K. Ishizaki Nagoya Math. J. Vol. 115 (1989), 199-207

ON SOME GENERALIZATIONS OF THEOREMS OF TODA AND WEISSENBORN TO DIFFERENTIAL POLYNOMIALS

KATSUYA ISHIZAKI

Dedicated to Professor Niro Yanagihara on his 60th birthday

§1. Introduction

We assume that the readers are familiar with the notations in Nevanlinna theory, see [2], [9].

Let f be a nonconstant meromorphic function in the plane. We say that a function h(r), $0 \leq r \leq \infty$, is S(r, f) if

$$h(r) = o(T(r, f))$$

as $r \to \infty$, possibly outside a set of finite linear measure.

A meromorphic function a(z) is said to be a small function for f if

$$T(r, a) = S(r, f).$$

Throughout this paper, we denote by $a, b_0, b_1, \dots, a_0, a_1, \dots$ small meromorphic functions for f.

 Let

(1.1)
$$\phi(z) = f^n + a_{n-1}f^{n-1} + \cdots + a_1f + a_0.$$

E. Mues and N. Steinmetz [8] proved the following Theorem.

THEOREM A. Let f be a meromorphic function. Assume that ϕ given by (1.1) satisfies

(1.2)
$$\overline{N}(r,0;\phi) = S(r,f) \quad and \quad \overline{N}(r,f) = S(r,f).$$

Then

$$\phi = (f + a_{n-1}/n)^n \, .$$

N. Toda [12] proved an extension of the Theorem A

THEOREM B. Let f(z) be a meromorphic function and ϕ be given by

Received November 13, 1987.

(1.1). If

(1.3)
$$\lim_{r\to\infty} \sup_{r\in E} (\overline{N}(r,0;\phi) + 2\overline{N}(r,f))/T(r,f) < 1/2,$$

then we have

$$\phi = (f + a_{n-1}/n)^n \, .$$

Recently, Weissesnborn [14] proved the following theorem:

THEOREM C. Let f be a meromorphic function and ϕ be given by (1.1). Then we have that either

$$\phi = (f + a_{n-1}/n)^n$$

or

(1.4)
$$T(r,f) \leq \overline{N} \ (r,0;\phi) + \overline{N}(r,f) + S(r,f) + S($$

In this note, we will extend these theorems to differential polynomials, instead of (mere) polynomial, of f.

We call, for a meromorphic function f,

$$M[f] = a(z) f^{n_0}(f')^{n_1} \cdots (f^{(m)})^{n_m}$$

as a differential monomial in f of degree $\gamma_M = n_0 + \cdots + n_m$ and of weight $\Gamma_M = n_0 + 2n_1 + \cdots + (m+1)n_m$. We call

$$P[f] = \sum_{\substack{\lambda \in I}} M_{\lambda} = \sum_{\substack{\lambda \in I}} a_{\lambda}(z) f^{n_0}(f')^{n_1} \cdots (f^{(m)})^{n_m}$$

as a differential polynomial in f, where a_{λ} are meromorphic functions and I is a finite set of multi-indices $\lambda = (n_0, n_1, \dots, n_m)$ for which $a_{\lambda} \neq 0$ and n_0, n_1, \dots, n_m are nonnegative integers. We define the *degree* γ_P and *weight* Γ_P of P by

$$\gamma_P = \max_{\lambda \in I} \gamma_{M_\lambda}$$
 and $\max_{\lambda \in I} \Gamma_{M_\lambda}$.

If P is a differential polynomial, then P' denotes the differential polynomial which satisfies

$$P'[f(z)] = \frac{d}{dz} P[f(z)]$$

for any meromorphic function f. Note that $\gamma_{P'} = \gamma_{P}$.

Steinmetz [11] investigated the value distribution of some differential polynomials in f. His result is as follows: put

(1.5)
$$\Psi = f^n P[f] + Q[f],$$

where P and Q are differential polynomials in f. Then

THEOREM D. Let f be meromorphic function and Ψ be given in (1.5) and $\Gamma_{Q} \leq n-2$. If

$$\overline{N}(r,0;\Psi)=S(r,f),$$

then

$$m(r,f) + m(r,0;f) + N_1(r,f) + N_1(r,0;f) = S(r,f).$$

If, in (1.1), we replace f by $f - a_{n-1}/n$, then we can write ϕ in (1.1) in the form

(1.6)
$$\phi = f^n + Q[f],$$
$$Q[f] = b_{n-2}f^{n-2} + \cdots + b_1f + b_0.$$

The form (1.6) for polynomial corresponds to the form (1.5) with $\Gamma_q \leq n-2$ for differential polynomial.

In consideration of this Theorem D due to Steinmetz, we will prove here the following Theorems:

THEOREM 1. Let f be a meromorphic function and ϕ be given in (1.6) and $Q[f] \neq 0$. Then

(1.7)
$$2T(r,f) \leq \overline{N}(r,f) + \overline{N}(r,0;f) + \overline{N}(r,0;\phi) + S(r,f).$$

If $Q[0] \neq 0$, then

(1.8)
$$nT(r,f) \leq \overline{N}(r,f) + \overline{N}(r,0;f) + \overline{N}(r,0;Q) + \overline{N}(r,0;\phi) + S(r,f).$$

THEOREM 2. Let f be a meromorphic function and Ψ be given in (1.5). We suppose $Q[f] \neq 0$ and $\Gamma_{q} \leq n-2$. Then we have

(1.9)
$$2T(r,f) \leq \overline{N}(r,f) + \overline{N}(r,0;f) + (\gamma_P + 1)\overline{N}(r,0;\Psi) + S(r,f).$$

If further m(r, P) = S(r, f), then

(1.10)
$$2T(r,f) \leq \overline{N}(r,f) + \overline{N}(r,0;f) + \overline{N}(r,0;\Psi) + S(r,f).$$

§2. Preliminary lemmas

LEMMA 1 ([2] [8] [11] [14]). Let Q and Q* be differential polynomials in f having coefficients a_j and a_k^* . Suppose that $m(r, a_j) = S(r, f)$ and $m(r, a_k^*) = S(r, f)$, but we don't require that $T(r, a_j) = S(r, f)$ and $T(r, a_k^*)$ = S(r, f). If $\gamma_q \leq n$ and $f^nQ^*[f] = Q[f],$

then

$$m(r, Q^*[f]) = S(r, f).$$

Remark. Clunie proved his lemma under the stronger hypothesis that $T(r, a_j) = S(r, f)$ and $T(r, a_k^*) = S(r, f)$. Mues and Steinmetz [8] remarked that Clunie's proof does also work under the weaker assumption stated above. In particular, there might be coefficients of the form f'/f or, more generally, Ψ'/Ψ where Ψ is the differential polynomial given by (1.0).

LEMMA 2. If P[f] is a differential polynomial and $\gamma_P = h$ then

(2.1)
$$m(r, P) \leq hm(r, f) + S(r, f).$$

Proof. Write

$$P[f] = P_h[f] + \cdots + P_0[f]$$

where $P_j[f]$ $(j = 0, 1, \dots, h)$ are homogeneous polynomials with respect to $f, f', \dots, f^{(m)}$, with degree j. $P_j[f]$ is the sum of a finite number of terms [see 1],

$$a(z)(f'/f)^{n_1}\cdots(f^{(m)}/f)^{n_m}\cdot f^j,$$

where $j = n_1 + \cdots + n_m$. Thus we can write

$$P[f] = R_h[f]f^h + \cdots + R_0[f],$$

where $R_j[f] = P_j[f]/f^j$ and hence

$$m(r, R_j[f]) = S(r, f), \quad j = 0, 1, \dots, h.$$

Therefore we have

$$\begin{split} m(r, P[f]) &\leq hm(r, f) + \sum_{j=0}^{h} m(r, R_j; f) \\ &\leq hm(r, f) + S(r, f) \,. \end{split}$$

Remark. Yang [13] proved above lemma under the condition N(r, f) = S(r, f).

§ 3. Proof of Theorems 1 and 2

Proof of Theorem 1. Write

$$\phi = f^n + f^m Q_1[f]$$

where

$$0 \leq m \leq n-2, \quad Q_1[0] \neq 0, \quad \Upsilon_{Q_1} = \Upsilon_Q - m \leq n-m-2.$$

Put $\psi = f^{n-m}/Q_1$ and apply the second fundamental Theorem to ψ . Then we obtain

(3.1)
$$T(r,\psi) \leq \overline{N}(r,\psi) + \overline{N}(r,0;\psi) + \overline{N}(r,-1,\psi) + S(r;\psi).$$

Since ψ is a rational of f with degree n - m, we apply the Mokhon'ko's theorem [6].

(3.2)
$$T(r, \psi) = (n - m)T(r, f) + S(r, f).$$

Thus

(3.3)
$$S(r, \psi) = S(r, f).$$

Each term on the right side of (3.1) are estimated as follows:

(3.4)
$$\overline{N}(r,\psi) \leq \overline{N}(r,0;Q_1) + \overline{N}(r,f) + S(r,f),$$

(3.5) $\overline{N}(r,0;\psi) \leq (r,0;f) + S(r,f),$

(3.6)
$$\overline{N}(r,-1;\psi) \leq \overline{N}(r,0;\phi) + S(r,f),$$

(3.7)
$$\overline{N}(r, 0; Q_1) \leq (n - m - 2)T(r, f) + S(r, f).$$

From (3.1)-(3.6)

(3.8)
$$(n-m)T(r,f) \leq \overline{N}(r,0;Q_1) + \overline{N}(r,f) + \overline{N}(r,0;f) + \overline{N}(r,0;\phi) + S(r,f).$$

From (3.7) and (3.8), we obtain (1.7). If $Q[0] \neq 0$, that is m = 0, $Q_1 = Q$, then we get (1.8) by (3.8).

For the proof of Theorem 2, we follow some ideas given in [8], [11], [14].

Proof of Theorem 2. We may suppose $\psi \neq 0$, see [11]. Differentiating (1.5), we obtain

$$(3.9) f^{n-1}A = B$$

with

(3.10)
$$A = (\Psi'/\Psi)fP - nf'P + fP'$$

$$(3.11) B = Q' - (\Psi'/\Psi)Q.$$

By the Remark after the Lemma 1, we look at A and B as differential polynomials in f with coefficients having small proximity function and $\gamma_B \leq n-2$.

We may suppose $A \neq 0$ [see 11]. By applying Lemma 1 we have

(3.12)
$$m(r, A) = S(r, f),$$

(3.13)
$$m(r, Af) = S(r, f),$$

hence

$$(3.14) m(r, f) \leq m(r, Af) - m(r, 0; A) \leq m(r, 0; A) + S(r, f).$$

We define $\omega(z_0, f)$ as follows; if z_0 is a pole of ν -th order for f(z), then $\omega(z_0, f) = \nu$, and if z_0 is a regular point for f(z), then $\omega(z_0, f) = 0$. Let z_0 be a pole of f and neither pole nor zero of coefficients of P and Q. Put $\omega(z_0, f) = p$ and $\omega(z_0, Q) = k$, $0 \leq k \leq p \Gamma_Q \leq p$ (n-2). Write

(3.14) $Q(z) = R/(z - z_0)^k + \cdots, \quad R \neq 0$

hence for $k \geq 1$

(3.15)
$$Q'(z) = -kR/(z-z_0)^{k+1} + \cdots$$

We have

(3.16)
$$\Psi'(z)/\Psi(z) = -n^*/(z-z_0) + \cdots, \quad (n^* \ge n \ge k+2).$$

From (3.11), (3.14), (3.15) and (3.16)

$$B(z) = (n^* - k)R/(z - z_0)^{k+1} + \cdots$$

For k = 0, we have

$$\omega(z_0, B) = 1$$

Thus

(3.17)
$$\omega(z_0, B) \leq k+1, \quad k \geq 0.$$

If we have the development around z_0

$$A(z)=S(z-z_{\scriptscriptstyle 0})^{\scriptscriptstyle \mu}+\,\cdots,\quad \mu\,{\in}\, Z,\quad S
eq 0$$
 ,

then from (3.9) and (3.17)

$$p(n-1) - \mu \leq k+1 \leq p(n-2) + 1$$
,

hence

$$(3.18) p-1 \leq \mu.$$

Thus

(3.19)
$$\omega(z_0, f) - 1 \leq \omega(z_0, 1/A).$$

By (3.10) and (3.18), if z_0 is a pole of A and neither pole nor zero of coefficients of P and Q then, z may not be pole of f. Thus z_0 is a zero of Ψ . And we see from (3.10) $\omega(z_0, A)$ is at most one. Therefore,

(3.20)
$$\overline{N}(r, A) \leq \overline{N}(r, 0; \Psi) + S(r, f),$$

(3.21)
$$N_1(r, A) = S(r, f).$$

From (3.10)

$$(3.22) A = fPG$$

with

(3.33)
$$G = (\Psi'/\Psi) - n(f'/f) + (P'/P).$$

Let z_1 be a zero of f and neither pole nor zero of coefficients of P and Q then $\omega(z_1, G)$ is at most one by (3.23). Thus

(3.24)
$$\omega(z_1, 1/f) - 1 \leq \omega(z_1, 1/A)$$

From (3.19) and (3.24)

(3.25)
$$N_{i}(r, f) + N_{i}(r, 0; f) \leq N(r, 0; A) + S(r, f).$$

From (3.22)

(3.26)
$$m(r, A|f) \leq m(r, P) + m(r, G) \leq m(r, P) + S(r, f).$$

By the first fundamental theorem

$$egin{aligned} m(r,f+(1/f)) &= T(r,(f^2+1)/f) - N(r,f+(1/f)) \ &= 2T(r,f) - N(r,f) - N(r,0;f) + O(1) \ &= m(r,f) + m(r,0;f) + O(1) \,, \end{aligned}$$

hence

(3.27)
$$m(r, f) + m(r, 0; f) = m(r, f + (1/f)) + O(1)$$
$$\leq m\{r, A(f + (1/f))\} + m(r, 0; A) + O(1)$$
$$\leq m(r, Af) + m(r, A/f) + m(r, 0; A) + O(1).$$

From (3.13), (3.26), (3.27) and Lemma 2

$$m(r, f) + m(r, 0, f) \leq m(r, P) + m(r, 0; A) + S(r, f)$$

$$\leq hm(r, f) + m(r, 0; A) + S(r, f),$$

from (3.14), we get

$$(3.28) m(r,f) + m(r,0;f) \leq (h+1)m(r,0;A) + S(r,f).$$

By the first fundamental Theorem, (3.28) (3.25), (3.20) and (3.21), we obtain

$$\begin{aligned} 2T(r,f) &= m(r,f) + m(r,0;f) + N_1(r,f) + N_1(r,0;f) \\ &+ \overline{N}(r,f) + \overline{N}(r,0;f) + O(1) \leq (h+1)m(r,0;A) + N(r,0;A) \\ &+ \overline{N}(r,f) + \overline{N}(r,0;f) + S(r,f) \leq (h+1)T(r,A) + \overline{N}(r,f) \\ &+ \overline{N}(r,0;f) + S(r,f) \leq (h+1)\overline{N}(r,A) + (h+1)\{N_1(r,A) \\ &+ m(r,A)\} + \overline{N}(r,f) + \overline{N}(r,0;f) + S(r,f) \\ &\leq (h+1)\overline{N}(r,0;\Psi) + \overline{N}(r,f) + \overline{N}(r,0;f) + S(r,f). \end{aligned}$$

From this proof, if m(r, P) = S(r, f), then we may put h = 0 in (1.9). Thus Theorem 2 is proved.

References

- H. S. Gopalakrishna and Subhas S. Bhoosnurmath, On the distribution of values of differential polynomials, Indian J. Pure appl. Math., 17 (3) (1986), 367-372.
- [2] W. K. Hayman, Meromorphic functions, Oxford University Press 1964.
- [3] K. Ishizaki, Deficient functions of meromorphic functions and powers, Technical Report of Mathematical Sciences, Chiba University, 1986, No. 21.
- [4] K. Ishizaki, Exceptional values and deficient small functions of meromorphic functions and derivertives, Technical Report of Mathematical Sciences, Chiba University, 1987, No. 4.
- [5] K. Ishizaki, On the value distribution of polynomials of Meromorphic functions, Technical Report of Mathematical Sciences, Chiba University, 1987, No. 5.
- [6] A. Z. Mokhon'ko, On the Nevanlinna characteristics of some meromorphic functions in "Theory of functions, functional analysis and their applications", Izd-vo Khar'kovsk. Un-ta, No. 14 (1971), 83-87.
- [7] A. Z. Mokhon'ko and V. D. Mokhon'ko, Estimates for the Nevanlinna characteristics of some classes of meromorphic functions and their applications to differential equations, Sib. Math. J., 15 (1974), 921-934.
- [8] E. Mues and N. Steinmetz, The Theorem of Tumura-Clunie for meromorphic functions, J. London Math. Soc. (2), 23 (1981), 113-122.
- [9] R. Nevanlinna, Analytic Functions, Springer-Verlag, New York, Heidelberg, Berlin, 1970.
- [10] L. R. Sons, Deficiencies of monomials, Math. Z., 111 (1969), 53-68.
- [11] N. Steinmets, Über die Nullstellen von Differential-polynomen, Math. Z., 176 (1981), 255-264.
- [12] N. Toda, On an extension of the theorem of Tumura-Clunie, Comtemp. Math., 25 (1983), 215-219.

- [13] C. C. Yang, On deficiencies of differential polynomials, Math. Z., 116 (1970), 197-204.
- [14] G. Weissenborn, On the theorem of Tumura-Clunie, Bull. London Math. Soc., 18 317-373 (1986).

Department of Mathematics Tokyo National College of Technology 1220-2 Kunugida-cho, Hachioji, Tokyo 193. Japan