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ALGEBRAIC K3 SURFACES

WITH FINITE AUTOMORPHISM GROUPS

SHIGEYUKI KONDO

Introduction

The purpose of this paper is to give a proof to the result announced
in [3]. Let X be an algebraic surface defined over C. X is called a K3
surface if its canonical line bundle Kx is trivial and dim H\X, Θx) = 0.
It is known that the automorphism group Aut (X) of X is isomorphic, up
to a finite group, to the factor group O(Sx)jWx, where O(SX) is the auto-
morphism group of the Picard lattice of X (i.e. Sx is the Picard group
of X together with the intersection form) and Wx is its subgroup
generated by all reflections associated with elements with square (—2) of
Sx ([11]). Recently Nikulin [8], [10] has completely classified the Picard
lattices of algebraic K3 surfaces with finite automorphism groups.

Our goal is to compute the automorphism groups of such K3 surfaces.
Let X be an algebraic K3 surface with finite automorphism group Aut(X).
By definition, there exists a nowhere vanishing holomorphic 2-form ωx

on X. Since an automorphism g of X preserves ωx, up to constants,
g*ωx = ax(g)-ωx where ax{g) e C*. Therefore we have an exact sequence

(1) 1—>GX >Aut (X)-^Uzl?n >1

where Z/m is a cyclic group of m-th root of unity in C* and Gx is the
kernel of ax. Moreover the representation of the cyclic group Z\m in
TX®Q is isomorphic to a direct sum of irreducible representations of the
cyclic group Zjm over Q of maximal rank φ(m), where Tx is a transcen-
dental lattice of X and φ is the Euler function. In paticular φ{m) <
rank Tx and hence m < 66 ([6], Theorem 3.1 and Corollary 3.2).

An algebraic KS surface X is called general if the image of ax is of
order at most 2, and X is called special if it is not general. The meaning
of this definition is as follows: Let X be an algebraic K3 surface with
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a Picard lattice Sx. Let S be an abstract lattice which is isomorphic to

Sx. Denote by Ms the moduli space for algebraic KS surfaces whose

Picard lattices are isomorphic to S. Then the dimension of Ms is equal

to 20 — rank (S). A general K3 surface Y with Sγ = S corresponds to a

point of the complement of hypersurfaces in Ms.

THEOREM. Let X be an algebraic K3 surface with finite automorphism

group Aut(X).

(i) If X is general, then Aut(X) is as in the following table:

Table 1.

U®Eί@Es®A1

U®Es®Ee, U®Eβ®E7

U®Ee®Ds, U®Es®Di®Ai

U®Ds®Di, U®Es®Ai

U®E7®A\, U®D6®A{

U®Di®A6

1

U(2)®Di®Di, U®Al

U(2)®A{

otherwise

Aut(X)

©3 X Z/2

Z/2 X Z/2

Z/2 or {1}

where U (resp. 17(2)) is the lattice of rank 2 with the intersection matrix

( l 0/ \resP' \2 θ)) ' ^ m 5 ^n an(^ ^k a r e ne£ative definite lattices associated

with the Dynkίn diagrams of type Am, Dn and Ek respectively and Al

denotes the direct sum Ax®Aλ® ®AX (k times).

(ii) If X is special, then Aut(X) is a cyclic extension of the group in

the above table.

We remark here that there exists a special K3 surface X with

Aut(X) ~ Z/66. This automorphism acts on the Picard group of X as

identity. In [4], we studied automorphisms with this property.

Also for Enriques surfaces with finite automorphism groups, we refer

the reader to [2], [9].

To prove the above theorem we use the following phenomenon: In
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the exact sequence (1), if rank(Sj5Γ) becomes smaller, then Gx too becomes

smaller, and the group Z/m grows bigger.

In Section 1, we recall the Picard lattices of algebraic K3 surfaces

with finite automorphism groups. Section 2 is devoted to the results on

finite automorphisms of KS surfaces due to Nikulin [6] and Mukai [5].

In particular from these results we obtain all the possible cases of Gx

(Lemma 2.3). In Sections 4 and 5 we prove the above theorem. In case

rank(S z) > 15 we have the dual graph of all smooth rational curves on

X ([8], Sect. 4, Part 5, Table 2) and hence we can compute Aut(X). In

case rank(S x) < 14 it follows from the result in Section 2 that Gx is a

subgroup of Z/3 or Z/2 X Z/2. To determine Aut(X) we use the theory

of symmetric bilinear forms (cf. [7]) and that of elliptic pencils due to

Kodaira [1] and Shioda [12] (Sect. 3).

§ 1. Picard lattices of KS surfaces with finite automorphism groups

In this section we recall the Nikulin's classification [8], [10] of Picard

lattices of algebraic K3 surfaces with finite automorphism groups.

A lattice L is a free Z-module of finite rank endowed with an integral

bilinear form < , >. By L^@L2 we denote the orthogonal direct sum of

lattices Lx and L2. For a lattice L and an integer m we denote by L(m)

the lattice whose bilinear form is the one on L multiplied by m. Also

we denote by U the lattice of rank 2 with the intersection matrix ί 1 ^)

and by Am, Dn and Ek the negative definite lattices associated with the

Dynkin diagram of type Am, Dn and Ek respectively. A lattice L is called

even if <x, x) e 2Z for all x e L. Let S be a non degenerate lattice. We

denote by S* = Hom(S, Z) the dual of S. Put As •-= S*/S. Then As is

a finite abelian group which is called the discriminant group of S. We

denote by l(S) the number of minimal generators of As. A lattice S is

called a 2-elementary if As is a 2-elementary abelian group. For a 2-

elementary lattice S, we define a parity δ(S) of S as follows:

0 if qrs(x) = 0 for all xeAs

1 otherwise

where qs is the quadratic form on As induced from the one on S.

PROPOSITION 1.1 ([8], Theorem 4.3.2). An indefinite 2-elementary even

lattice is determined, up to isomorphisms, by the invariants (rank(S), l(S),
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The following tables give the description of Picard lattices of rank
> 9 of algebraic K3 surfaces with finite automorphism groups which we
need for the proof of our theorem.

Table 2 (Sz is 2-elementary, rank Sx > 9).

rank(Sx)

19

18

17

16

15

14

13

12

11

10

9

U®Es®Es®Al

U®Ee®Es

U®ES®E7

U®Ea®De

U®Eίί®Di®A1

U®Ee®Di, U®Ds@Di, U®Es®Ai

U®Es®Al, U®E7®Aί

U®Es®Al U®E7®Al, U®Di®A$

U®Es®Aiy U®E7®A\, U®D6®A\, U®Di®A\

U®E8, U®DS, U®Di®Di, U(2)®Di®Di,

U®E7®AU U®De®Al, U®Di®Ai, U®Al

U®E7, U®DS®AU U®Di®A3

1, U®Al, U(2)®A\

Table 3

rank (Sx)

13

12

11

9

(Sx is

U®A7,

not 2-elementary and r

sx

U®ES®A3

U®Eβ®A2

U®E6®A2

U®Di®A3, U®Ds®Aι

ank(Sx) > 9).

, £70A, U®Ee®A1



ALGEBRAIC Z 3 SURFACES

§ 2. Finite automorphisms of KS surfaces

Let X be an algebraic KS surface. We denote by Aut(X) the group

of automorphisms of X. Let G be a finite subgroup of Aut(X) and ]et

ωx be a nowhere vanishing holomorphic 2-form on X. Then for g e G,

g*ωx = ax{g)-ωx where ax(g) e C*. Therefore we have an exact sequence

G • Zjm •

where Z\m is a cyclic group of m-th root of unity in C* and K is the

kernel of ax. Moreover the representation of the cyclic group Zjm in

TX®Q is isomorphic to a direct sum of irreducible representations of the

cyclic group Zjm over Q of maximal rank φ(m), where φ is the Euler

function. In particular φ(m) ̂  rank(T x) and hence m < 66 ([6], Theorem

3.1 and Corollary 3.2).

An automorphism g of X is called symplectic if ax{g) = 1. The

classification of finite symplectic automorphism groups of KS surfaces is

recently given by S. Mukai [5], based on the study of abelian groups due

to Nikulin [6].

PROPOSITION 2.1 ([6], § 5, [5], (0.1)). Let g be a symplectic automorphism

of finite order n of a KS surface. Then n < 8 and the number of fixed

points f(ή) depends only on n and is as follows:

n

fin)

2

8

3

6

4

4

5

4

6

2

7

3

8

2

Let G be a finite symplectic automorphism group of a KS surface.

Put /(I) = 24 and μ(G) = (ll\G\)Σgeβf(\g\) By the Lefschetz fixed point

formula and an elementary representation theory, we have

PROPOSITION 2.2 ([5], Proposition 2.4). μ(G) = 2 + rank (LG) where

L = H\X, Z) and LG = {xe L\g*x = x for any ge G}.

In what follows we assume that Aut(X) is finite. Then we have an

exact sequence

1 • Gx > Aut(Z) -%> Z\m > 1

where Gx is the kernel of ax. In Section 5 we shall need the following:
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LEMMA 2.3. (i) If rank(S^) < 14, then Gx is a subgroup of Z/3 or

Z/2 X Z/2; (ii) If rank(S x) < 12, then Gx is a subgroup of Z/2; (iii) 7/

rank(S x) < 8, then Gx = {1}.

Proo/. It follows from [6], Theorem 1.1 that LGx contains Tx. Since

Gx is finite, the signature of Sx

x is equal to (1, r), where r is a non

negative integer. Hence rank(LGx) > T&nk{Tx) + 1. Note that τ&ήk(Tx)

+ rank(S x) = 22. Now the assersions easily follows from Propositions

2.1 and 2.2.

PROPOSITION 2.4 ([6], § 10). Assume that G = Gx is a subgroup of Z/3

or Z/2 X Z/2. T&era £/iβ discriminant group ALG of LG is as follows:

G

ALa

Z/2

(Z/2)8

Z/2 X Z/2

(Z/2)8 X (Z/4)2

Z/3

(Z/3)6

§ 3. Elliptic pencils on 1Γ3 surfaces

Let X be a K3 surface. An elliptic pencil π: X-> P1 is a holomorphic

map 7Γ from X to P 1 whose general fibres are smooth elliptic curves. An

effective divisor D is called a m-section of π if D F = m, where F is a

fibre of Γ and meN. A 1-section is simply called a section. All singular

fibres of an elliptic pencil were classified by Kodaira [1], We use the

terminology of singular fibres in [1]. The following lemma follows from

[11], §3, Corollary 3, the Riemann-Roch theorem and the classification of

singular fibres of elliptic pencils [1].

LEMMA 3.1. Let X be an algebraic K3 surface and let Sx be the Picard

lattice of X. Assume that Sx = U@K, where K is a negative definite lattice.

Then

(i) there exists an elliptic pencil π: X —> P1 with a section.

(ii) If K = KiφN, where Kx and N are negative definite lattices and

N is generated by elements with square ( — 2), then π has a singular fibre

F as in the following table:

N

F

A,

I2 or III

A2

I3 or IV

An (n > 3)

•l n + i

D. (n > 4)

Iί-4

Ee

IV*

E7

III*

Eβ

II*
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The following will be used in the latter to prove the existence of sym-

plectic automorphisms.

PROPOSITION 3.2 ([1], Theorem 12.2, [12], Corollaries 1.5, 1.7). Let X

be an algebraic K3 surface and Sx the Picard lattice of X. Let π: X->Pι

be an elliptic pencil with a section and let Fv (1 < v < k) be all singular

fibres of π. We denote respectively by εv, mv or μv the Euler number of Fv,

the number of irreducible components of Fv or the number of simple com-

ponents of Fv. Then

( i ) ΣLiSv = 24 ( = the Euler number of X\

(ii) rank(Sx) - r + 2 + Σti (mv - 1)
where r is the rank of the group of sections of π,

(iii) when r = 0, let n denote the order of the group of sections of π.

Then we have

§4. Proof of the Theorem—the case when rsLnk(Sx) > 15

In this section and the next we prove our theorem. By our proof in

the following, we can see:

PROPOSITION. Let X be an algebraic K3 surface with finite auto-

morphism group Aut(X). Then the subgroup Gx of symplectic automorphisms

of Aut(X) is uniquely determined by the isomorphism class of Sx.

The assersion (ii) in Theorem follows from this Proposition and the

exact sequence (1). For simplicity, in the following, we assume that X

is a general algebraic K3 surface with finite automorphism group.

Let X be a general algebraic K3 surface with finite automorphism

group and rank(S x) > 15. Then Sx is a 2-elementary lattice (see Table 2).

By [8], Section 4, there exists an automorphism σ of order 2 such that

σ*\Sx = lSx and σ* | Tx = — lTχ. Therefore we have an exact sequence:

1 > Gx > Aut(Z) - ^ > Z/2 > 1

where Z/2 is generated by σ. Since g*\Tx = lTχ for all ge Gx, g*oσ* =

σ*og*. It follows from the global Torelli theorem [11] that goσ = σog.

Hence the above exact sequence splits: Aut(X) ^ Gx X Z/2.

A dual graph of smooth rational curves is the following simplicial

complex Γ: (i) the set of vertices is a set of smooth rational curves on
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X; (ii) the vertices C, C are joined by n-tuple line if C-C = m.

To determine the group Gx we use the dual graph of all smooth

rational curves on X. Such graphs were found by Nikulin [8]. However

for Sx = U®EQ®ES®AU his graph is not complete (compare the follow-

ing graph in Figure 1 with the table 2 in [8], § 4, Part 5). It follows

from [13], Proposition 1 and [14], Lemma 2.4 that the following graph

represents all smooth rational curves on X.

Let Γ be the dual graph of all smooth rational curves on X (see

Figures 1-5). Consider the natural homomorphism p: Aut(X) -> Aut(Γ),

where Aut(.Γ) is the symmetry group of Γ. Since Sx is generated by the

classes of smooth rational curves in Γ, the kernel of p acts on Sx as

identity. Hence the symplectic group Gx is regarded as a subgroup of

Aut(Γ).

(4.1) Sx = U®Et®Eι@A1. The following diagram Γ is the dual

graph of all smooth rational curves on X:

Figure 1

Obviously the symmetry group Aut(jΓ) is isomorphic to ©3.

We now claim that Gx — ©3. First consider the elliptic pencil | J j | =

IXlίii-Eil which has a section and a singular fibre of type I18. By the

formulas in Proposition 3.2, we can see that | 4 | has only one reducible

singular fibre of type I18 and the group of sections of \ΔX\ is isomorphic

to Z/3. These sections act on X as a symplectic automorphism of order

3 which is a rotation of Γ of order 3. Next consider the elliptic pencil

| J 2 | = \E + i?10| which has a section and two singular fibres of type I2

and of type If2. Again it follows from the formulas in Proposition 3.2

that | J 2 | has only two reducible singular fibres of type I2 and of type
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Ijξ and the group of sections of \Δ2\ is isomorphic to Z/2. Therefore

Gx ~ ©,.

(4.2) Sx = U@EΛ®E9. The following diagram Γ is the dual graph

of all smooth rational curves on X:

~o—o

Figure 2

We claim that Gx ~ Aut(Γ) (~ Z/2). Let φ be an isometry of Sx defined

by φ((x, y, 2)) = (#, Z9 y) where (x, y, 2:) e U®EZ®E%. Note that the second

cohomology lattice L = i/2(Z, Z) is the direct sum of Sx and Tx. Put

^ - (φ, lTχ): SX@TX-+ SX®TX. Then by the global Torelli theorem [11],

there exists an automorphism g of X such that g* = <£ on L. By con-

struction, g is symplectic and generates Aut(Γ). Hence Gx cz Z/2 and

Aut(X) ~ Zβ X Z/2.

(4.3) Sx = U®Ez®EΊ. The following diagram Γ is the dual graph

of all smooth rational curves on X:

Figure 3

Obviously Aut(Γ) ~ Z/2. By considering the elliptic pencil \Et + E2\ with

a section, we have a symplectic automorphism of order 2 which acts on

Γ as a symmetry of order 2. Hence we have Aut(X) ~ Z/2 X Z/2.

(4.4) Sx = U®E8®DQ. The following diagram Γ is the dual graph

of ailfsmooth rational curves on X:

Figure 4
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We can see Aut(Γ) ~ Z/2 X Z/2. We select a generator {r» ϊ2) of Aut(Γ)

as follows; Tx is the reflection of Γ with 7ΊCEΊ) = E2 and T2 is the reflec-

tion with respect to the middle horizontal line. By considering the elliptic

pencil \E1 + E2\ with a section, we have a symplectic automorphism g

whose action on Γ coincides with ϊx. On the other hand, if ϊ2 is repre-

sented by a symplectic automorphism g', then g' preserves 15 smooth

rational curves respectively (see Figure 4). Hence the number of fixed

points of gf is greater than 8 which is impossible (Proposition 2.1). Thus

we have Gx ~ Z/2 and Aut(X) ~ Z/2 X Z/2.

(4.5) Sx = [ / Θ ^ Θ A Θ A i The following diagram Γ is the dual

graph of all smooth rational curves on X:

Figure 5

We can see that Aut(Γ) ~ ©3 X Z/2 where Z/2 is generated by the reflec-

tion ϊ with Γ(i?i) = E2 and ©3 is the permutations of the set {Eί9 Fu LJ.

By considering the elliptic pencil \E1 + E2\ with a section, ϊ is represented

by a symplectic automorphism of order 2. On the other hand, any element

of ©3 is not represented b\ a symplectic automorphism because a sym-

plectic automorphism of order 2 (resp. of order 3) has exactly 8 (resp. 6)

isolated fixed points (Proposition 2.1). Therefore we have Gx ^ Z/2 and

Aut(X) - Z/2 X Z/2.

§5. Proof of the Theorem—the case when rankCS^) < 14

(5.1) First we remark that Gx is trivia] if ra.nk(Sx) < 8 (Lemma 2.3,

(iii)). Hence it suffices to consider the case that 9 < rank(S x) < 14. In

these cases, Gx is a subgroup of Z/2 X Z/2 or Z/3 (Lemma 2.3). Consider

a primitive embedding Tx C LGχ and denote by T^ the orthogonal com

plement of Tx in LGx. Then TX@T^ is a sublattice of LGx of finite index

and ALGX is a quotient group of ATχ@τi, and hence / ( Γ I Θ Γ J ) ^ : l(LGz).



ALGEBRAIC KS SURFACES 11

Since rank(Γi) > 1{TX) and l(Tx) = l(Sz), we have l(Sx) + rank(Γ^) >
l{LGx). Therefore it follows from Proposition 2.4 that:

Gx = {1} or Z/2 if S x = U®E8®D,, £7© A © A, t/Φ^ΦAί, [ 7 0 ^
ΘAί, C/ΘAΘAί, C/ΘAΘAί, C/ΘAΘAί, £/®#8®AL E7φ#7φAϊ, t/(2)
Θ A Θ A , Ϊ7ΘAΘA;, £/©Aί, £/ΦAΦAί, £7© A? or U(2)φAl and Gx =
{1} if Sx is otherwise. Moreover, if Gx = Z/2 and Sx = U®E8®Al, U®
EΊ®A\, U®D6®Al, f/φAΪ or E/ΦAΦAJ, then ALGχ = Aτ@τί and hence
LX

Σ = Tx®Tx. This is a contradiction because L| x is a 2-elementary
lattice with ^L(?x = 0 and, on the other hand, Tx is a 2-elementary lattice
with δTχ = 1. Also, if S x = U@E8®D4 and Gx - Z/2, then l(LGx) = Z(TX)
+ Z(T£) and hence LG^ = TX®TX. Hence Tf is a 2-elementary lattice
with rank(ri) = 6, Z(Γi) = 6 and δτί = 0. However, by [7], Theorem
3.6.2, such lattice does not exist.

Hence Gx = {1} if S x = [7©£8©A, ί/ΘJSβΘAϊ, C/ΘSTΘAΪ, 17ΘA
©A?, C/ΦAΦAί or ί/φAΪ.

In the following we shall see that Gx = Z/2 if S x = t / φ A Φ A ,
[/®£8©Ai, [/©^©Ai, ί/ΦAΦAί, E/ΘAΘAί, Γ7ΦAΦAΪ, C7(2)ΦAΦ
A, C/ΦA? or U(2)®Al

(5.2) S x = U® A © A Note that there exists an elliptic pencil with
a section whose reducible singular fibres are of type If and of type If
(Lemma 3.1). Hence we have the following dual graph of smooth rational
curves on X:

where Eί is a section of this pencil and others are components of singular
fibres. Let us consider the elliptic pencil \d\ = \2E1 + 4E2 + 6EΆ + 3£J4 +
5E, + 4E6 + 3E7 + 2E8 + E9\. Then Em En, Eί2 and Eu are components

of a singular fibre F of this pencil \Δ\. By Proposition 3.2, F is of type
If and hence there exists a smooth rational curve Eu with E10 + En + E12

+ Eu + 2E13e\A\. Since £ is a 2-section of |J|, EEU = 2. Then the
elliptic pencil \EU + E\ has two sections E1Z, E8 and these two sections
define a symplectic automorphism. Therefore Gx ^ Z/2.

(5.3) Sx = ?7φίJ8φAί. First we remark that U®Eβ®A{ is isomor-
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phic to U®E7®Dά®A1 (Proposition 1.1). Therefore there exists an elliptic

pencil with a section which has three reducible singular fibres of type

IIP, I? and I2 (Lemma 3.1). Hence we have the following dual graph of

smooth rational curves on X:

E7

Elo Eu El2 Eu

where E2 is a section of this pencil and others are components of singular

fibres. Consider the elliptic pencil \Δ\ = \EX + E3 + E6 + E7 + 2(E2 + E4

Es)\. Then Ep 9 <j < 14, are contained in some singular fibre F fo \Δ\.

It follows from Proposition 3.2 that F is of type I?. Hence there exists a

smooth rational curve E with E + E9 + Eί3 + Eu + 2(Eί0 + En + Eί2) e\Δ\.

Since E8 is a 2-section of |J | , EE3 = 2. Then the elliptic pencil \E + Es\

has two sections E5 and Elΰ which define a symplectic automorphism of

order 2. Therefore we have Gx ~ Z/2.

(5.4) Sx = U®EΊ@Al First note that U@EΊ®A\ ~ U®D6®DA®AX

(Proposition 1.1). Since there exists an elliptic pencil with a section which

has three reducible singular fibres of type I2*, If and I2 (Lemma 3.1)? we

have the following dual graph:

r r
o ό- o

EA T^3 E l

where E5 is a section of this pencil and others are components of singular

fibres. Consider the elliptic pencil |Δ\ = 1^ + E2 + E6 + E7 + 2(E, + E4

+ E$)\. Then Ej9 S<j<12, are components of singular fibres of \Δ\.

Since K is a section of \Δ\ and K E8 — KE9 = 1, Eβ is not a component

of a singular fibre containing E9. It now follows from Proposition 3.2

that the reducible singular fibres of \Δ\ are of type If, If and I2. Hence

there exists a smooth rational curve E with E + E% + En + E12 + 2E1Q e

\Δ\. Since F is a 2-section of \Δ\, E F = 2. The elliptic pencil \E + F\

has two sections E3 and EίQ, and hence Gx ĉ  Z/2.
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(5.5) Sx =U®D6® At. First note that £7©D6® At ~ U® A θ A θ A {

(Proposition 1.1). Since there exists an elliptic pencil with a section which

has 4 reducible singular fibres of type Io*, Io*, I2 and I2 (Lemma 3.1), we

have the following dual graph:

where E5 is a section of this pencil and others are components of singular

fibres. Then the elliptic pencil \E1 + E2 + E3 + E4 + 2E5) has two sections.

Hence Gx ~ Z/2.

(5.6) Sx = Ϊ/ΘAΘA?. Since there exists an elliptic pencil with a

section which has one singular fibre of type If and 6 singular fibres of

type I2 (Lemma 3.1), we have the following dual graph of smooth rational

curves:

where E5 is a section of this pencil and others are components of singular

fibres. Consider the elliptic pencil \Δ\ = \Eί + E2 + E3 + E4 + 2E5\. Then

Ep 6 <j < 11, are components of singular fibres of \Δ\. By Proposition

3.2, the following two cases occur: (a) \Δ\ has reducible singular fibres of

type If, If, I2 and I2; (β) \Δ\ has two reducible singular fibres of type I2*

and I*. In case (a), we may assume that there exists a smooth rational

curve E with E -f- E6e \A\. Since E12 is a 2-section of \Δ\, we have EΈi2

= 2. Then the elliptic pencil \E + E12\ has two sections E5 and E9, and

hence Gx — Z/2. In case (β), we may assume that there exists a smooth

rational curve F with E6 + EΊ + E8 + ίJn + 2£9 + 2EίQ + 2Fe\Δ\. Then

the elliptic pencil \E8 + ίJ10 + En + ίJ12 + 2i?9| has two sections J55 and F,

and hence G z ~ Z/2.
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(5.7) Sx = U®D±®Al In this case, the same argument as in (5.6)

shows Gx ~ Z/2.

(5.8) Sx = [7(2)©D4©A First we claim that Sx is isomorphic to

U@K, where if is a negative definite lattice of rank 8. Let {e, /} be a

basis of [7(2) and {βj}, {/VJ the two copies of a basis of D4 as in the follow-

ing dual graphs:

h

C I eA e 3 f l /4 /3

Put δ = e + f + e, + U Then δ2 = 0 and <S, β4> = 1. Hence δ and e4

generate a sublattice of Sx isomorphic to [7. So we have Sx ~ U®K.

Therefore there exists an elliptic pencil \Δ\ with a section (Lemma 3.1).

It follows from Proposition 3.2, (ii) that K has a sublattice Kf of finite

index which is generated by some components of singular fibres of \Δ\.

Since K is a. 2-elementary lattice with rank K = 8, det K = 26 and <5X = 0,

we can see that K Φ K'. Hence the group of section of \Δ\ is not trivial

(Proposition 3.2, (iii)). Therefore Gx - Z/2.

(5.9) Sx = Ϊ7ΘA!8, 17(2) 0AΪ. In these cases, to prove Gx ^ Z/2, we

give a lattice theoretic construction of a symplectic automorphism.

In case Sx = L70A?, consider a sublattice <2>0<-2>0Aξ of S x .

Since a 2-elementar}^ lattices *S is determined by rank(S x), l(S) and the

parity of S, this sublattice is isomorphic to <2>©<—2>0i?8(2) (Proposition

1.1). By this isomorphism, we consider <2>0< — 2>0Z?8(2) as a sublattice

of Sx. Let i be an involution of <2>©<-2>©#8(2) such that ;|<2>©<-2>

= 1 and c\E,(2) = - 1 . Since <2>©<-2> and E8(2) are 2-elementary, c

extends to an involution tf of Sx. By construction, cr acts on the dis-

criminant group ASx as identity. Hence cf extends to an involution i of

Lx with 11 Tx = 1. ? preserves a period of X and the Kahler cone because

E8(2) contains no (—2)-elements. Hence by the global Torelli theorem [11],

c is represented by a symplectic automorphism of order 2.

In case Sx = [7(2)0 AJ, we define two involutions σ and g of Lx as

follows: let {αi9 βi} be a copy of a basis of U (1 < i < 3) and let {ê }, {/̂ }

be copies of a basis of £ 8 (1 < j < 8). Then {αu /3ί5 βj? ^ 11 < i < 3, 1 <

< 8} is a basis of Lx = [7© [7© U@E8®E8. Put g | [7© [7© [ 7 = 1 and
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g(e3) - fp 1 < j < 8, σ(ad = β» σ{aτ) = - α , , σ(j8<) = -βu 2 < i < 3, and

<7(e.) = - / . , 1 < j < 8. Then L<σ> is isomorphic to <2>0£8(2) ~ U(2)®A\

which is generated by {ax + βu Zj — fj\j = 1> * > 8}. On the other hand

L<s> is isomorphic to U® U® U®E8(2) which is generated by {ai9 βi9 βj +

fj I i = 1, 2, 3, j — 1, , 8}. How we consider Lψ as a Picard lattices Sx.

Then we can easily see that g preserves the Kahler cone of X and a

period of X. Hence by the global Torelli theorem [11], g is represented

by a symplectic automorphism. Thus we have Gx a Z/2.
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