u* #(x,) + 0 we then
get

0 o o gl = v A )
= pux z(xo)/l * ¢(xo) ’
hence 2 x ¢(x,) + 0, and the theorem implies the assertion. |

§ 6. The Gelfand pair of the m-cube

For an application of the Poisson type representation given in the
preceding section we shall discuss the special case of the m-dimensional
cube. In order to identify all infinitely divisible probability measures on
the cube we need only exhibit the idempotents. For this task to be
achieved the spherical functions on the cube have to be characterized.

6.1. The m-cube as a finite Gelfand pair

Let m =1 and let T denote the set of vertices of a regular polytope
in R™. For all (s,8) e T X T we define d(s, f) to be the minimal number of
vertices to be passed in moving along the edges from s to ¢, where ¢ is
counted but not s and s # ¢ If s =¢ we put d(s, £):= 0. Clearly, d is
a metric on 7. The set G of all bijective mappings T'— T which preserve
the distance with respect to d, forms a group, and under the mapping

(g, 8) — g(®

from G X T into T, (G, T) becocmes a homogeneous space. Given ¢,¢ 7T,
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the stabilizer K of #, and the double coset space X of (G, T) we see that
for (s,t) and (¢, t)eT X T

x(s, t) = x(s’, t) & There is a g G with g(s) = s’ and g(p) = ¢
e ds, t) =dis', g).

Since d(s, t) = d(t, s), we obtain that
x(s, t) = x(t, 8)

for all (s, t) e T X T, and hence (G, K) is a symmetric (finite) Gelfand pair.
Specifying T to be the set

{t=@, -, t")eR™: t'=+1forall i=0,--.,m}

of vertices of the m-dimensional cube and #:= (1, ---,1)e T we obtain
the Gelfand pair (G, K) of the m-dimensional cube. It is clear that in
this particular case the metric d takes values in the set {0, 1, - -, m},
hence X = {x,, - - -, x,,} with

x:={(s,)eT X T: d(s,t) =j}

whenever j =0, -.-,m. In particular x, = x(¢,¢) for all teT. We also
note that the measure w on X is given by

_(m
o) = ()
for all j =0,1, ---, m.

6.1.1. The convolution in LY(X, w) is given in terms of

Lo(k —k
]-zi]-a:j(xk) = LZ(:) (l) (n:__ l >5i+l—2,j

for x,, x,, x, € X.

6.1.2. The spherical functions of (G, K) can be computed as follows:
For all i=0,1, ---,m we introduce functions ¢, on X implicitly by the
expression

5 plw)ox)z = (1 — 21+ 2"

valid for all z€ R, or explicitly by

dx)o(x,) = }’j (—1) (;) (rjn_— li)

=0
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for all j =0,1,--.,m. The following properties can be verified
(i) {g:i=0,1,---,m}=8S:=89@G,K).
(ll) ¢z(x]) = ¢J<x‘[,) fOI' a].l L,] = 0, 1’ <., m.
o
(i) (i, ¢ = o)
(iv) The family

9;; for all i,j =0,1,---,m.

{VZS;TT quS:i:O,l, ,m}

is a basis of the Hilbert space LY(X, o).

6.2. The idempotents in M'(X, w)

6.2.1. There exist at least two idempotents in M'(X, w), namely the
functions 1,, and (3], cx o(x)) 1.

6.2.2. For every 1e M (X, w) the following statements are equivalent:

(i) 2 is an idempotent.

(ii) For every ¢ e S either (1, 4> =1 or {1, 4> = 0 holds.
Indeed, if 1€ M'(X, ») is an idempotent, i.e. 1% 1 = 1, then

{2, §)<2, ¢> = (A% 2; ¢> = {4, @)

for all ¢ € S, whence (ii). If, on the other hand, 1e M'(X, ») satisfies (ii)
then by (2) of Proposition 3.2 we have

A
A= .
E gy ?
o AP
B ey P
Gx29)
G 6
x A, 1le. (1).

™

S
m
n

>

6.2.3. If 2e M'(X, w) is an idempotent then we have for every xe X
and each ¢e S that A(x) > 0 and <1, ¢) = 1 imply ¢(x) = 1.
Indeed, for the given 1e M(X, v) fulfilling the hypotheses we obtain

T Ao =1= (¢ = T Ao = T Ax)@o()

and thus
3 A1 — ) = 0.

Since |#(x)] < 1 for all xe X, the assertion follows.
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6.24. Leti,je{0,1,---,m}. The following statements are equivalent:
(1) ¢dx) =1
(i1) We have either i = 0 or j = 0,
or we have i = m and j even,
or we have j = 0 and i even.
(i1) = (i) follows directly from the equality

m L v\ (m— i

(P)per = 5, () (7))
valid for all 2,je{0,1, ---,m}. It remains to show (i) = (ii). For all
i,je€{0,1, ---, m} such that ¢(x,) =1 we get

o(x)o(x;) = 1,,% 1, % ,(x,)
= 311, 5 L () x)o()

5 5 () st
=52 (1) (F ot

= o) ())(" 7 7)s20

and since w(x;) == }7:‘, <Jl) (m f j)»

o= ()("7 ) - sem
which implies ¢,2]) =1 for all [ =0, ---,j. Noting that

Pnlx) = (—1)

for all x,e X we conclude the assertion.
6.2.5. There are exactly four idempotents in MY(X, w), namely the
functions 1,, 2-™1y, 2, defined by

() 2-m if j even
xX:)=
o 0 if j odd,
and 4, defined by

ifj=0

O o=

()= if 0<j<m, and

ifj=m.

o
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At first we show that the functions 2, and 2, are in fact idempotents (the
remaining ones clearly are). For every j=0,1,.-., m we have

(Ao, ¢j> = 21—miezve:n ¢j(xi)w(xi)
1 ifj=0m.

An application of 6.2.2 shows that 1, is an idempotent. Analogously
one deduces from

(o 8y = £ + S 92N (1)
0 if j odd
N {1 if j even
that 2, is also an idempotent.
Now we assume 1e MY(X, w) to be an idempotent.
1) Let j exist with 0 <j<m and {(2,4,> = 1. Then for each i =0,
1, .-+, m with 2(x;) > 0 we obtain from 6.2.3 that ¢,(x;) = 1 and from 6.2.4
that consequently i =0 or i = m. But this implies 1 = A(x,)1,, or 2 =
Ax)1,, + A(x)1,,. Since 2 is a probability measure, this implies that
either 2=1,, or A=1%1, + %1, = 4. Thus 2 is of the asserted form.
2) Let there exist no j with 0 <j <m and <2, ¢,> = 1.
2a) If (4, ¢,> =0 then there is an we C such that 1 = a¢, = aly,
and in this case therefore 2 = 2-™1,.
2b) If (2, ¢,y =1 then there are «,fe C such that 1 = ag, + Bdn.
We obtain

L =4 ¢y = BPm> Py = B2"
and
1 =2 ¢ = aldo, by = 27,
whence
A=2"¢ + 27" ¢n .

Since ¢,(x;) = (—1) for all j = 0,1, ---, m, this implies that 2 = 2,
From 1) and 2) follows that all idempotents in M'(X, w) are of the
asserted form.
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