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MAXIMAL SETS AND FRAGMENTS OF PEANO ARITHMETIC

C.T. CHONG

This work is inspired by the recent paper of Mytilinaios and Slaman
[9] on the infinite injury priority method. It may be considered to fall
within the general program of the study of reverse recursion theory: What
axioms of Peano arithmetic are required or sufficient to prove theorems
in recursion theory? Previous contributions to this program, especially
with respect to the finite and infinite injury priority methods, can be
found in the works of Groszek and Mytilinaios [4], Groszek and Slaman
[5], Mytilinaios [8], Slaman and Woodin [10]. Results of [4] and [9], for
example, together pinpoint the existence of an incomplete, nonlow r.e.
degree to be provable only within some fragment of Peano arithmetic at
least as strong as P~ + IΣ2. Indeed an abstract principle on infinite
strategies, such as that on the construction of an incomplete high r.e.
degree, was introduced in [4] and shown to be equivalent to Σ2 induction
over the base theory P~ + IΣ0 of Peano arithmetic.

In this paper we study the problem of constructing maximal sets
within fragments of Peano arithmetic, using ideas and techniques from
a recursion theory. We show firstly that P~ + BΣ2 does not prove the
existence of such sets. The idea for this independence result comes
from [9] which adapted the method of Shore [11], in his analysis of the
jump of y^-r.e. degrees, to produce a model «/ of BΣ2 with no incomplete
high r.e. degree. Here we investigate the same model and show that
maximal sets do not exist in */. This implies that there is no finite
injury construction of a maximal set. Next we construct a maximal set
in every model of P" + IΣZ. This shows that the existence of maximal
sets is a theorem of this theory. We then prove that the statement on
existence is consistent with the weaker theory P~ + —uBJ?3 + IΣ2.

(^ Finally,
we show that there is a model of P" + —\BΣX + IΣQ (hence of —\BΣ2)
with a maximal set. These results together show that the sentence
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asserting the existence of maximal sets is strictly weaker than IΣΆ over

the base theory P~ + IΣ2, and does not imply nor is it implied by either

BΣ2 or I2V The appropriate references here for the background in a

recursion theory are Lerman and Simpson [7], Chong and Lerman [2],

and Chong [1].

We begin by recalling some basic notions in Peano arithmetic. Let

Jδf be the language of Peano arithmetic. This consists of the binary

operations ' (succesor), + (addition) and (multiplication) and the constant

symbol 0. We will use f and t + 1 interchangeably to denote successors.

The relation x < y is defined as (3t)(x + tf = y), while x < y is a short

form for x < y\/ x = y. Bounded quantifiers are quantifiers of the form

(3x < y) or (Vx < y). Define a formula to be Σo or 770 if it has only

bounded quantifiers. A formula φ is Σn + ί if it is of the form (3x)ψ where

ψ is Πn, while φ is Πn+1 if it is of the form (Vx)ψ where ψ is Σn, ((3x)

and (Vx) denote respectively a block of existential quantifiers and a block

of universal quantifiers). We let P~ denote the usual axioms of Peano

arithmetic excluding mathematidal induction. The full mathematical

induction can be split into levels of varying complexity as follows. For

n < ω, let Σn induction (abbreviated IΣn) denote the following schema:

M)[{θ{% 0) and (Vx)(θ($, x) > θ(y, x'))) > (Vx)(0(fc x))],

where θ is a formula. Clearly Peano arithmetic, which we denote by P,

is P~ together with IΣn for each n. Within each model Jt of P~ + IΣQy

one can code finite sequences of elements of Jt by a single element.

This is an important property that is needed in many constructions of

r.e. sets.

A notion related to IΣn is LΣn (the principle of least Σn element),

which is syntactically stated as follows:

0(£δ, x) > (3*)(0(fi5, x) and (yz < x) -iθ(U), z))] ,

where θ is a relation.

Sandwiched between P~ + IΣn_x and P~ + IΣn is the theory P~ +

BΣn, where BΣn is the schema of Σn collection: If θ is Σn then

(VS5)(Vy)[(Vx < y)(3ί)ί(wϊ, ί, x) > (3Z)(VΛ < y)(3ί < ^(ΰ5, ί, x)].

Let I/7n, β/7,, and LΠn be defined similar to the corresponding

ones for Σn above, except that θ is now a Πn formula. The following



PEANO ARITHMETIC 167

result is due to Kirby and Paris [6]:

PROPOSITION 1. Let n < ω. Assume P~ + IΣ0. Then

(a) BΣn+1 is equivalent to BΠn;

(b) IΣn, IΠn, LΣn and LΠn are all equivalent;

(c) IΣn+1 implies BΣn+u and BΣn+1 implies IΣn.

The standard model of Peano arithmetic will be denoted Jί. Given

Jί a model of some fragment of P, we define an initial segment J to

be a nonempty subset of Jί closed under the successor operation ' and

closed downward in Jί (i.e. if b e J and a < b then a e«/). If J> is

proper, then it is called a proper initial segment of Jί. Given ae Jί,

we also denote by a the set of all predecessors of a. The overspill

lemma states that proper initial segments are not definable:

PROPOSITION 2. Let n < ω and let Jί be a model of P~ + IΣn. If J

is a proper initial segment of Jί, then it is not Σn definable with parameters

over Jί.

Proof. Suppose that J = {a\Jί |= θ(a, &)}, where θ is Σn. Since J

is a proper initial segment, Jί\J> is a nonempty Πn set over Jί. By

hypothesis and by Proposition 1(6) this set has a least element α0. Since

J φ 0, we see that α0 φ 0. Then α0 has an immediate predecessor which

must belong to J>. But then «/ is not closed under the successor opera-

tion, a contradiction.

DEFINITION. Let Jί be a model of P~ + 12^, for some n < ω. A

bounded set A C J^ is ^-finite if there is an α e ^ , a formula 9 and

elements b e a such that for all x,

x e A <—> a |= <p(b, x).

Using the pairing function (within P~ + IΣ0), it is possible to code

^-finite sets by single elements of Jί. Thus ^-finite sets are precisely

those which are coded in Jί. If Jί = ^Γ, then the ^-finite sets are

just the finite sets of natural numbers. There exist, however, models Jί

of P" + IΣn with many more ^-finite sets, as the following example

constructed in [9] shows:

LEMMA 1. There is a model Jί^ of Peano arithmetic such that for each

real E, there is an Jί ^finite set K such that K f] Jί = E.
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Let Jί f= P- + IΣn for some n. The following notions apply to Jt\

A set A c Jί is recursively enumerable (r.e.) if it is Σx definable (with

parameters) over Jί. A is recursive if both A and Jί\A are r.e. (hence

Jj over ^ ) . A function /: Jί -^ Jί is (partial) recursive if its graph is

r.e. It is total recursive if its domain is all of Jί. There is a simulta-

neous recursive enumeration of all ^-finite sets and r.e. sets in Jί. We

let Ke be the eth ^-finite set and let We be the βth r.e. set. Denote by

0' the set {(a, e) \ a e We}. This is a complete r.e. set. Finally A is

recursive in B if there exist r.e. sets Wd and We such that for all x,

xeA <—> (3rc)(3/n)[(x, n, m, 1) e Wd and Kn cz B and ifm cz β]

x £ A <—> (lή)(lm)[(x, m, n, 1) e We and Kn<^B and ifw c 5 ] .

Just as in a recursion theory, this relation is not necessarily tran-

sitive. To obtain transitivity, one replaces xe A by K c A and xg A by

K qt A, where iΓ is ^-finite. Such a modification is not needed here.

Non-existence of maximal sets

The following was proved by Mytilinaios and Slaman [9]:

LEMMA 2. Let Jί§ be as given in Lemma 1. There is a proper initial

segment J> of Jί^ with the following properties:

(a) J μ P- + BΣ2;

(b) J> is a Σx elementary substructure of Jί^\ indeed there is an in-

creasing sequence {an}n<ω c J> such that <fn+λ = {x|x < an+ί} is

the downward closure of the hull of J'n in JίQ with respect to

the first n + 1Σ1 functions. Furthermore J = U Jn\

(c) There is a function f\Jf-*J such that for each n, f(ή) = an {where

{an}n<(ύ is given in (b)), and such that f is recursive in 0'.

The notion of regularity was first introduced in the context of a

recursion theory. Its relevance to classical recursion theory, in connec-

tion with the problem of the existence of incomplete high sets, was noted

in [9]. The study of the existence of maximal sets which we take up

next also hinges on this notion. We first introduce a notation: For each

r.e. set We9 let Ws

e be the set of elements enumerated into We by the end

of stage s.

DEFINITION. Let 1 be a model of P~ + IΣn. A set A c Jί is

regular if A | m is ^-finite for each m e Jί.



PEANO ARITHMETIC 169

LEMMA 3. Let Jί be a model of P~ + BΣ2. If A c Jέ is r.e, then for

each m, there is an s such that

(Vx < m)(3t) [x € A1 <—> x e As].

In particular, A is regular.

Proof Let m be given. Then

(Vx < m)(3s)[(x 6 As) V (Vί)(x e A*)] .

Since Jί is a model of JBI'O, there is an s such that

(1) (Vx < m)[(3u <s)(xe Au) V (Vt)(x £ A')].

Formula (1) shows that A is regular.

Remark. A result attributed to H. Freidman states that the hypoth-

esis in Lemma 3 may be weakened to P~ + IΣX.

LEMMA 4. Let «/ be as given in Lemma 2. Let f: Jί —> J be a cofinal

map recursive in 0'. Then there is a partial recursive function h: J> X J

-> J such that for each neJ^, for each s, h(s, n) is defined, and that

(Vί e Λ0[(3s)(Vί > s)h(t, ί) = f(i)].

We say that h is a recursive approximation of f and write lim, h(s, i) = f(i)

for ieJί.

Proof. Let e be chosen such that

(ί, z) e /<—> (3τι)(3/n)[((i, z), n, m, 1) e We and ίΓn c 0' and Km c 07].

By Lemma 3, 0' is regular, so that for all aejf, 0' Γ) a is ^0-finite,

hence ./-finite since «/ is a Σx elementary substructure of Jί^ Fix (i, ^),

and let ifπ and i i m be J^-finite sets verifying (ί, z) e /. Let g be total

recursive such that 0f = Range (g). Since each ./-finite set is bounded,

there is a stage u in the recursive enumeration of 0r such that for all x,

(2) xeKn > (Iw <u)[g(w) = x], and

(3) x e Km — > (yw) [g(w) Φ x].

Define h(t, ί) to be the least z such that ((/, z), n, m, 1) e We at some

stage u*> t, and such that there exist Kn and Km satisfying (2) and

(4) xe Km — > (yw < u)[g{w) Φ x].
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Notice that for ί e Jί9 a z to satisfy ((ί, z), n, my 1) e We and (2), (4) at u
always exists since / is total on Jί. From the fact that / is a model
of BΣ2, hence of IΣλ (Proposition l(c)), and the fact that IΣί is equivalent
to LΣi (Proposition l((ί?)), we see that the least z required to define h(t, ί)
can be found recursively for each i e Jf.

It is now not difficult to verify that h is a recursive approximation
of/.

Observe that if ί g Jί, then although h(s, i) may be defined for many
stages s, there is no lims h(s, ΐ).

DEFINITION. Let Jί be a model of P~ + IΣn. An r.e. set Me Jt is
maximal if:

(a) For all A Ξ2 M such that A is r.e., either A\M is ^-finite or
Jί\A is ^-finite;

(b) Jί\M is not ^-finite.

The first construction of a maximal set (in P) was obtained in
Friedberg [3]. Our first result implies that this construction cannot be
carried out in P~ + BΣ2. It is worthwhile to point out that because of
the presence of nonstandard elements, the method of partitioning the
universe recursively into ω disjoint pieces, such as that carried out in
[7] for ^f, is not applicable here, since Jί is not Σx definable in J5".
Thus although the presence of the function / seems to indicate a strong
resemblance in structure between J and ^f, there is a subtle difference
between them making the argument in [7] not applicable in the present
context. Instead an idea derived from Chong and Lerman [2] is appro-
priate here.

THEOREM 1. There is no maximal set in J'.

Proof. Let M c J> be an r.e. set. Assume that Jί\M is not ./-finite.
We will produce an r.e. set A containing M such that neither A\M not
S\A is ./-finite.

It follows from Lemma 3 that M = </\M is not bounded in </. Let
f\Jf—>J> be a cofinal map recursive in 0' (Lemma 2 (c)). Let h: J X J>
- > / b e a recursive approximation of /, as given in Lemma 4. It is not
difficult to make h non-decreasing in the following sense: h(s, i) < h(t, j)
whenever s < t and i < j (and both are defined). We assume in the
following that h is indeed non-decreasing.
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Let Mι be the set of elements enumerated into M by stage t. Let

m(0) be the least element of M. For each 0 < ί in JΓ, first let k* be the

least k > ί such that m(i — 1) < f{k). Let ra(0 be the least member of

M greater than /(£*). Observe that since M is unbounded in J", M is

regular, and / i s a model of BΣ2 (Lemma 2 (a)), we have by Proposition

1 (b) all the m(z)'s to be well-defined. One may give a recursive approx-

imation for the m(i)'s at stage s by setting k* to be the least k such that

m(s, i — 1) < h(s, k), and then choosing m{s, i) to be the least z in Ms

such that 3 > h(s, k*). Then m(s, y) < m(t, i) for s < t and y < ί.

For each standard i, we have lims m{s, i) == m(i). For nonstandard

£, lims m(s, i) is not bounded in </. Since /(i) = at (ie Jί), by Lemma 2 (b)

the correct value of m{i) is reached by stage m{i + 1). This means that

for all s > m(i + 1), m(s, i) = m(ί). This property allows one to separate

an m(ί) from those m(jys which one wishes to avoid.

Define a function S r: </" X y x «/ -> 2 as follows: Given s and j < ί,

let £(s) be the least t such that m(Z, ί) = m(5, 0 If there is no w < ί(s)

such that m(u, i) = m(t(s),j), let S^s,,/, i) = 0. Otherwise, let u(s) be the

least such u and set S^s, y, i) = 1 — S'(u(s), j , i). We claim that Sr(s, y, j)

< 2 for all s, y and i. Indeed suppose that S'(s, j , i) > 2 for some s, j

and i. Then using /2Ί, there exists a least 5, for which there exist y and

ί such that S'(sJ, ΐ) > 2. Then S^s — l,y, i) < 2 by assumption, so that

the definition of S' specifies that S'(s, y\ i) < 2, a contradiction. This

proves the claim.

Observe that for each standard pair j < £, if sx > s and m(s, i) = m(slf i)

= m(ί) then S'(s,j, i) — S'(suj, i). On the other hand, if j is standard

and i is nonstandard, let υx be the least υ such that m{v, ί) > m(u, y) —

m(y). Then for t > î  such that w(ί, i) > m(vu i), we have m(t,j) = m(j),

and so *S;(£, y, i) = 1 — S'(wuj, i), where ^ is the least w (if exists) such

that m(w, ί) = m(y), or else S'(ί, j , 0 = 0. It follows that for each pair

(y, ί) such that j is standard and less than ί, lim, S'(s, j , i) = S(y, i) exists

(and is either 0 or 1). We need a lemma.

LEMMA 5. Let j be standard and suppose that S'(s,j, ί) = S(j, ί) where

j < L Then m(s, ί) Φ m(j).

Proof. First of all, assume that i is standard. Suppose that S'(s, y, i)

= S(y, ί) and that m(s, i) = m(j). Let ^ be the least t > s such that

m(s,ί) = m(0- At stage ^, we have m(tuj) = m(y). If we set Wi to be
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the least u such that m(u, i) = m(j), then ux < s and S'(uu j , i) == S'(s, 7, i),

so that by definition

S'(tl9j, 0 = 1 - S'(*W> 0 = 1 - S'foΛ 0 = 1 - S(j9 i).

But S\tuj, i) = S(j, 0, and so we get a contradiction. Hence m(s, ί) Φ

Now suppose that i is nonstandard and that m(s, ί) = m(j). Then

lims ra(s, 0 does not exist. Nevertheless, if υx is the least v such that

m(v, i) > m(vj) = m(;), then for 1; > ^ such that m(υui) > m(v, i), we have

S'(υ,j, ΐ) = SO*, 0 = 1 — S'(uuj, i), where ux is the least u such that

m(u, i) = m(j), so that if m(s, ί) == m(jf) then S;(s, j , i) = S^Mj, 7, 0 =£ S(y, 0,

a contradiction. Thus if we assume that S'(s, j , ΐ) = S(j, i), then m(s, ϊ)

Φ m(j).

Choose D c Jί such that D is the set of triples of the form (j, i, S(j, ί)),

where j is odd, i is even and j < i. By Lemma 1 there exists an ^-finite

set K whose standard part is Zλ As observed in the proof of Lemma 4,

/ is a IΊ elementary substructure of Jί^ and so is closed under the

coding function. In particular, K is ./-finite. Before we show that M

is not maximal, let us prove a lemma.

LEMMA 6. There ίs an J"-finite subset Kx of K containing D such

that: For each even ί, if (jί9 ί, rt)e Kx for some odd j\ and some rl9 then

for all standard odd j < i, there is an r such that (j, i, r) is in K^

Furthermore, for each such j ,

(a) // ί is standard, then r — S(j, ΐ)

(b) r is the unique n such that (j\ ί, ή) belongs to Kx

(c) m(s, ί) Φ m(j) whenever S;(s, j , ί) = r.

Proof. Let Ko be the set of (j, ί, ή) in K such that n is the least

r < 2 (if exists) satisfying (ί, j , r)e K for a given (ί, j). Then Kΰ is j^-finite.

We show that all the statements, except possibly (c), already hold in Ko,

If i is standard, then (7, i, S(j, i)) belongs to D for each odd 7 < i, and

is therefore in KQ (since the standard part of K is D). The definition of

D makes it clear that S(j, i) is the only n giving (7, i, n) in if0. Applying

Lemma 5 gives (a)-(c) for standard i. Thus suppose that ί is nonstandard.

To prove (b), let us briefly review the construction of the model Jί^ of

Lemma 1 introduced in [9]. The discussion in the next paragraph is an

expansion of the observation that Jί^ is sufficiently saturated.
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Let V = Vω+ω, the collection of sets of rank less than ω + ω. Let fy

be a nonprincipal ultrafilter on ω. Let V* be the ultrapower of V

modulo °U. There is an embedding g: a •-* ca of V into V*, where ca is

the equivalence class of functions on ω containing the function with

constant value α. The structure Jί^ is taken to be g(Jί). It is not

difficult to show that g is an isomorphism on Jί so that Jί may be

considered to be a bounded subset of g{Jί). Let id be the equivalence

class of functions containing the identity map on Jί. Then Jt% (= id > cn

for all n e Jί, so that id is a nonstandard element of ^#0. Now given

E C Jί, K* = g(E) Π id is coded in Jέ^ so that it is ^-finite (hence J-

finite since J is closed under the coding function). Furthermore, the

standard part of if* is E. Thus we see that a triple (jf, ί, r) belongs to

K* iϊ and only if there is a member X of °U such that for all keX,

OX*), *(*), r(k)) < k and OX*), *(*), K*)) e #, where j(k), i(k) and r(A) are the

values of the &th co-ordinates of j , i and r respectively, and where we

assume that all finite tuples are coded by a natural number. In particular,

this implies that if (j,ί,r)e K* then j(k), i{k), r(k)eE for almost all k

('almost' in the sense of the ultrafilter ^ ) . Let E be the set D, then K*

is just the set K defined earlier.

Recall firstly that the set Dx — {S(j, i)\i,j are standard}, where j is

odd and i is even, is a subset of 2. Now suppose that (ju i, rx) e KQ for

some odd jx and some TV Let j be a fixed standard odd number. Then

we have (jf, i(k), S(j, i(k)) e D for almost all k. By the finiteness of Dx there

is therefore a n l e ^ and a fixed r < 2 such that X = {A|0\ *X*)> Γ) € 2)},
where r = S(j, i(A)) for all k in X.

Suppose that (j, ί, n) e KQ for some standard n. Then (j, i(k)9 n(k)) is

in D almost everywhere. This means that n(k) = S(j, i(k)) almost every-

where, and so r = n. This shows that for each standard odd j there is

a unique r such that (j, i, r) e Ko. Thus (b) follows as a consequence.

We will define a KXCL Kύ and prove that (c) holds. Consider now ί

as ranging over the even numbers. Given a standard odd number j , let

0, i, r) be in KQ and define

Γj = {i\i is even and (3s)[S/(s,j, ί) = r and τn(s, i) = m(i)}.

Then Γj is IΊ over ,/ and if it is nonempty, it has a least element ΐr

Furthermore, by (a) and Lemma 5 the least element yi is nonstandard.

Without loss of generality, let us assume that ϊ5 is defined for each
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standard odd j .

Claim. There is a nonstandard number b such that b < ^ for all Tr

Let Tj be in the equivalence class (modulo °U) of the function f5\Jf~*
Jf. For each k e JΓ, let Yk e <% such that for all n e Yk, we have f,(n) > k
for odd j < k. Basic properties of ultrafilters ensure that Yk exists. It
is also possible to arrange Yk Z> Yk + 1. We assume that this is indeed
done. Set bk(n) = m i n ^ [fo(ή)} for n e Yk.

Let Y = Π fc Yfc, Suppose that Y Φ 0. Then for all τι in Y, and for
all standard k, we have //TI) > k whenever j < &. This implies that fJίjί)
is not a finite number, which is not possible. Thus Y = 0. It follows
that for every n there is a largest £ such that ne Yk. Set

{ bk(ή), kx is the greatest £ with ne Yk.

0 otherwise.

For each k, we then have b(ή) = 6fcl(7i) > fe whenever τi e Y%. Furthermore
for each j , b(ή) < fj(ri) for n in Yfc, where k* > 7. Hence in J the element
fe is nonstandard and less than each fs. This proves the claim.

Now let b be as specified in the Claim. Let Kλ c Ko such that
( , ί, r) e Kx if and only if (j, ί, r) e Ko and i < 6. Then by the choice of b,
we have (j, ί, r) e Kt for every standard even number i, and that r = S(j, ΐ).
Furthermore, if ί is nonstandard with j standard and (j, ί, r) e Ku then
S'(s, j , ΐ) = r implies that m(s, i) Φ m(j). Thus (c) is true.

We are now ready to show that M is not maximal. Let

A = MΌ {m(s, ί) I (V/)(Vr) [(;, ί, r)) eK,-* S'(s, j , ί) = r]}.

Clearly A contains M as a subset. By Lemma 6(a) and (b), if i is
a standard even number then (j, i, S(j, ί)) is in Kx and SO", ΐ) is the
unique r giving (j, ί, r) in ifj. Since m(s, ΐ) = m(i) and S'(s,j, i) = S(j, 0
for all sufficiently large s, we have m(i) e A for each standard even i.
Thus A\M is not ./-finite. Since m(s, ί) is enumerated in A if and only
if Sf{s,j,ί) — r for all (j,ί,r)eKu we see by Lemma 5 and Lemma 6
that setting j odd and standard ensures that m(s< ΐ) Φ m(j). Thus A
avoids each m(j) where j is standard and odd. This shows that M is
not maximal and proves Theorem 1.

COROLLARY 1. P~ + BΣ2 does not prove the existence of a maximal

set
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We thank T. Slaman for pointing out to us the next corollary:

COROLLARY 2. There is no finite injury type construction of a maximal

set.

Proof. By Slaman and Woodin [10], all finite injury priority argu-
ments can be carried out in models of IΣV Hence if maximal sets can
be constructed using a finite injury argument, it would exist in every
model of P~ + IΣU and in particular, in the model J of Theorem 1.
But this is not possible.

Existence of Maximal Sets

In this section we construct a maximal set for every model of P~ +
IΣS9 and show that there is a model of P~ + —\BΣ3 + IΣ2 with a maximal
set. The method of e-state introduced in Friedberg [3], appropriately
modified, will be used.

THEOREM 2. Let Jί be a model of P~ + IΣ3. Then there is a maximal

set M in Jί.

Proof. Given e e Jί, we say that x is in the jth e-state at stage s if

j = Σ{2e'i\xe W and i< e}.

Observe that for each e e Jί, there are only ^-finitely many e-states. Let
c(s, i) be the ith element of M\ the complement of M in Jί at stage s
(i.e. c(s, i) is the element y of Ms such that y f] Ms is in one-one corres-
pondence with i).

We begin by setting M° = 0. At stage s + 1, let j(s + 1, 0) be the
largest j which is a 0-state at stage s + 1, and for which there exists
a n x > c(s, 0) in Ms which belongs to the jth 0-stage. The largest j as
required by j(s + 1, 0) exists. To see this, observe that since there are
only ^-finitely many 0-states, there are therefore only ^-finitely many
j's for which there exist x > c(s, 0) in Ms and in the jth 0-state. Hence
there is a least JΊ (by Proposition 1 (b)) which is greater than all such
0-states. Then jί — 1 is the largest 0-state at stage s + 1 as described
above. Let c(s + 1, 0) be the least x > c(s, 0) with 0-state j(s + 1, 0).

By induction, suppose that φ + 1, e — 1) is defined. Let jf(s + 1, e)
be the largest j which is an e-state at stage s + 1, and for which there
exists an x < s + 1 in Ms with

(5) x > m a x { φ + l,d)|d, e};
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(6) x>c(s,e);

(7) x is in the jth e-state.

Again Proposition 1 (b) justifies the existence of j(s + 1, e). Let

c(s + 1, e) be the least x satisfying (5)-(7), with j in (7) set to be

j(s + 1, e). Let

l , e ) < x < φ + 1, e + 1)]}.

Let M = USMS. We show that M is maximal.

LEMMA 7. For each e, lims φ , e) = ce exisίs.

Proof. We prove this by induction. Let e be given. Suppose that

cd exists for all d < e. The map d >-> cd is J?2 over f̂. Since βϋ'g holds

in ^ (Proposition 1 (c)), there is a stage sQ such that for all s > s0,

c(s, rf) = cd for all d < e. After stage s0, there is a largest e-state j such

that at some stage s > so> 7 = j(s + 1, e). This follows from the fact that

there are only ^-finitely many e-states, so that the set

is ^-finite and has a largest value which we denote as j * . Let the

corresponding stage s be denoted s*. Then at stage s*', the construction

sets c(s*\ e) to be the least x satisfying (5)-(7) with j in (7) chosen to be

j(s*\e) = j * . Then for all stages 5 greater than s*, the 7* th e-state is

the highest e-state and so c(s, e) = φ * 7 , e). Hence lim5 c(s, e) = ce exists.

By IΣ2, we conclude that ce exists for each e e Jl.

Let e be fixed. Define a Σz relation as follows:

θ(e) ^ (ad){[(v6 > d)(Vβ)(3ί > s)(c(t, b)) e WD] V

[(V6 > d)(Vβ)(3ί > s)(c(ί, 6) g Wί)]}.

In view of Lemma 7, (8) is equivalent to

θ(e)«—• (3d)[(V6 > d)(c6 e We) V (V6 > rf)(c6

LEMMA 8. ^(e) Zio/ds /or α/Z e.

Proof. Suppose that θ(e) is false for some e. By IΣ3, there is a least

e for which —\θ(e) holds. Denote this by e0. Since θ(e) holds for all e < e09

we see that for each such e, there is a least d witnessing the truth of

θ(e). By IΠ2 let d(e) be the least such d. The map e H * d(e) is then Σz.
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In fact d(e) is the d which satisfies [ •] in (8) and such that d — 1 fails

to satisfy [•••]. Now apply BΣZ to establish an upper bound α0 for the

d(e)'s, e < e0.

Thus for bt and b2 > α0, and e < e0, we have cbl e We if and only if

cδ2 e We. This implies that cbί and cδ2 lie in the same j th e-state for

some jr. Now choose bx < 62> both greater than α0, such that cbx g Weo and

cδ2 g W«,o. This implies that cδ2 has higher eo-state than cbl at all stages

s where c(s9 bt) = cδl, c(s, b2) = cδ2 and cb2 e Ws

eo. The process of maximiz-

ing eo-states then requires that for such s, j(s, e0) > j * 9 where j * is the

eo-state of cδ2 = c(s, b2). But this implies that for such s, c(s, b) > cδ2,

contradicting our assumption on s.

LEMMA 9. M is maximal.

Proof. First of all Jί\M is not ^-finite since this is the set {ce\ee Jί}.

Suppose that We\M is not ^-finite. By Lemma 3 this means that We\M

is not bounded. By Lemma 8, θ(e) holds and so (8) implies that for all

sufficiently large 6, we have cb e We. Thus Jί\{M U We) is bounded below

and hence ^-finite by Lemma 3.

COROLLARY 3. The existence of maximal sets can be proved in the

system P~ + IΣ3.

We do not know if IΣZ can be strengthened to IΣ2 in the above

corollary. It is not difficult to note that the maximal set construction

given in the proof of Theorem 2 can be carried out in IΣ2, and that

Lemma 7 is true (Shore and Slaman had observed that, with a little bit

more work, IΣX is sufficient to achieve these), although the maximality

of M does not follow as a consequence. Nevertheless, we have the

following partial result which indicates that the existence of a maximal

set is consistent with the assumption of IΣ2, even in the presence of

(hence -iZΣ8).

THEOREM 3. There is a model of P~ + —ιBΣz + IΣ2 with a maximal

set.

Proof. Let J be a model of full Peano arithmetic. By Kirby and

Paris [6] there is a Σ3 elementary substruture Jί^ of Jί which satisfies

P~ + —ιBΣz + IΣ2. This model is obtained by choosing a nonstandard

element a in Jί, and then closing off in Jί under Σ3 Skolem functions. Now
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perform the construction of a maximal set M in Jί, as described in the

proof of Theorem 2. The same 2\ algorithm (which is parameter free)

constructs an r.e. set MQ in Jί^ as well. Let c(s, b) denote the 6th

'marker' position at stage s (as defined in the proof of Theorem 2) in

the construction of M. For 6 and s in Jί0, the function c(s, 6) is Σx(Jί\)

and so gives the 6th marker position at stage s in the construction of

Mo. Then as mentioned earlier, Lemma 7 holds in Jί^ for MQ. The

maximality oί M in Jί implies that the Σ3 sentence θie) of (8) is true in

Jί for each e in JKQ. Being a Σz elementary substructure, this sentence

is true in Jί§ as well. But then by Lemma 7 this means that for each e

in Jit, there is d such that either cδ e We for all b > d, or cδ g We for all

h> d, Since Mo = ^0\{c& I 6 6 ^0}> we see that Mo is maximal.

Maximal sets and Σx indention

LEMMA 10. There is a model / of P~ + IΣQ + ~^BΣ1 with a Σ2

injection p from f into an infinite subset of Jί.

Proof. Let Jί be a nonstandard model of full Peano arithmetic. Let

60 be a nonstandard element of Jί. Let (3x)φ(e, x, z, y) be a universal Σx

predicate, where ψ is Σo. Let fQ = {0, 60}. Let /n+ι be the hull of f n

in ^# with respect to the first n + 1 Σx functions. This means that

/ , + 1 == {a\Jί N (3x)(3^e / n )(3e < n + l)φ(e, x, z, a)}.

We call z a parameter of a in ^ Let / — ^/n- Then ^ is countable

and is a Σλ elementary substructure of Jί (although it is not an initial

segment of Jί). Furthermore, Jί c β *

Let X be a nonempty 2Ό set defined over β by the ΣQ formula X(x).

Then in JK there is a 2Ό set defined by the same formula with a least

element a. Then

Jί N (3z)[X(z) and (Vy < ^) -iZ(y)]

holds. Being a 2Ί elementary substructure, f also satisfies the same

statement, so that there is a least element with property 1. Hence f is

a model of P~ + IΣ0.

We show that / |= - i β l Ί (cf. [6]). Let φ be as above. Then for

each o e / , the sentence ψ(α) saying

(9) (3β < bo)(lu)[φ(e, M(0), M(1), M(2)) and M(2)

= α and (Vz < u) -iφ(e, z(0), z(l\ 2(2))]
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is Σ1 in ^ , where u •-> ((^(0), u(ϊ), u(2)) is a Σo coding function (for triples).

Since ψ(α) is true in Jl, it is true in β as well. Thus for α < 60 + 1, there

exist e < 60

 a n d & to satisfy ψ(α). If f \= BΣU there would exist a uni-

form upper bound u* on the set of such w's. This in trun implies that

(Vα < 60 + l)ψ(α) is Σt(J), and hence Σx(Jί) and true in ^#. A pigeon

hole argument in Jt then says that there exist ut and w2 and an e such

that Λ|Γ(I/1(2)) and ψ(u2(2J) hold for the same e. This is not possible since

ux Φ u2 and yet both are least for the same e.

Define an approximation to the </Vs as follows: /QfS = {0, δ0} for all

5. For d > 0, αe / ^ if and only if there is an e < d and α £0 e f &-χti-.\

such that (3x < s)<p(e, x, 20, α) holds. Then (d, s) *-> J^)S is uniformly Σλ in

/". Furthermore, lims<J/n>β — ^ n is finite for each n e Jf. We now define

a Σ2 function from f into Jf. Let p\s, 0) = 0 and p'(s, 60) — 1 for all 5,

and initially set p'(0, a) = 0 for all α in ^/. Let s > 0 and <i > 0. Suppose

that every element in (/diS is defined under p'. Let α e / d + u . Choose

the least e < d + 1 such that

(10) (3M < s)[φ(e, ι/(0), M(1), M(2)) and u(2) - α]

holds, with u(ΐ)e/d,s (hence p'(s, u(ΐ)) is defined). Let e* be this least

e, and let pf{s,a) — (e^^^s, w*(l))), where u* is selected to be the least

u < s such that u(ΐ) is the least element in satisfying (10). Then pf is

a partial function. Now p(0) = limsp(s, 0) = 0 andp(60) = limsp
;(e, 60) = 1

by prescription. Suppose that every member of βn is defined under p

and belongs to Jί. Let a3 fn + \fn be defined by the least index ea

with a least parameter za in f n. Then p'(s, a) is defined, and is equal

to (ea,p(za)), for all sufficiently large s. Hence for each α e / , we have

lims p'(s, a) = p(ά) to be defined and belongs to Jί. Suppose that distinct

members of f n are mapped to distinct members of Jί by p. Let ax Φ a2

be in /"n + 1. Then either the least e (denoted eai and ea2 respectively)

used to define them (in <p(e, x, z, y)) are different or else eai = βα2 but

different least parameters zai and za2 are used respectively in the definition.

In either case we clearly have p(ax) = (eai9p(zai)) Φ (ea2,p(za2)) = p(a2).

Now suppose that there are two distinct elements of β which have

the same image under p. By the above argument, these two elements

come from f t and f n, with ί < n. Take the least i, denoted i0 with such

an n, and then choose the least n, denoted n0, for that ί0. Suppose that

a e /u ann b e /no are mapped to the same image under p. Then they
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must be defined by φ via the same index e, but with different least
parameters. These parameters (say za and zb), however, reside in / ί o_i
and fnQ.x respectively, and by the choice of ί0 and nQ, have different
images under p. Since p(ά) = (r,p(za)) and p(b) = (e,p(zb)), we see that
p(a) ψ p(b)f a contradiction. Hence p is an injection.

THEOREM 4. There is a model of P+ —\IΣι with a maximal set M.

Proof. Let / be the model constructed in Lemma 10. We 'invert'
the 2Ό function pr as follows:

(a if a < s and p'(s, a) — e,
g'(s, e) =

(undefined otherwise.

Then g' is Σo and for all e in the range of p, g(e) — lims g'(s, e) = p-^e).
We construct a maximal set M using an e-state method. However, since
we are working in a model of Σo, the exponential function is not avail-
able at our disposal, and so the e-states will be defined in a somewhat
roundabout way.

The requirements will be indexed by Jί via the map lims g
f(s, ) = g.

These requirements are:

Ra: /\(M U Wa) is /-finite or Wa\M is /-finite.

Requirement Ra is indexed by the number p(a) in JV, and Wa will have
higher priority than Wb if p(a) < p(b). As for many finite or infinite
injury argument in a recursion theory where the true priority of a
requirement is known only in the limit, we also have here that for all
sufficiently large s, the priority of i?^(jt,β, at stage s is e, whenever e is
in the image of p.

For each e, the e-state of an element x at stage s is defined to be
the Σo set

X(s, e, x) = {i\i < e and xe W'g,(Sti)} .

whenever g'(s, ί) is defined. We also say that x is in the e-state X(s, e, x).
A Σo set K is said to have a higher e-state than another ΣQ set if the
least number which is in one but not the other set belongs to K. Notice
that for each s and e, it is a 2Ό(/) procedure to decide if there exists
a highest e-state within s step of computation. Set M° = 0 and c(0, e) = 0
for all e. Suppose that c(s, i), for i < s, is defined and belongs to M\
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with the property that for all x satisfying c(s, i) < x < c(s, i + 1), x e M*.

Compute s + 1 steps to search for the set K of highest 0-state (if exists)

such that (*): if is a 0-state for an x > max{g'(s + 1,0), s(s, 0)} in Ms,

and less than or equal to s + 1. If such a K does not exist, let c(s + 1, 0)

= c(s, 0). Otherwise, let K(s + 1, 0) be such a set. Then the collection

of JC'S satisfying (*) with K there replaced by K(s + 1, 0) is ΣQ, and so

has a least element. This is set to be c(s + 1, 0).

Now assume that c(s + 1, e) is defined. Perform s + 1 steps of

computation to choose K(s + 1, e + 1) (if exists) to be the highest β + 1-

state for an x < s + 1 satisfying (5), and (6*), where (6*) says: x >

max{g'(s + 1, e + 1), c(s, e + 1)}. If K(s + 1, e + 1) does not exist, let

c(s + 1, e + 1) be the least element in Ms+1 greater than c(s + 1, e).

Otherwise, use LΣ0 to choose the least x satisfying (5) and (6*), and such

that K(s + 1, e + 1) is an e + 1-state for x. Set

Ms+ί = MSU {x\(3e <s+ ϊ)[c(s + 1, e)< x < c(s + 1, e + 1)]}.

Define M= USM
S.

LEMMA 11. For each e e Jf, lim s c(s, e) = ce exists.

Proof. Let e0 be in yΓ, and suppose that for e < e0, lims c(s, e) = ce

exists. Since {e | e < β0} is finite, there is a stage sQ such that for all

s > so>
 c(s> β) = ce for each e < e0. Choose S! > s0 such that for all e < eQ

in the image of p (hence in the domain of g), g\s, e) = g;(su e) whenever

s > sλ. Then for all s > su Wg,i8te) = Wp-He) if e is in the range of p, so

that at most Wo, Wp-m, •••, Wp-Heo) are the only r.e. sets considered (if

p'\e) is defined for each e, 0 < e < e0) for the maximizing of eo-states

after stage st. Thus in any case only finitely many r.e. sets are involved

in this process, and for s > su the maximal βo-state K(s, eQ) always exists.

It follows that the position of c( ,e0) may change at most finitely many

times after stage sί to maximize e-states. Thus lims c(s, e0) = ceQ exists.

Induction on Jf shows that cc exists for each natural number e in

the image of p.

The construction shows that M has order type ω and is uhbounded

in β (since ce > g(e) for each e in the range of p). Thus if Wp-He)\M

is not /'-finite, it is not bounded in f. The next result completes the

proof of Theorem 4.

LEMMA 12. M is maximal.
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Proof. By induction on Jί\ Let e0 be in the image of p. Suppose

that for all e < e0, Rp~He) is satisfied whenever p~ι(e) is defined. Choose

an x0 such that for all e < e0, either Wp-He)\M d x0 or </\(Wp-1(e) U Λf) c x0

(if p-\e) is defined). Let Wp-Ueo)\M be non-/-finite. If /\(Wp-1(βo) U M)

is not ^-finite (hence not bounded), there would exist natural numbers

i; > r > β0 in the range of p such that cυ e Wp-i(β0,, cr g Wp-Ueo), and cυ >

cr > x0. Choose Sj such that for all s > s19 we have g(e) = g'(s, e) = p~!(e)

and c(s, e) = ce for each e < u in the range of p. Then for all s > s1? cυ

is in a higher eo-state than cr is, and the principle of maximizing βo-states

demands that cr be discarded in preference for a number such as cυ

with higher eo-state. This however contradicts the choice of cr. Hence

f\{Wp-1{eo) U M) is ^/-finite. This proves the lemma.

COROLLARY 4. There is a model of P~ + —\BΣ2 with a maximal set.

Proof By Proposition 1 (c) and Theorem 4.

COROLLARY 5. The existence of a maximal set is strictly weaker than

IΣZ and does not imply, nor is it implies by, either IΣX or BΣ2.

Proof. Corollary 3 and Theorem 3 show that the sentence on the
existence of maximal sets is strictly weaker than IΣZ. Corollary 1 and
Corollary 4 show that BΣZ is neither sufficient nor necessary for the
existence of a maximal set in a model. Proposition 1 (c) applied to
Corollary 1 and Theorem 4 proves the corresponding result for IΣX.

The model / of Theorem 4 is an example of one which is reminiscent
of an admissible ordinal a whose Σx projectum is less than a (although
these are also dissimilar in many respects). Bearing this in mind, it is
not too difficult to see that if Jl is a model of some fragment of Peano
arithmetic (at least as strong as P~ + IΣ0) with a Δ2{Jί) map from Jί
onto Jί, then there is a maximal set in J/. (cf. Lerman and Simpson [7]
for the admissible case).

Note added in proof. T. Slaman has pointed out that the construc-
tion in Theorem 2 allows one to argue the stronger conclusion that
P~ + IΣ2 implies the existence of a maximal set. This follows from the
fact that in a model of P~ + IΣ2, the crucial lemma for infinite injury
constructions, that the truth path in a tree method constrution is the
left most path visited infinitely often, holds. In our situation, this trans-
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lates into the observation that if M is not maximal, then there is a least
e-state which receives unboundedly many new elements. A finite injury
argument shows that this is not possible.
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