ON SOME GENERALIZATIONS OF THEOREMS OF TODA AND WEISSENBORN TO DIFFERENTIAL POLYNOMIALS

KATSUYA ISHIZAKI

Dedicated to Professor Niro Yanagihara on his 60th birthday

§ 1. Introduction

We assume that the readers are familiar with the notations in Nevanlinna theory, see [2], [9].

Let f be a nonconstant meromorphic function in the plane. We say that a function $h(r), 0 \leqq r \leqq \infty$, is $S(r, f)$ if

$$
h(r)=o(T(r, f))
$$

as $r \rightarrow \infty$, possibly outside a set of finite linear measure.
A meromorphic function $a(z)$ is said to be a small function for f if

$$
T^{\prime}(r, a)=S(r, f)
$$

Throughout this paper, we denote by $a, b_{0}, b_{1}, \cdots, a_{0}, a_{1}, \cdots$ small meromorphic functions for f.

Let

$$
\begin{equation*}
\phi(z)=f^{n}+a_{n-1} f^{n-1}+, \cdots,+a_{1} f+a_{0} . \tag{1.1}
\end{equation*}
$$

E. Mues and N. Steinmetz [8] proved the following Theorem.

Theorem A. Let f be a meromorphic function. Assume that ϕ given by (1.1) satisfies

$$
\begin{equation*}
\bar{N}(r, 0 ; \phi)=S(r, f) \quad \text { and } \quad \bar{N}(r, f)=S(r, f) \tag{1.2}
\end{equation*}
$$

Then

$$
\phi=\left(f+a_{n-1} / n\right)^{n} .
$$

N. Toda [12] proved an extension of the Theorem A

Theorem B. Let $f(z)$ be a meromorphic function and ϕ be given by
Received November 13, 1987.
(1.1). If

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup _{r \bar{E} E}(\bar{N}(r, 0 ; \phi)+2 \bar{N}(r, f)) / T(r, f)<1 / 2 \tag{1.3}
\end{equation*}
$$

then we have

$$
\phi=\left(f+a_{n-1} / n\right)^{n} .
$$

Recently, Weissesnborn [14] proved the following theorem:
Theorem C. Let f be a meromorphic function and ϕ be given by (1.1). Then we have that either

$$
\phi=\left(f+a_{n-1} / n\right)^{n}
$$

or

$$
\begin{equation*}
T(r, f) \leqq \bar{N}(r, 0 ; \phi)+\bar{N}(r, f)+S(r, f) \tag{1.4}
\end{equation*}
$$

In this note, we will extend these theorems to differential polynomials, instead of (mere) polynomial, of f.

We call, for a meromorphic function f,

$$
M[f]=a(z) f^{n_{0}}\left(f^{\prime}\right)^{n_{1}} \cdots\left(f^{(m)}\right)^{n_{m}}
$$

as a differential monomial in f of degree $\gamma_{M}=n_{0}+\cdots+n_{m}$ and of weight $\Gamma_{M}=n_{0}+2 n_{1}+\cdots+(m+1) n_{m}$. We call

$$
P[f]=\sum_{\lambda \in I} M_{z}=\sum_{\lambda \in I} a_{\lambda}(z) f^{n_{0}}\left(f^{\prime}\right)^{n_{1}} \cdots\left(f^{(m)}\right)^{n_{m}}
$$

as a differential polynomial in f, where a_{2} are meromorphic functions and I is a finite set of multi-indices $\lambda=\left(n_{0}, n_{1}, \cdots, n_{m}\right)$ for which $a_{\lambda} \neq 0$ and $n_{0}, n_{1}, \cdots, n_{m}$ are nonnegative integers. We define the degree γ_{P} and weight Γ_{P} of P by

$$
\gamma_{P}=\max _{\lambda \in I} \gamma_{M_{\lambda}} \text { and } \max _{\lambda \in I} \Gamma_{M_{\lambda}} .
$$

If P is a differential polynomial, then P^{\prime} denotes the differential polynomial which satisfies

$$
P^{\prime}[f(z)]=\frac{d}{d z} P[f(z)]
$$

for any meromorphic function f. Note that $\gamma_{P^{\prime}}=\gamma_{P}$.
Steinmetz [11] investigated the value distribution of some differential polynomials in f. His result is as follows: put

$$
\begin{equation*}
\Psi=f^{n} P[f]+Q[f] \tag{1.5}
\end{equation*}
$$

where P and Q are differential polynomials in f. Then
Theorem D. Let f be meromorphic function and Ψ be given in (1.5) and $\Gamma_{Q} \leqq n-2$. If

$$
\bar{N}(r, 0 ; \Psi)=S(r, f)
$$

then

$$
m(r, f)+m(r, 0 ; f)+N_{1}(r, f)+N_{1}(r, 0 ; f)=S(r, f)
$$

If, in (1.1), we replace f by $f-a_{n-1} / n$, then we can write ϕ in (1.1) in the form

$$
\begin{align*}
& \phi=f^{n}+Q[f] \tag{1.6}\\
& Q[f]=b_{n-2} f^{n-2}+\cdots+b_{1} f+b_{0}
\end{align*}
$$

The form (1.6) for polynomial corresponds to the form (1.5) with $\Gamma_{Q} \leqq n-2$ for differential polynomial.

In consideration of this Theorem D due to Steinmetz, we will prove here the following Theorems:

Theorem 1. Let f be a meromorphic function and ϕ be given in (1.6) and $Q[f] \neq 0$. Then

$$
\begin{equation*}
2 T(r, f) \leqq \bar{N}(r, f)+\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; \phi)+S(r, f) \tag{1.7}
\end{equation*}
$$

If $Q[0] \neq 0$, then

$$
\begin{equation*}
n T(r, f) \leqq \bar{N}(r, f)+\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; Q)+\bar{N}(r, 0 ; \phi)+S(r, f) \tag{1.8}
\end{equation*}
$$

Theorem 2. Let f be a meromorphic function and Ψ be given in (1.5). We suppose $Q[f] \neq 0$ and $\Gamma_{Q} \leqq n-2$. Then we have

$$
\begin{equation*}
2 T(r, f) \leqq \bar{N}(r, f)+\bar{N}(r, 0 ; f)+\left(\gamma_{P}+1\right) \bar{N}(r, 0 ; \Psi)+S(r, f) \tag{1.9}
\end{equation*}
$$

If further $m(r, P)=S(r, f)$, then

$$
\begin{equation*}
2 T(r, f) \leqq \bar{N}(r, f)+\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; \Psi)+S(r, f) \tag{1.10}
\end{equation*}
$$

§ 2. Preliminary lemmas

Lemma 1 ([2] [8] [11] [14]). Let Q and Q^{*} be differential polynomials in f having coefficients a_{j} and a_{k}^{*}. Suppose that $m\left(r, a_{j}\right)=S(r, f)$ and $m\left(r, a_{k}^{*}\right)=S(r, f)$, but we don't require that $T\left(r, a_{j}\right)=S(r, f)$ and $T\left(r, a_{k}^{*}\right)$ $=S(r, f)$. If $\gamma_{Q} \leqq n$ and

$$
f^{n} Q^{*}[f]=Q[f],
$$

then

$$
m\left(r, Q^{*}[f]\right)=S(r, f) .
$$

Remark. Clunie proved his lemma under the stronger hypothesis that $T\left(r, a_{j}\right)=S(r, f)$ and $T\left(r, a_{k}^{*}\right)=S(r, f)$. Mues and Steinmetz [8] remarked that Clunie's proof does also work under the weaker assumption stated above. In particular, there might be coefficients of the form $f^{\prime} \mid f$ or, more generally, $\Psi^{\prime} \mid \Psi$ where Ψ is the differential polynomial given by (1.0).

Lemma 2. If $P[f]$ is a differential polynomial and $\gamma_{P}=h$ then

$$
\begin{equation*}
m(r, P) \leqq h m(r, f)+S(r, f) . \tag{2.1}
\end{equation*}
$$

Proof. Write

$$
P[f]=P_{n}[f]+\cdots+P_{0}[f]
$$

where $P_{j}[f](j=0,1, \cdots, h)$ are homogeneous polynomials with respect to $f, f^{\prime}, \cdots, f^{(m)}$, with degree $j . \quad P_{j}[f]$ is the sum of a finite number of terms [see 1],

$$
a(z)\left(f^{\prime} / f\right)^{n_{1}} \cdots\left(f^{(m)} / f\right)^{n_{m}} \cdot f^{j},
$$

where $j=n_{1}+\cdots+n_{m}$. Thus we can write

$$
P[f]=R_{h}[f] f^{n}+\cdots+R_{0}[f],
$$

where $R_{j}[f]=P_{j}[f] / f^{f}$ and hence

$$
m\left(r, R_{j}[f]\right)=S(r, f), \quad j=0,1, \cdots, h .
$$

Therefore we have

$$
\begin{aligned}
m(r, P[f]) & \leqq h m(r, f)+\sum_{j=0}^{n} m\left(r, R_{j} ; f\right) \\
& \leqq h m(r, f)+S(r, f) .
\end{aligned}
$$

Remark. Yang [13] proved above lemma under the condition $N(r, f)$ $=S(r, f)$.
§ 3. Proof of Theorems 1 and 2
Proof of Theorem 1. Write

$$
\phi=f^{n}+f^{m} Q_{1}[f]
$$

where

$$
0 \leqq m \leqq n-2, \quad Q_{1}[0] \neq 0, \quad \gamma_{Q_{1}}=\gamma_{Q}-m \leqq n-m-2 .
$$

Put $\psi=f^{n-m} / Q_{1}$ and apply the second fundamenntal Theorem to ψ. Then we obtain

$$
\begin{equation*}
T(r, \psi) \leqq \bar{N}(r, \psi)+\bar{N}(r, 0 ; \psi)+\bar{N}(r,-1, \psi)+S(r ; \psi) . \tag{3.1}
\end{equation*}
$$

Since ψ is a rational of f with degree $n-m$, we apply the Mokhon'ko's theorem [6].

$$
\begin{equation*}
T(r, \psi)=(n-m) T(r, f)+S(r, f) \tag{3.2}
\end{equation*}
$$

Thus

$$
\begin{equation*}
S(r, \psi)=S(r, f) \tag{3.3}
\end{equation*}
$$

Each term on the right side of (3.1) are estimated as follows:

$$
\begin{align*}
& \bar{N}(r, \psi) \leqq \bar{N}\left(r, 0 ; Q_{1}\right)+\bar{N}(r, f)+S(r, f) \tag{3.4}\\
& \bar{N}(r, 0 ; \psi) \leqq(r, 0 ; f)+S(r, f) \tag{3.5}\\
& \bar{N}(r,-1 ; \psi) \leqq \bar{N}(r, 0 ; \phi)+S(r, f) \tag{3.6}\\
& \bar{N}\left(r, 0 ; Q_{1}\right) \leqq(n-m-2) T(r, f)+S(r, f) \tag{3.7}
\end{align*}
$$

From (3.1)-(3.6)

$$
\begin{align*}
(n-m) T(r, f) \leqq & \bar{N}\left(r, 0 ; Q_{1}\right)+\bar{N}(r, f)+\bar{N}(r, 0 ; f) \tag{3.8}\\
& +\bar{N}(r, 0 ; \phi)+S(r, f)
\end{align*}
$$

From (3.7) and (3.8), we obtain (1.7). If $Q[0] \neq 0$, that is $m=0, Q_{1}=Q$, then we get (1.8) by (3.8).

For the proof of Theorem 2, we follow some ideas given in [8], [11], [14].

Proof of Theorem 2. We may suppose $\psi \neq 0$, see [11]. Differentiating (1.5), we obtain

$$
\begin{equation*}
f^{n-1} A=B \tag{3.9}
\end{equation*}
$$

with

$$
\begin{align*}
& A=\left(\Psi^{\prime} \mid \Psi\right) f P-n f^{\prime} P+f P^{\prime} \tag{3.10}\\
& B=Q^{\prime}-\left(\Psi^{\prime} \mid \Psi\right) Q \tag{3.11}
\end{align*}
$$

By the Remark after the Lemma 1, we look at A and B as differential polynomials in f with coefficients having small proximity function and $\gamma_{B} \leqq n-2$.

We may suppose $A \neq 0$ [see 11]. By applying Lemma 1 we have

$$
\begin{align*}
& m(r, A)=S(r, f) \tag{3.12}\\
& m(r, A f)=S(r, f) \tag{3.13}
\end{align*}
$$

hence

$$
\begin{equation*}
m(r, f) \leqq m(r, A f)-m(r, 0 ; A) \leqq m(r, 0 ; A)+S(r, f) \tag{3.14}
\end{equation*}
$$

We define $\omega\left(z_{0}, f\right)$ as follows; if z_{0} is a pole of ν-th order for $f(z)$, then $\omega\left(z_{0}, f\right)=\nu$, and if z_{0} is a regular point for $f(z)$, then $\omega\left(z_{0}, f\right)=0$. Let z_{0} be a pole of f and neither pole nor zero of coefficients of P and Q. Put $\omega\left(z_{0}, f\right)=p$ and $\omega\left(z_{0}, Q\right)=k, 0 \leqq k \leqq p \Gamma_{Q} \leqq p(n-2)$. Write

$$
\begin{equation*}
Q(z)=R /\left(z-z_{0}\right)^{k}+\cdots, \quad R \neq 0 \tag{3.14}
\end{equation*}
$$

hence for $k \geqq 1$

$$
\begin{equation*}
Q^{\prime}(z)=-k R /\left(z-z_{0}\right)^{k+1}+\cdots \tag{3.15}
\end{equation*}
$$

We have

$$
\begin{equation*}
\Psi^{\prime}(z) / \Psi(z)=-n^{*} /\left(z-z_{0}\right)+\cdots, \quad\left(n^{*} \geqq n \geqq k+2\right) . \tag{3.16}
\end{equation*}
$$

From (3.11), (3.14), (3.15) and (3.16)

$$
B(z)=\left(n^{*}-k\right) R /\left(z-z_{0}\right)^{k+1}+\cdots
$$

For $k=0$, we have

$$
\omega\left(z_{0}, B\right)=1
$$

Thus

$$
\begin{equation*}
\omega\left(z_{0}, B\right) \leqq k+1, \quad k \geqq 0 \tag{3.17}
\end{equation*}
$$

If we have the development around z_{0}

$$
A(z)=S\left(z-z_{0}\right)^{\mu}+\cdots, \quad \mu \in Z, \quad S \neq 0
$$

then from (3.9) and (3.17)

$$
p(n-1)-\mu \leqq k+1 \leqq p(n-2)+1
$$

hence

$$
\begin{equation*}
p-1 \leqq \mu \tag{3.18}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\omega\left(z_{0}, f\right)-1 \leqq \omega\left(z_{0}, 1 / A\right) \tag{3.19}
\end{equation*}
$$

By (3.10) and (3.18), if z_{0} is a pole of A and neither pole nor zero of coefficients of P and Q then, z may not be pole of f. Thus z_{0} is a zero of Ψ. And we see from (3.10) $\omega\left(z_{0}, A\right)$ is at most one. Therefore,

$$
\begin{align*}
& \bar{N}(r, A) \leqq \bar{N}(r, 0 ; \Psi)+S(r, f) \tag{3.20}\\
& N_{1}(r, A)=S(r, f) \tag{3.21}
\end{align*}
$$

From (3.10)

$$
\begin{equation*}
A=f P G \tag{3.22}
\end{equation*}
$$

with

$$
\begin{equation*}
G=\left(\Psi^{\prime} \mid \Psi\right)-n\left(f^{\prime} \mid f\right)+\left(P^{\prime} \mid P\right) \tag{3.33}
\end{equation*}
$$

Let z_{1} be a zero of f and neither pole nor zero of coefficients of P and Q then $\omega\left(z_{1}, G\right)$ is at most one by (3.23). Thus

$$
\begin{equation*}
\omega\left(z_{1}, 1 / f\right)-1 \leqq \omega\left(z_{1}, 1 / A\right) \tag{3.24}
\end{equation*}
$$

From (3.19) and (3.24)

$$
\begin{equation*}
N_{1}(r, f)+N_{1}(r, 0 ; f) \leqq N(r, 0 ; A)+S(r, f) \tag{3.25}
\end{equation*}
$$

From (3.22)

$$
\begin{equation*}
m(r, A / f) \leqq m(r, P)+m(r, G) \leqq m(r, P)+S(r, f) \tag{3.26}
\end{equation*}
$$

By the first fundamental theorem

$$
\begin{aligned}
m(r, f+(1 / f)) & =T\left(r,\left(f^{2}+1\right) / f\right)-N(r, f+(1 / f)) \\
& =2 T(r, f)-N(r, f)-N(r, 0 ; f)+O(1) \\
& =m(r, f)+m(r, 0 ; f)+O(1)
\end{aligned}
$$

hence

$$
\begin{align*}
m(r, f)+ & m(r, 0 ; f)=m(r, f+(1 / f))+O(1) \tag{3.27}\\
& \leqq m\{r, A(f+(1 / f))\}+m(r, 0 ; A)+O(1) \\
& \leqq m(r, A f)+m(r, A / f)+m(r, 0 ; A)+O(1)
\end{align*}
$$

From (3.13), (3.26), (3.27) and Lemma 2

$$
\begin{aligned}
m(r, f)+m(r, 0, f) & \leqq m(r, P)+m(r, 0 ; A)+S(r, f) \\
& \leqq h m(r, f)+m(r, 0 ; A)+S(r, f)
\end{aligned}
$$

from (3.14), we get

$$
\begin{equation*}
m(r, f)+m(r, 0 ; f) \leqq(h+1) m(r, 0 ; A)+S(r, f) . \tag{3.28}
\end{equation*}
$$

By the first fundamental Theorem, (3.28) (3.25), (3.20) and (3.21), we obtain

$$
\begin{aligned}
& 2 T(r, f)=m(r, f)+m(r, 0 ; f)+N_{1}(r, f)+N_{1}(r, 0 ; f) \\
& \quad+\bar{N}(r, f)+\bar{N}(r, 0 ; f)+O(1) \leqq(h+1) m(r, 0 ; A)+N(r, 0 ; A) \\
& \quad+\bar{N}(r, f)+\bar{N}(r, 0 ; f)+S(r, f) \leqq(h+1) T(r, A)+\bar{N}(r, f) \\
& \quad+\bar{N}(r, 0 ; f)+S(r, f) \leqq(h+1) \bar{N}(r, A)+(h+1)\left\{N_{1}(r, A)\right. \\
& \quad+m(r, A)\}+\bar{N}(r, f)+\bar{N}(r, 0 ; f)+S(r, f) \\
& \quad \leqq(h+1) \bar{N}(r, 0 ; \Psi)+\bar{N}(r, f)+\bar{N}(r, 0 ; f)+S(r, f) .
\end{aligned}
$$

From this proof, if $m(r, P)=S(r, f)$, then we may put $h=0$ in (1.9). Thus Theorem 2 is proved.

References

[1] H. S. Gopalakrishna and Subhas S. Bhoosnurmath, On the distribution of values of differential polynomials, Indian J. Pure appl. Math., 17 (3) (1986), 367-372.
[2] W. K. Hayman, Meromorphic functions, Oxford University Press 1964.
[3] K. Ishizaki, Deficient functions of meromorphic functions and powers, Technical Report of Mathematical Sciences, Chiba University, 1986, No. 21.
[4] K. Ishizaki, Exceptional values and deficient small functions of meromorphic functions and derivertives, Technical Report of Mathematical Sciences, Chiba University, 1987, No. 4.
[5] K. Ishizaki, On the value distribution of polynomials of Meromorphic functions, Technical Report of Mathematical Sciences, Chiba University, 1987, No. 5.
[6] A. Z. Mokhon'ko, On the Nevanlinna characteristics of some meromorphic functions in "Theory of functions, functional analysis and their applications", Izd-vo Khar'kovsk. Un-ta, No. 14 (1971), 83-87.
[7] A. Z. Mokhon'ko and V. D. Mokhon'ko, Estimates for the Nevanlinna characteristics of some classes of meromorphic functions and their applications to differential equations, Sib. Math. J., 15 (1974), 921-934.
[8] E. Mues and N. Steinmetz, The Theorem of Tumura-Clunie for meromorphic functions, J. London Math. Soc. (2), 23 (1981), 113-122.
[9] R. Nevanlinna, Analytic Functions, Springer-Verlag, New York, Heidelberg, Berlin, 1970.
[10] L. R. Sons, Deficiencies of monomials, Math. Z., 111 (1969), 53-68.
[11] N. Steinmets, Über die Nullstellen von Differential-polynomen, Math. Z., 176 (1981), 255-264.
[12] N. Toda, On an extension of the theorem of Tumura-Clunie, Comtemp. Math., 25 (1983), 215-219.
[13] C. C. Yang, On deficiencies of differential polynomials, Math. Z., 116 (1970), 197-204.
[14] G. Weissenborn, On the theorem of Tumura-Clunie, Bull. London Math. Soc., 18 317-373 (1986).

Department of Mathematics

 Tokyo National College of Technology1220-2 Kunugida-cho, Hachioji,
Tokyo 193. Japan

