M. Itô and M. Nishio Nagoya Math. J. Vol. 115 (1989), 1-22

POINCARÉ TYPE CONDITIONS OF THE REGULARITY FOR THE PARABOLIC OPERATOR OF ORDER α

MASAYUKI ITÔ AND MASAHARU NISHIO

§1. Introduction

Let $R^{n+1} = R^n \times R$ denote the (n + 1)-dimensional Euclidean space $(n \ge 1)$. For $X \in R^{n+1}$, we write X = (x, t) with $x \in R^n$ and $t \in R$. In this case, R^n is called the x-space of $R^{n+1} = R^n \times R$.

For an α with $0 < \alpha < 1$, we write

$$L^{\scriptscriptstyle(lpha)}=rac{\partial}{\partial t}+(-\varDelta)^{\scriptscriptstylelpha}\,,$$

where $(-\Delta)^{\alpha}$ is the fractional power of the Laplacian $-\Delta = -\sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2}$ on the x-space. In the case of $\alpha = 1/2$, $L^{(1/2)}$ is called the Poisson operator on \mathbb{R}^{n+1} .

First we shall examine some properties of the elementary solution $W^{(\alpha)}$ of $L^{(\alpha)}$. By using the reduced functions with respect to $W^{(\alpha)}$, we shall show the existence of swept-out measures with respect to $W^{(\alpha)}$. By using swept-out measures, we shall give the notion of the regularity for boundary points of an open set in \mathbb{R}^{n+1} .

The purpose of this paper is to give a Poincaré type condition for the regularity of boundary points of an open set in R^{n+1} .

Our main theorem is the following

THEOREM. Let Ω be an open set in \mathbb{R}^{n+1} and X a boundary point of Ω . If there exists a non-empty open set ω in the x-space whose α -tusk $T_X^{(\alpha)}(\omega)$ at X is in $C\Omega$, then X is regular for the Dirichlet problem of $L^{(\alpha)}$ on Ω .

For an $X = (x, t) \in \mathbb{R}^{n+1}$ and an open set ω in the x-space, the α -tusk $T_X^{(\alpha)}(\omega)$ of ω at X is defined by

$$T_X^{(lpha)}(\omega) = \{(x + py, t - p^{2lpha}); y \in \omega, \, 0$$

Received January 14, 1988.

with some $p_0 > 0$.

For the heat equation, E. G. Effros and J. L. Kazdan [3] discussed a similar Poincaré type condition of the regularity.

§2. Superparabolic functions and the Riesz decomposition

Let $C_{\kappa}^{\alpha}(R^{k})$ denote the usual topological vector space of all infinitely differentiable functions on R^{k} with compact support $(k \geq 1)$. For $0 < \alpha < 1$, we recall the fractional power $(-\Delta)^{\alpha}$ of $-\Delta$ on the x-space R^{n} ; $(-\Delta)^{\alpha}$ is the convolution operator on R^{n} defined by the distribution $-C_{n,\alpha}$ p.f. $|x|^{-n-2\alpha}$, where |x| denotes the distance between x and the origin 0 in R^{n} and $C_{n,\alpha} = -4^{\alpha}\pi^{-n/2}\Gamma((n+2\alpha)/2)/\Gamma(-\alpha)$, that is,

$$\operatorname{p.f.} |x|^{-n-2\alpha}(\phi) = \lim_{\delta \downarrow 0} \int_{|x| > \delta} (\phi(x) - \phi(0)) |x|^{-n-2\alpha} dx$$

for every $\phi \in C^{\infty}_{K}(\mathbb{R}^{n})$.

We denote by $(g_t)_{t\geq 0}$ the Gaussian semi-group on \mathbb{R}^n , namely $g_t(x) = (4\pi t)^{-n/2} \exp(-|x|^2/4t)$ (t>0), and $g_0 = \varepsilon$. Here we denote by ε the Dirac measure at the origin of \mathbb{R}^k for every $k\geq 1$. Put

$$W^{\scriptscriptstyle(lpha)}(X) = egin{cases} (2\pi)^{-n} \int_{R^n} \exp(-\ t |\xi|^{2lpha} + ix \!\cdot\! \xi) d\xi & t > 0 \ 0 & t \leq 0 \,, \end{cases}$$

where X = (x, t) and $x \cdot \xi$ denotes the inner product on \mathbb{R}^n . By means of the Fourier transform, we see easily that $W^{(\alpha)}$ (resp. $\tilde{W}^{(\alpha)}$) is the elementary solution of $L^{(\alpha)}$ (resp. $\tilde{L}^{(\alpha)}$), where $\tilde{W}^{(\alpha)}(x, t) = W^{(\alpha)}(x, -t)$ and $\tilde{L}^{(\alpha)} = -\partial/\partial t$ $+ (-\Delta)^{\alpha}$ (see for example [4]). Let $(\sigma_t^{\alpha})_{t\geq 0}$ be the one-sided stable semigroup of order α on \mathbb{R}^+ , where \mathbb{R}^+ denotes the semi-group of all nonnegative numbers. Then for any t > 0 and $x \in \mathbb{R}^n$,

(2.1)
$$W^{(\alpha)}(x,t) = \int_0^\infty g_s(x) d\sigma_t^{\alpha}(s) > 0$$

(see [1], p. 74), $\int_{\mathbb{R}^n} W^{(\alpha)}(x, t) dx = 1$ and $W^{(\alpha)}(x, t)$ is a decreasing function of |x|. Put

 $\psi_{\alpha}(t) = W^{(\alpha)}((1, 0, \cdots, 0), t);$

then we have easily

$$W^{(\alpha)}(x,t) = |x|^{-n} \psi_{\alpha}(t|x|^{-1\sigma})$$

LEMMA 2.1. $\psi_a(t) = O(t)$ as $t \downarrow 0$.

Proof. Let ν be the uniform measure on the unit sphere $\{x \in \mathbb{R}^n; |x| = 1\}$ with $\int d\nu = 1$. Denoting by $\hat{\nu}$ the Fourier transform of ν , we have

$$\psi_{a}(t) = (2\pi)^{-n/2} \int_{\mathbb{R}^{n}} \exp(-t|\xi|^{2a}) \hat{\nu}(\xi) d\xi, \quad \lim_{t \downarrow 0} \psi_{a}(t) = 0$$

and

$$egin{aligned} &rac{d}{dt}\psi_{a}(t)=(2\pi)^{-n/2}\int_{R^{n}}(-|\xi|^{2lpha}\exp(-t|\xi|^{2lpha})\hat{
u}(\xi))d\xi\ &=(2\pi)^{-n/2}\int_{0}^{\infty}\int_{R^{n}}(-|\xi|^{2lpha}\exp(-s|\xi|^{2})\hat{
u}(\xi))d\xi\,d\sigma_{t}^{lpha}(s) \end{aligned}$$

for t > 0 (see (2.1)). Let $\phi \in C_{\kappa}^{\infty}(\mathbb{R}^n)$ satisfying $0 \leq \phi \leq 1$, $\operatorname{supp}[\phi] \subset \{x \in \mathbb{R}^n; |x| < 1\}$ and $\phi = 1$ on a neighborhood of 0, where $\operatorname{supp}[\phi]$ denotes the support of ϕ . For any s > 0, we have

$$\begin{split} \int_{\mathbb{R}^n} |\xi|^{2a} \exp(-s|\xi|^2) \hat{\nu}(\xi) d\xi &= (2\pi)^{n/2} (-\varDelta)^{\alpha} (g_s * \nu)(0) \\ &= (2\pi)^{n/2} C_{n, \alpha-1} (|x|^{-n-2\alpha+2}) * (\varDelta g_s) * \nu(0) \\ &= (2\pi)^{n/2} C_{n, \alpha-1} (\phi(x)|x|^{-n-2\alpha+2}) * (\varDelta g_s) * \nu(0) \\ &+ (2\pi)^{n/2} C_{n, \alpha-1} (\varDelta((1-\phi(x))|x|^{-n-2\alpha+2})) * (g_s) * \nu(0) \end{split}$$

Since $0 \notin \operatorname{supp}[(\phi(x)|x|^{-n-2\alpha}) * \nu]$ and Δg_s vanishes uniformly outside any neighborhood of 0,

$$\lim_{s\downarrow 0} \left(\phi(x)|x|^{-n-2\alpha+2}\right) * (\varDelta g_s) * \nu(0) = 0.$$

Therefore the function $\int_{\mathbb{R}^n} |\xi|^{2\alpha} \exp(-s|\xi|^2) \hat{\nu}(\xi) d\xi$ of s is bounded on $(0, \infty)$, so that $(d/dt) \psi_{\alpha}(t)$ is bounded on $(0, \infty)$, which shows Lemma 2.1.

Let $(P_t^{(\alpha)})_{t\geq 0}$ be the convolution semi-group whose infinitesimal generator is equal to $-L^{(\alpha)}$ (see [7]¹); then

$$P_s^{(\alpha)} * u(x,t) = \int_{\mathbb{R}^n} W^{(\alpha)}(x-y,s)u(y,t-s)dy$$

for every $u \in C_{\kappa}(\mathbb{R}^{n+1})$, where $C_{\kappa}(\mathbb{R}^{n+1})$ denotes the usual topological vector space of all finite continuous functions on \mathbb{R}^{n+1} with compact support. For a non-negative continuous function $\phi(t)$ on $(0, \infty)$, we put

$$W^{(\alpha)}_{(\phi)}(x,t) := \phi(t) W^{(\alpha)}(x,t) .$$

¹⁾ Evidently $-L^{(\alpha)}$ is a generalized Laplacian, that is, for any $\phi \in C_K^{\infty}(\mathbb{R}^{n+1})$ with $\phi \ge 0$ and $\phi(0) = \max_{X \in \mathbb{R}^{n+1}} \phi(X), -(L^{(\alpha)}\phi)(0) \le 0.$

For a sequence $(\phi_m)_{m=1}^{\infty}$ in $C_K((0,\infty))$ with $\phi_m \ge 0$, $\int \phi_m dt = 1$ and with $\operatorname{supp}[\phi_m] \subset ((m+1)^{-1}, m^{-1})$, we shall often use the sequence $(W_{(\phi_m)}^{(\alpha)})_{m=1}^{\infty}$. We say that such a $(\phi_m)_{m=1}^{\infty}$ is an approximate sequence of the Dirac measure.

DEFINITION 1. A non-negative function u on \mathbb{R}^{n+1} is said to be superparabolic of order α if the following two conditions are satisfied:

- (1) u is lower semi-continuous on \mathbb{R}^{n+1} and $u < \infty$ a.e..
- (2) For any $s \ge 0$, $u \ge P_s^{(\alpha)} * u$ on \mathbb{R}^{n+1} .

We denote by S_{α} (resp. $S_{\alpha,c}$) the set of all superparabolic (resp. all continuous superparabolic) functions of order α , and by \tilde{S}_{α} (resp. $\tilde{S}_{\alpha,c}$) the set of all functions u with $\tilde{u} \in S_{\alpha}$ (resp. $\tilde{u} \in S_{\alpha,c}$), where $\tilde{u}(x, t) = u(x, -t)$.

For a non-negative Borel measure μ on \mathbb{R}^{n+1} , we denote by $W^{(\alpha)}\mu$ (resp. $\tilde{W}^{(\alpha)}\mu$) the function defined by the convolution $W^{(\alpha)}*\mu$ (resp. $\tilde{W}^{(\alpha)}*\mu$) and call it the $W^{(\alpha)}$ -potential (resp. the $\tilde{W}^{(\alpha)}$ -potential) of μ .

Remark 2.2. (1) $1 \in S_{\alpha, c}$ and for $u \in S_{\alpha}$, u is locally integrable.

(2) The condition (2) in Definition 1 is equivalent to $u \ge W_{(\phi)}^{(\alpha)} * u$ for every $\phi \in C_{\kappa}((0, \infty))$ with $\phi \ge 0$ and $\int \phi dt = 1$. (3) If $W^{(\alpha)}\mu < \infty$ (resp. $\tilde{W}^{(\alpha)}\mu < \infty$) a.e., then $W^{(\alpha)}\mu \in S_{\alpha}$ (resp.

(3) If $W^{(\alpha)}\mu < \infty$ (resp. $\tilde{W}^{(\alpha)}\mu < \infty$) a.e., then $W^{(\alpha)}\mu \in S_{\alpha}$ (resp. $\tilde{W}^{(\alpha)}\mu \in \tilde{S}_{\alpha}$).

We denote by M_{α} (resp. $M_{\alpha,c}$, \tilde{M}_{α} and $\tilde{M}_{\alpha,c}$) the set of all positive Borel measures μ with $W^{(\alpha)}\mu \in S_{\alpha}$ (resp. $W^{(\alpha)}\mu \in S_{\alpha,c}$, $\tilde{W}^{(\alpha)}\mu \in \tilde{S}_{\alpha}$ and $\tilde{W}^{(\alpha)}\mu \in \tilde{S}_{\alpha,c}$). For a Borel measure μ and a Borel set A, we denote by $\mu|_{A}$ the Borel measure defined by $\mu|_{A}(E) = \mu(A \cap E)$ for every Borel set E.

LEMMA 2.3. For $u \in S_{\alpha}$, we have

$$\int_a^b \int_{|x|\ge 1} u(x,t) |x|^{-n-2\alpha} \, dx \, dt < \infty$$

for every finite interval [a, b].

Proof. Let $\phi \in C_{\kappa}^{\infty}(\mathbb{R}^{n+1})$ with $0 \leq \phi \leq 1$, $\phi(X) = 1$ on $\{X = (x, t); |x| \leq 1/2, a \leq t \leq b\}$ and with $\phi(X) = 0$ on $\{X = (x, t); |x| \geq 3/4\}$. Since for any $X = (x, t) \in C \operatorname{supp}[\phi]$,

$$\tilde{L}^{(\alpha)}\phi(x,t)=-C_{n,\alpha}\int_{\mathbb{R}^n}\phi(y,t)|x-y|^{-n-2\alpha}\,dy\leq 0\,,$$

 $\operatorname{supp}[(\tilde{L}^{(\alpha)}\phi)^*] \subset \operatorname{supp}[\phi]$. On the other hand for any open ball B con-

taining supp $[\phi]$,

$$\int_{B} u(\tilde{L}^{(a)}\phi) dX = \lim_{s \downarrow 0} \int_{B} u \frac{\phi - \tilde{P}^{(a)}_{s} * \phi}{s} dX$$
$$= \lim_{s \downarrow 0} \left(\int_{\mathbb{R}^{n+1}} \frac{u - P^{(a)}_{s} * u}{s} \phi \, dX + \int_{CB} u \frac{\tilde{P}^{(a)}_{s} * \phi}{s} dX \right) \ge 0,$$

where $\tilde{P}_{s}^{(\alpha)}$ is defined by $\int f d\tilde{P}_{s}^{(\alpha)} = \int f(-X) dP_{s}^{(\alpha)}(X)$ for every $f \in C_{\kappa}(\mathbb{R}^{n+1})$. Hence

$$egin{aligned} &\infty > \int_{\mathbb{R}^{n+1}} u(ilde{L}^{(lpha)}\phi)^+ dX \geqq \int_{\mathbb{R}^{n+1}} u(L^{(lpha)}\phi)^- dX \ &\geqq \int_a^b \int_{|x| \ge 1} u(x,t) \Big(C_{n,\,lpha} \int_{\mathbb{R}^n} \phi(y,t) |x-y|^{-n-2lpha} dy \Big) dx \, dt \ &\geqq 2^{-n-2lpha} C_{n,\,lpha} \int_{|y| \le 1/2} dy \int_a^b \int_{|x| \ge 1} u(x,t) |x|^{-n-2lpha} \, dx \, dt \,, \end{aligned}$$

which shows Lemma 2.3.

LEMMA 2.4. (1) S_{α} and $S_{\alpha,c}$ are convex semi-lattices by $u \wedge v(X) = \min(u(X), v(X))$.

(2) Let $u \in S_{\alpha}$ and let $(\phi_m)_{m=1}^{\infty}$ be an approximate sequence of the Dirac measure. Then $W_{(\phi_m)}^{(\alpha)} * u \in S_{\alpha,c}$ and $W_{(\phi_m)}^{(\alpha)} * u \uparrow u$ with $m \uparrow \infty$.

(3) Let $u, v \in S_{\alpha}$ and ω be an open set in \mathbb{R}^{n+1} . If $u \leq v$ a.e. on ω , then $u \leq v$ on ω .

Proof. The assertion (1) is evident (see Definition 1). Since $W_{(\phi_m)}^{(\alpha)}$ is finite continuous, Lemmas 2.1, 2.3 give $W_{(\phi_m)}^{(\alpha)} * u \in S_{\alpha,c}$. Since $(W_{(\phi_m)}^{(\alpha)}(X) dX)_{m=1}^{\infty}$ converges vaguely to ε as $m \to \infty$, we have the second part of (2) (see Definition 1). The assertion (3) follows from (2).

LEMMA 2.5. For $u \in S_{\alpha}$, the family $\left(\frac{u - P_s^{(\alpha)} * u}{s} dX\right)_{s>0}$ of positive measures converges vaguely as $s \downarrow 0$, where dX denotes the Lebesgue measure on \mathbb{R}^{n+1} . Denote by μ its vague limit. Then

$$\int_{\mathbb{R}^{n+1}} u\,\tilde{L}^{(\alpha)}\phi\,dX = \int_{\mathbb{R}^{n+1}}\phi\,d\mu$$

for every $\phi \in C^{\infty}_{K}(\mathbb{R}^{n+1})$.

Proof. For any $\phi \in C^{\infty}_{\kappa}(\mathbb{R}^{n+1})$ with $\phi \geq 0$, we take r > 0 with $\operatorname{supp}[\phi] \subset \{X; |X| \leq r\}$. For $(x, t) \in \mathbb{R}^{n+1}$ with $|x| \geq 2r$ and any s > 0, Lemma 2.1 shows

$$\left|\frac{\phi(x,t) - \dot{P}_s^{(\alpha)} * \phi(x,t)}{s}\right| \leq \frac{1}{s} \int W^{(\alpha)}(x-y,s)\phi(y,t+s)dy$$
$$\leq \frac{1}{s} \int W^{(\alpha)}\left(\frac{x}{2},s\right)\phi(y,t+s)dy$$
$$\leq C|x|^{-n-2\alpha}$$

for some constant C. The Lebesgue theorem and Lemma 2.3 give

(2.2)
$$\int u \tilde{L}^{(\alpha)} \phi \, dX = \lim_{s \downarrow 0} \int \frac{u - P_s^{(\alpha)} * u}{s} \phi \, dX.$$

Hence $\left(\frac{(u - P_s^{(a)} * u}{s} dX\right)_{s>0}$ converges vaguely as $s \downarrow 0$ and we get $\int u \tilde{L}^{(a)} \phi \, dX = \int \phi \, d\mu$

for every $\phi \in C^{\infty}_{K}(\mathbb{R}^{n+1})$.

The above positive Borel measure μ is called the associated measure of u.

Remark 2.6. Let $\mu \in M_{\alpha}$. Then the associated measure of $W^{(\alpha)}\mu$ is equal to μ , because $\frac{W^{(\alpha)}\mu - P_s^{(\alpha)} * W^{(\alpha)}\mu}{s} = \frac{1}{s} \int_0^s P_t^{(\alpha)} * \mu dt^{2}$ (see (2.2)).

LEMMA 2.7. Let $u \in S_{\alpha}$, $(u_m)_{m=1}^{\infty}$ a sequence in S_{α} , μ the associated measure of u and μ_m the associated measure of $u_m (m \ge 1)$. If $\lim_{m \to \infty} u_m = u$ a.e. and if there exixts $v \in S_{\alpha}$ such that for any $m \ge 1$, $u_m \le v$, then $(\mu)_{m=1}^{\infty}$ converges vaguely to μ as $m \to \infty$.

Proof. For any $\phi \in C^{\infty}_{\kappa}(R^{n+1})$ with $\phi \ge 0$, Lemmas 2.3, 2.5 and $\int v |\tilde{L}^{(\alpha)}\phi| dX < \infty$ give

$$\int \phi \, d\mu = \int u \, ilde{L}^{\scriptscriptstyle (lpha)} \phi \, dX = \lim_{m o \infty} u_{\scriptscriptstyle m} \, ilde{L}^{\scriptscriptstyle (lpha)} \phi \, dX = \lim_{m o \infty} \int \phi \, d\mu_{\scriptscriptstyle m} \, ,$$

which shows Lemma 2.7.

LEMMA 2.8. Let u be a non-negative continuous function on \mathbb{R}^{n+1} . If $u = P_s^{(\alpha)} * u$ for every s > 0, u is constant.

For the proof, we use the following

LEMMA 2.9 (Choquet-Deny [2]). Let σ be a positive Borel measure on 2) $\int_0^s P_t^{(\alpha)} * \mu dt$ is a positive measure defined by $\int_0^s \int \phi d(P_t^{(\alpha)} * \mu) dt$ for every $\phi \in C_K(\mathbb{R}^{n+1})$. R^{k} $(k \ge 1)$ with $\int d\sigma = 1$ and h a non-negative Borel function on R^{k} . Assume that R^{k} is generated by $supp[\sigma]$ as a group and that $h * \sigma = h$ on R^{k} . Then h has the following representation:

$$h(x) = \int \exp(a \cdot x) d\nu(a)$$
 a.e.

with some positive Borel measure ν on R^k .

Proof of Lemma 2.8. Let ϕ be a non-negative continuous function on $(0, \infty)$ with compact support and with $\int \phi(t) dt = 1$. Then $u = P_s^{(\alpha)} * u$ give $u = W_{(\phi)}^{(\alpha)} * u$. Applying Lemma 2.9 with $\sigma = W_{(\phi)}^{(\alpha)}$, we see that there exists a positive measure ν on \mathbb{R}^{n+1} such that

$$u(x, t) = \int_{\mathbb{R}^{n+1}} \exp(a \cdot x + bt) d\nu(a, b) \text{ a.e.}$$

By Lemma 2.3, we have

$$\int_{R^{n+1}} \int_{|x|\geq 1} \exp(a \cdot x + bt) |x|^{-n-2\alpha} \, dx \, d\nu(a, b) < \infty ,$$

so that $\operatorname{supp}[\nu] \subset \{0\} \times R$. By using $u = P_s^{(\alpha)} * u$ for every s > 0 again, we conclude that u is constant.

PROPOSITION 2.10. Let $u \in S_{\alpha}$ and the associated measure of u. Then

$$u = W^{(\alpha)}\mu + c$$
 on R^{n+1}

with some constant $c \ge 0$. Furthermore if for any positive Borel measure ν on \mathbb{R}^{n+1} , $u - W^{(\alpha)}\nu = a$ a.e. with some constant a, then $\nu = \mu$ and a = c.

Proof. For a positive integer m, we put $\mu_m = \mu|_{B(0,m)}$, where B(0,m) denotes the open ball in \mathbb{R}^{n+1} with center 0 and with radius m. For $\phi \in C^{\infty}_{K}(\mathbb{R}^{n+1})$ with $\phi \geq 0$ and for any s > 0, Lemma 2.5 gives

$$\left(\int_0^s P_{\tau}^{(\alpha)} d\tau\right) * (u - W^{(\alpha)} \mu_m) * (\tilde{L}^{(\alpha)} \phi)^{\sim}(X) \geq 0,$$

so that

$$\int u\,\phi\,dX - \int u\cdot (ilde{P}_{s}^{\,(lpha)}*\phi)\,dX \geqq \int \left(\int_{0}^{s} ilde{P}_{ au}^{\,(lpha)}d au
ight)*\phi\,d\mu_{m}\,.$$

Hence

$$\int u\,\phi\,dX \ge \int W^{(\alpha)}\mu_m\,\phi\,dX.$$

Thus $u \ge W^{(\alpha)}\mu_m$ a.e. By Lemma 2.4, $u \ge W^{(\alpha)}\mu_m$. Letting $m \to \infty$, we obtain $u \ge W^{(\alpha)}\mu$. Put

$$h = u - W^{\scriptscriptstyle(lpha)} \mu$$
 on $\{X \in R^{n+1}; W^{\scriptscriptstyle(lpha)} \mu(X) < \infty\}$.

Then Remark 2.6 gives

$$\int (h - \tilde{P}_s^{(\alpha)} * h) \phi dX = \left(\int_0^s P_z^{(\alpha)} dz \right) * h * (\tilde{L}^{(\alpha)} \phi)^{\sim}(0) = 0$$

for every s > 0 and $\phi \in C_{\kappa}(\mathbb{R}^{n+1})$. Hence $h = P_s^{(\alpha)} * h$ a.e. For any $\psi \in C_{\kappa}((0, \infty))$ with $\psi \ge 0$ and with $\int \psi dt = 1$, $h = W_{(\psi)}^{(\alpha)} * h$ a.e. and $(W_{(\psi)}^{(\alpha)} * h) = P_s^{(\alpha)} * (W_{(\psi)}^{(\alpha)} * h)$ on \mathbb{R}^{n+1} , so that Lemma 2.8 gives $W_{(\psi)}^{(\alpha)} * h = c$ with some constant $c \ge 0$, that is, h = c a.e., which gives $u = W^{(\alpha)}\mu + c$ a.e. Lemma 2.4 leads to $u = W^{(\alpha)}\mu + c$, which shows the first equality. By Remark 2.6, we obtain the second part of this proposition. Thus Proposition 2.10 is shown.

COROLLARY 2.11. Let $u \in S_{\alpha}$ and $\mu \in M_{\alpha}$. If $u \leq W^{(\alpha)}\mu$, then u is the $W^{(\alpha)}$ -potential of the associated measure of u.

§ 3. Reduced functions and swept-out measures

For $u \in S_{\alpha, c}$ and a compact set K in \mathbb{R}^{n+1} , we put

$$Q_{K}^{\scriptscriptstyle(lpha)}u(X) = \inf\{v(X); v \in S_{lpha}, v \geqq u \; ext{ on } K\}$$

and

$$R_{K}^{(\alpha)}u(X) = Q_{K}^{(\alpha)}u(X),$$

where $Q_{K}^{(\alpha)}u$ is the lower regularization of $Q_{K}^{(\alpha)}u$, namely for a function von R^{n+1} , $\underline{v}(X) = \liminf_{Y \to X} v(Y)$. Furthermore, for $u \in S_{\alpha}$ and a set A in R^{n+1} , we put

 $R^{\scriptscriptstyle(lpha)}_{{\scriptscriptstyle A}}u(X)=\sup\{R^{\scriptscriptstyle(lpha)}_{{\scriptscriptstyle K}}v(X);\,v\in S_{\scriptscriptstyle lpha,\,c},\,v\leqq u\,\, ext{and}\,\,\,A\supset K\colon ext{compact set}\},$

$$\overline{Q}^{\scriptscriptstyle(lpha)}_{\scriptscriptstyle A} u(X) = \inf\{R^{\scriptscriptstyle(lpha)}_{\scriptscriptstyle \omega} u(X); A \subset \omega ext{: open set}\}$$

and

$$\overline{R}^{\scriptscriptstyle(lpha)}_{\scriptscriptstyle A} u(X) = \overline{Q}^{\scriptscriptstyle(lpha)}_{\scriptscriptstyle A} u(X) \, .$$

We say that $R_A^{(\alpha)}u$ and $\overline{R}_A^{(\alpha)}u$ are the reduced function of u to A and the outer reduced function of u to A with respect to $L^{(\alpha)}$, respectively.

For a set A in \mathbb{R}^{n+1} and for $u \in \tilde{S}_{\alpha}$, the reduced function $\tilde{\mathbb{R}}_{A}^{(\alpha)}u$ of u to A and the outer reduced function $\tilde{\mathbb{R}}_{A}^{(\alpha)}u$ of u to A with respect to $\tilde{L}^{(\alpha)}$

can be defined analogously. For all the results for $L^{(\alpha)}$ in this paragraph, the analogies for $\tilde{L}^{(\alpha)}$ hold.

Remark 3.1. Let ω be an open set in \mathbb{R}^{n+1} and $u \in S_{\alpha}$. Then we have: (1) ω is redusable, that is, $\overline{R}_{\omega}^{(\alpha)}u = \mathbb{R}_{\omega}^{(\alpha)}u$.

(2) $R_{\omega}^{(\alpha)}u = u$ on ω .

LEMMA 3.2 (G. Choquet, [6] p. 34). Let $(f_i)_{i \in I}$ be an arbitrary family of functions on \mathbb{R}^{n+1} . Then there exists a countable subset I_0 of I such that for any lower semi-continuous function $g, g \leq f_{I_0}$ implies $g \leq f_I$. Here for a subset J of I, we write $f_J(X) = \inf_{i \in J} f_i(X)$.

LEMMA 3.3. Let u be a positive and locally integrable Borel function on \mathbb{R}^{n+1} and assume $u \geq P_s^{(\alpha)} * u$ for s > 0. Then $u \in S_{\alpha}$, u = u a.e. and for any approximate sequence $(\phi_m)_{m=1}^{\infty}$ of the Dirac measure, $(W_{(\phi_m)}^{(\alpha)} * u(X))_{m=1}^{\infty}$ converges increasingly to u(X) with $m \to \infty$.

Proof. Take an approximate sequence $(\phi_m)_{m=1}^{\infty}$ of the Dirac measure. The semi-group property of $(P_s^{(\alpha)})_{s\geq 0}$ shows that $P_{s_1}^{(\alpha)} * u \geq P_{s_2}^{(\alpha)} * u$ on \mathbb{R}^{n+1} if $0 < s_1 < s_2$, so that $(W_{(\phi_m)}^{(\alpha)} * u(X))_{m=1}^{\infty}$ is increasing. For $X \in \mathbb{R}^{n+1}$, we choose a sequence $(X_k)_{k=1}^{\infty} \subset \mathbb{R}^{n+1}$ convergent to X satisfying $\underline{u}(X) = \lim_{k \to \infty} u(X_k)$. Then for any $m \geq 1$,

$$\underline{u}(X) \ge \liminf_{k \to \infty} (W^{(a)}_{(\phi_m)} * u(X_k)) \ge W^{(a)}_{(\phi_m)} * u(X) \ge W^{(a)}_{(\phi_m)} * \underline{u}(X) \,.$$

For any $\phi \in C_{\kappa}(\mathbb{R}^{n+1})$ with $\phi \geq 0$, the Fatou lemma gives

$$\int u \phi \, dX \leq \liminf_{m \to \infty} \int u \cdot (\tilde{W}_{(\phi_m)}^{(\alpha)} * \phi) \, dX = \liminf_{m \to \infty} \int (W_{(\phi_m)}^{(\alpha)} * u) \phi \, dX \leq \int \underline{u} \phi \, dX,$$

so that $u \leq \underline{u}$ a.e., that is, $u = \underline{u}$ a.e. Since $w^*-\lim_{m\to\infty} (W^{(\alpha)}_{(\phi_m)}dX) = \varepsilon^{3}$ and \underline{u} is lower semi-continuous, we have

$$\liminf_{m\to\infty} \left(W^{(\alpha)}_{(\phi_m)} * \underline{\mathfrak{u}}(X) \right) \ge \underline{\mathfrak{u}}(X) \text{ on } R^{n+1}.$$

Thus we have

$$\underline{\mathfrak{y}}(X) = \lim_{m \to \infty} \left(W_{(\phi_m)}^{(\alpha)} * \underline{\mathfrak{y}}(X) \right) = \lim_{m \to \infty} \left(W_{(\phi_m)}^{(\alpha)} * u(X) \right) \text{ on } R^{n+1}$$

This gives $\underline{u} \in S_{\alpha}$, which shows Lemma 3.3.

³⁾ For a sequence $(\mu_m)_{m=1}^{\infty}$ of Borel measures and a Borel measure μ , we write $\mu = w^*-\lim_{m\to\infty} \mu_m$ if $(\mu_m)_{m=1}^{\infty}$ converges vaguely to μ as $m\to\infty$.

Lemmas 3.2 and 3.3 give the following

Remark 3.4. For $u \in S_{\alpha}$ and any set A in \mathbb{R}^{n+1} , we have:

 $(1) \quad R^{(\alpha)}_{\scriptscriptstyle A} u = \lim_{m \to \infty} R^{(\alpha)}_{\scriptscriptstyle A}(W^{(\alpha)}_{(\phi_m)} * u), \ R^{(\alpha)}_{\scriptscriptstyle A} u \in S_{\scriptscriptstyle \alpha}, \ \overline{R}^{(\alpha)}_{\scriptscriptstyle A} u \in S_{\scriptscriptstyle \alpha},$

(2) $R_A^{(\alpha)}u$ is a $W^{(\alpha)}$ -potential if A is relatively compact (see Corollary 2.11) and $R_A^{(\alpha)}R_A^{(\alpha)}u = R_A^{(\alpha)}u$ if A is open (see Remark 3.1).

In general, a closed set F is not always reducible, that is, $\overline{R}_{F}^{(a)}u \neq R_{F}^{(a)}u$ for some $u \in S_{a}$. But we have the following

LEMMA 3.5. Let F be a closed set in \mathbb{R}^{n+1} and $u \in S_a$. If u is continuous on a neighborhood of F and if $\lim_{X \in F, X \to \infty} u(X) = 0$, then $\overline{\mathbb{R}}_F^{(a)} u = \mathbb{R}_F^{(a)} u$.

Proof. For any $\delta > 0$, we choose a compact set $K \subset F$ such that $u \leq \delta$ on $F \setminus K$. Then we have

$$R_{K}^{(\alpha)} u \leq R_{F}^{(\alpha)} u \leq \overline{R}_{F}^{(\alpha)} u \leq \overline{R}_{K}^{(\alpha)} u + \delta$$
 on R^{n+1} ,

so that it suffices to show that $\overline{R}_{K}^{(\alpha)}u = R_{K}^{(\alpha)}u$ for every compact set $K \subset F$. Let $v \in S_{\alpha}$ with $v \geq u$ on K. Then for any $\delta > 0$, continuity of u on some neighborhood of K shows that $v + \delta \geq \overline{R}_{K}^{(\alpha)}u$ on R^{n+1} . Letting $\delta \to 0$ and taking the lower regularizations, we obtain $R_{K}^{(\alpha)}u \geq \overline{R}_{K}^{(\alpha)}u$ on R^{n+1} , that is, $R_{K}^{(\alpha)}u \geq \overline{R}_{K}^{(\alpha)}u$, which shows Lemma 3.5.

For $\mu \in M_a$ (resp. $\mu \in \tilde{M}_a$) and for a set A in \mathbb{R}^{n+1} , Corollary 2.11 shows that $R_A^{(\alpha)}W^{(\alpha)}\mu$ (resp. $\tilde{R}_A^{(\alpha)}\tilde{W}^{(\alpha)}\mu$) is a $W^{(\alpha)}$ -potential (resp. $\tilde{W}^{(\alpha)}$ -potential). We denote by μ'_A (resp. μ'_A) the associated measure of $R_A^{(\alpha)}W^{(\alpha)}\mu$ (resp. $\tilde{R}_A^{(\alpha)}\tilde{W}^{(\alpha)}\mu$). We say that μ'_A (resp. μ'_A) is the inner $W^{(\alpha)}$ -swept-out (resp. $\tilde{W}^{(\alpha)}$ -swept-out) measure of μ to A.

PROPOSITION 3.6. Let A be a set in \mathbb{R}^{n+1} and $\mu \in M_{\alpha}$. Then

$$\int d\mu_{A}^{\prime} \leqq \int d\mu$$
 .

Proof. Let $(\omega_m)_{m=1}^{\infty}$ be an exhaustion of R^{n+1} . By Remark 3.1, there exists a positive measure ν_m with $\tilde{R}_{\omega_m}^{(\alpha)} 1 = \tilde{W}^{(\alpha)} \nu_m$. Then we have

$$\int d\mu'_{A} = \lim_{m o \infty} \int ilde{W}^{(lpha)}
u_{m} d\mu'_{A} = \lim_{m o \infty} \int W^{(lpha)} \mu'_{A} d
u_{m} \ \leq \lim_{m o \infty} \int W^{(lpha)} \mu \, d
u_{m} = \lim_{m o \infty} \int ilde{W}^{(lpha)}
u_{m} d\mu = \int d\mu \, d
u_{m}$$

PROPOSITION 3.7. Let $u \in S_{\alpha}$ and let A be a set in \mathbb{R}^{n+1} . Then the support of associated measure of $\mathbb{R}^{(\alpha)}_{A}u$ is in \overline{A} .

Proof. By the definition of $R_A^{(\alpha)}u$, Lemma 2.7 and by Remarks 3.5, 3.4, we may assume that A is compact and that u is a continuous $W^{(\alpha)}$ potential. Put $u = W^{(\alpha)}\mu$ with $\mu \in M_{\alpha}$ and let $(\omega_m)_{m=1}^{\infty}$ be a sequence of relatively compact open sets with $\overline{\omega_{m+1}} \subset \omega_m$ and with $\bigcap_{m=1}^{\infty} \omega_m = A$. Since $W^{(\alpha)}\mu'_{\omega_m} \leq W^{(\alpha)}\mu$ for all m and since Lemmas 3.3 and 3.5 give $\lim_{m\to\infty} (W^{(\alpha)}\mu'_{\omega_m})$ $= W^{(\alpha)}\mu'_A$ a.e., we obtain $\mu'_A = w^*-\lim_{m\to\infty}\mu'_{\omega_m}$ (see Lemma 2.7). Hence it suffices to show $\sup [\mu'_{\omega}] \subset \overline{\omega}$ for every open set ω in \mathbb{R}^{n+1} . Suppose that there exists a point $X_0 \in C\overline{\omega} \cap \operatorname{supp}[\mu'_{\omega}]$. Let $(V_m)_{m=1}^{\infty} be$ a sequence of open sets in \mathbb{R}^{n+1} with $\overline{V}_1 \subset C\overline{\omega}$, $\overline{V_{m+1}} \subset V_m$ and with $\bigcap_{m=1}^{\infty} V_m = \{X_0\}$. We put $\mu_m = \mu'_{\omega}|_{V_m}$. Then

$$W^{\scriptscriptstyle(lpha)}\mu_{\scriptscriptstyle \omega}' \geqq W^{\scriptscriptstyle(lpha)}(\mu_{\scriptscriptstyle \omega}'-\mu_{\scriptscriptstyle m})+ \ W^{\scriptscriptstyle(lpha)}(\mu_{\scriptscriptstyle m})_{\scriptscriptstyle \omega}' \qquad ext{on} \ \ R^{n+1}$$

and

$$W^{\scriptscriptstyle(lpha)}(\mu_{\omega}'-\mu_{\scriptscriptstyle m}) + \; W^{\scriptscriptstyle(lpha)}(\mu_{\scriptscriptstyle m})_{\omega}' = \; W^{\scriptscriptstyle(lpha)}\mu \qquad ext{on }\; \omega \; .$$

Hence

$$W^{(\alpha)}\mu_m = W^{(\alpha)}(\mu_m)'_\omega$$
 on R^{n+1}

so that

$$\lim_{m
ightarrow W^{(lpha)}} W^{(lpha)} \Big((\mu_m)'_{\omega} \Big/ \int d\mu_m \Big) = \lim_{m
ightarrow W^{(lpha)}} W^{(lpha)} \Big(\mu_m \Big/ \int d\mu_m \Big) = W^{(lpha)} arepsilon_{X_0} \qquad ext{on } C\{X_0\} \,,$$

which contradicts the unbounded ness of $W^{(\alpha)}\varepsilon_{X_0}$ on a neighborhood of X_0 . Thus Proposition 3.7 is shown.

PROPOSITION 3.8. Let $\mu \in M_{\alpha}$ and $\nu \in \tilde{M}_{\alpha}$. For a set A in \mathbb{R}^{n+1} , we have

$$\int W^{(\alpha)} \mu'_A \, d\nu = \int W^{(\alpha)} \mu \, d\nu''_A \quad and \quad W^{(\alpha)} \mu'_A(X) = \int W^{(\alpha)} \varepsilon'_{Y,A}(X) \, d\mu(Y) \,,$$

where we denote by ε_{Y} and by $\varepsilon'_{Y,A}$ the Dirac measure at Y and its inner $W^{(\alpha)}$ -swept-out measure to A. In particular if A is open,

$$\int W^{\scriptscriptstyle(lpha)} \mu_{\scriptscriptstyle A}^{\prime} \, d
u = \int W^{\scriptscriptstyle(lpha)} \mu_{\scriptscriptstyle A}^{\prime} \, d
u_{\scriptscriptstyle A}^{\prime\prime} \, .$$

Proof. First we assume that A is open. Let $(\omega_m)_{m=1}^{\infty}$ be an exhaustion of A. Then Proposition 3.7 and Remark 3.1 show that

$$egin{aligned} &\int W^{(lpha)} \mu'_{A} \, d
u &= \lim_{m o \infty} \int W^{(lpha)} \mu'_{\omega_{m}} \, d
u &= \lim_{m o \infty} \int ilde W^{(lpha)}
u'_{A} \, d
u'_{\omega_{m}} \, d
u'_{A} &= \int W^{(lpha)} \mu'_{\omega_{m}} \, d
u'_{A} &= \int W^{(lpha)} \mu'_{A} \, d
u'_{A} \, . \end{aligned}$$

Let A be an ar bitrary set. By the definition of inner $W^{(\alpha)}$ -swept-out

measures and Lemma 3.3, we may assume that A is compact, $\mu \in M_{\alpha,c}$ and that $\nu \in \tilde{M}_{\alpha,c}$. Take a sequence $(\Omega_m)_{m=1}^{\infty}$ of relatively compact open sets with $\overline{\Omega_{m+1}} \subset \Omega_m$ and with $\bigcap_{m=1}^{\infty} \Omega_m = A$. By Lemma 3.5 and the above result, we have

$$\int W^{(lpha)} \mu_A' \, d
u = \lim_{m o\infty} \int W^{(lpha)} \mu_{{\mathscr Q}_m}' \, d
u = \lim_{m o\infty} \int ilde W^{(lpha)}
u_{{\mathscr Q}_m}'' \, d\mu = \int ilde W^{(lpha)}
u_A'' \, d\mu \, .$$

In particular, we have $W^{(\alpha)}\varepsilon'_{Y,A}(X) = \tilde{W}^{(\alpha)}\varepsilon''_{X,A}(Y)$. Hence

$$W^{(a)}\mu_{\scriptscriptstyle A}'(X) = \int W^{(a)}\mu_{\scriptscriptstyle A}'\,darepsilon_{\scriptscriptstyle X} = \int ilde W^{(a)}arepsilon_{\scriptscriptstyle X,\,A}'(Y)d\mu(Y) = \int W^{(a)}arepsilon_{\scriptscriptstyle Y,\,A}'(X)d\mu(Y)\,.$$

This completes the proof.

By Remark 3.4, (2) and Proposition 3.8, we have the following

COROLLARY 3.9. Let ω be an open set in \mathbb{R}^{n+1} . Then the mapping $M_{\alpha} \ni \mu \rightarrow \mu'_{\omega}$ is positively linear, and for any $\mu \in M_{\alpha}$ and any positive measure ν with $\nu \leq \mu'_{\omega}$, we have $\nu'_{\omega} = \nu$.

Proof. It follows immediately from Proposition 3.8 that the mapping $\mu \rightarrow \mu'_{\omega}$ is positively linear. By Remark 3.4, (2) we have $(\mu'_{\omega})'_{\omega} = \mu'_{\omega}$, so that by Proposition 3.8, for any $X \in \mathbb{R}^{n+1}$,

$$\int \left(W^{\scriptscriptstyle(lpha)} arepsilon_{_{Y}(arepsilon)} W^{\scriptscriptstyle(lpha)} arepsilon_{_{Y},\,arepsilon} (X)
ight) d\mu_{_{arepsilon}}'(Y) = 0 \, .$$

Since $W^{(\alpha)}\varepsilon_Y \ge W^{(\alpha)}\varepsilon'_{Y,\omega}$, we have $W^{(\alpha)}\varepsilon_Y = W^{(\alpha)}\varepsilon'_{Y,\omega}\mu'_{\omega}$ -a.e. as functions of Y, so that

$$\int (W^{(\alpha)}\varepsilon_{Y}(X) - W^{(\alpha)}\varepsilon_{Y,\omega}'(X))d\nu(Y) = 0,$$

that is,

$$W^{(\alpha)}\nu = W^{(\alpha)}\nu'_{\omega},$$

which gives $\nu = \nu'_{\omega}$.

PROPOSITION 3.10. Let $\mu \in M_{\alpha}$. Then we have:

(1) For two sets A_1 and A_2 in \mathbb{R}^{n+1} with $A_1 \subset A_2$, we have $\mu'_{A_1} \geq \mu'_{A_2}$ on $\operatorname{Int}(A_1)$, where $\operatorname{Int}(A_1)$ denotes the interior of A_1 .

(2) For a set A in
$$\mathbb{R}^{n+1}$$
 with $\int_{\overline{CA}} d\mu = 0$, we have $\mu'_A = \mu$.

Proof. (1): Choose $\phi \in C^{\infty}_{\kappa}(\mathbb{R}^{n+1})$ with $\phi \geq 0$ and $\operatorname{supp}[\phi] \subset \operatorname{Int}(A_1)$. Let λ be the real Borel measure such that $\phi = \tilde{W}^{(\alpha)}\lambda$. Then we have

$$egin{aligned} &\int ilde W^{(lpha)}\lambda\,d\mu_{A_2}' &= \int W^{(lpha)}\mu_{A_2}'\,d\lambda^+ \,-\,\int W^{(lpha)}\mu_{A_2}'\,d\lambda^- \ &\leq \int W^{(lpha)}\mu_{A_1}'\,d\lambda^+ \,-\,\int W^{(lpha)}\mu_{A_1}'\,d\lambda^- \ &= \int ilde W^{(lpha)}\lambda\,d\mu_{A_1}'\,, \end{aligned}$$

because $\operatorname{supp}[\lambda^+] \subset \operatorname{Int}(A_1)$ and $W^{\scriptscriptstyle(\alpha)}\mu'_{A_1} = W^{\scriptscriptstyle(\alpha)}\mu'_{A_2}$ on $\operatorname{Int}(A_1)$.

By using Proposition 3.8 and Remark 3.1, (2), we show (2) in the same manner as in (1). This completes the proof.

PROPOSITION 3.11 (the domination principle). Let Ω be an open set in \mathbb{R}^{n+1} , $u \in S_{\alpha}$ and $\mu \in M_{\alpha}$ with $\operatorname{supp}[\mu] \subset \Omega$. Put

$$E = \left\{ X \in \mathcal{Q} \, ; \, u(X) - R^{\scriptscriptstyle(\alpha)}_{\scriptscriptstyle C\mathcal{Q}} u(X) \geqq W^{\scriptscriptstyle(\alpha)} \mu(X) - W^{\scriptscriptstyle(\alpha)} \mu'_{\scriptscriptstyle C\mathcal{Q}}(X) \right\}.$$

If $\mu'_E = \mu$, then $u - R^{(\alpha)}_{CQ} u \ge W^{(\alpha)} \mu - W^{(\alpha)} \mu'_{CQ}$ on R^{n+1} .

Proof. Since μ is a sum of positive measures with compact support, we may assume that $\text{supp}[\mu]$ is compact. Let ω be an open set with $\omega \supset C\Omega$. Then

$$u + R^{\scriptscriptstyle(lpha)}_{\scriptscriptstyle \omega} W^{\scriptscriptstyle(lpha)} \mu \geqq R^{\scriptscriptstyle(lpha)}_{\scriptscriptstyle C\Omega} u + W^{\scriptscriptstyle(lpha)} \mu \, \, ext{on} \, \, E \cup \omega \, .$$

Let ν be the associated measure of $R_{CQ}^{(\alpha)}u$ and put $R_{CQ}^{(\alpha)}u = W^{(\alpha)}\nu + c$ with $c \ge 0$, Then $\operatorname{supp}[\nu] \subset CQ$, so that

$$R^{\scriptscriptstyle(lpha)}_{\scriptscriptstyle CG} u + \, W^{\scriptscriptstyle(lpha)} \mu = c + R^{\scriptscriptstyle(lpha)}_{\scriptscriptstyle E\,\cup\,\omega}(W^{\scriptscriptstyle(lpha)}
u + \, W^{\scriptscriptstyle(lpha)} \mu) \leq u + R^{\scriptscriptstyle(lpha)}_{\scriptscriptstyle \omega} W^{\scriptscriptstyle(lpha)} \mu \, ext{ on } \, R^{n+1} \, ,$$

because $u - c + R_{\omega}^{(\alpha)} W^{(\alpha)} \mu \geq 0$. Since $W^{(\alpha)} \mu$ is continuous in a certain neighborhood of $C\Omega$ and vanishes at the infinity, Lemma 3.5 shows

$$u-R^{\scriptscriptstyle(lpha)}_{\scriptscriptstyle CarDelta}u\geq W^{\scriptscriptstyle(lpha)}\mu-W^{\scriptscriptstyle(lpha)}\mu_{\scriptscriptstyle CarDelta}$$
 ,

which shows Proposition 3.11.

PROPOSITION 3.12. Let ω_1 and ω_1 be open sets in \mathbb{R}^{n+1} with $\overline{\omega_1} \cap \overline{\omega_2} = \phi$ and $\mu \in M_a$. Then $\mu'_{\omega_1} = \mu'_{\omega_1 \cup \omega_2}|_{\overline{\omega_1}} + (\mu'_{\omega_1 \cup \omega_2}|_{\overline{\omega_2}})'_{\omega_1}$.

Proof. Let $(\omega_{1,m})_{m=1}^{\infty}$ be an exhaustion of ω_1 and put $\mu_1 = \mu'_{\omega_1 \cup \omega_2}|_{\overline{\omega_1}}$ and $\mu'_m = (\mu_1)'_{\omega_1, m \cup \omega_2}$. Since $\operatorname{supp}[\mu'_m|_{\omega_1}] \subset \overline{\omega_{1,m}} \subset \omega_1$, by Proposition 3.10, (2), $\mu'_m|_{\omega_1} = (\mu'_m|_{\omega_1})'_{\omega_1}$, so that

$$W^{(lpha)}(\mu'_m|_{\omega_1}) = R^{(lpha)}_{\omega_1} W^{(lpha)}(\mu'_m|_{\omega_1}) \leqq R^{(lpha)}_{\omega_1} W^{(lpha)} \mu_1 = W^{(lpha)}(\mu_1)'_{\omega_1}.$$

On the other hand, by Corollary 3.9, we have $(\mu_1)'_{\omega_1\cup\omega_2} = \mu_1$, so that

 $(\mu_1)'_{\omega_1\cup\omega_2}|_{\overline{\omega_1}} = \mu_1.$ Since w*-lim $_{m\to\infty}\mu'_m = (\mu_1)'_{\omega_1\cup\omega_2}$ by Lemma 2.7, it follows that $W^{(\alpha)}\mu_1 = W^{(\alpha)}((\mu_1)'_{\omega_1\cup\omega_2}|_{\overline{\omega_1}}) \leq \liminf_{m\to\infty} W^{(\alpha)}(\mu'_m|_{\omega_1}) \leq W^{(\alpha)}(\mu_1)'_{\omega_1}.$

Thus, $\mu_1 = (\mu_1)'_{\omega_1}$, and hence $\mu'_{\omega_1} = (\mu'_{\omega_1 \cup \omega_2})'_{\omega_1} = \mu_1 + (\mu'_{\omega_1 \cup \omega_2}|'_{\omega_2})'_{\omega_1}$, which shows Proposition 3.12.

COROLLARY 3.13. Let Ω and ω be open sets in \mathbb{R}^{n+1} and $\mu \in M_{\alpha}$. Then $(\mu'_{\alpha}|_{\omega})'_{\Omega \cap \omega} = \mu'_{\Omega}|_{\omega}$.

Proof. By Proposition 3.8, we may assume that $\operatorname{supp}[\mu]$ is compact. Let $(\omega_m)_{m=1}^{\infty}$ be an exhaustion of ω . By Proposition 3.6, we may assume that $((\mu'_{a}|_{\omega})'_{a\cap(\varpi_m\cup C\overline{\omega_{m+1}})})_{m=1}^{\infty}$ converges vaguely to some measure ν . By the definition of inner $W^{(\alpha)}$ -swept-out measures, we have $\nu = (\mu'_{a}|_{\omega})'_{a} = \mu'_{a}|_{\omega}$ (see Corollary 3.9). Proposition 3.12 gives

$$(\mu'_{\mathfrak{Q}}|_{\omega})'_{\mathfrak{Q}\cap(\omega_m\cup C\overline{\omega_m+1})} \leq (\mu'_{\mathfrak{Q}}|_{\omega})'_{\mathfrak{Q}\cap\omega_m} \quad \text{on } \omega_m.$$

Letting $m \to \infty$, we have

$$\mu'_{\mathfrak{Q}}|_{\omega} \leq (\mu'_{\mathfrak{Q}}|_{\omega})'_{\mathfrak{Q}\cap\omega} \quad \text{on } \omega.$$

Hence Proposition 3.6 shows $\mu'_{\mathcal{D}}|_{\omega} = (\mu'_{\mathcal{D}}|_{\omega})'_{\mathcal{D}\cap\omega}$.

PROPOSITION 3.14. Let Ω be an open set in \mathbb{R}^{n+1} , T the projection of $C\overline{\Omega}$ to the t-axis and $X_0 = (x_0, t_0) \in \mathbb{R}^{n+1}$. Let M be the connected component of $T \cup \{t_0\}$ satisfying $t_0 \in M$ and put $t_1 = \sup M$. If $\varepsilon'_{X_0, \Omega} \neq \varepsilon_{X_0}$, then

$$\mathrm{supp}\left[arepsilon_{X_{0},\ arepsilon}
ight]\supset\overline{arOmega}\,\cap\,\left(R^{n} imes\left(t_{\scriptscriptstyle 0},\,t_{\scriptscriptstyle 1}
ight)
ight).$$

For the proof, we use the following

LEMMA 3.15. Let $\mu, \nu \in M_{\alpha}$ and $X_0 = (x_0, t_0) \in R^{n+1} \setminus \operatorname{supp}[\nu]$. Suppose that $W^{(\alpha)}\mu \geq W^{(\alpha)}\nu$ on R^{n+1} and that $\operatorname{supp}[\mu] \subset \{(x, t) \in R^{n+1}; t < t_0\}$. If $W^{(\alpha)}\mu(X_0) = W^{(\alpha)}\nu(X_0)$, then $\operatorname{supp}[\nu] \subset \{(x, t) \in R^{n+1}; t \leq t_0\}$ and $W^{(\alpha)}\mu = W^{(\alpha)}\nu$ on $\{(x, t) \in R^{n+1}; t > t_0\}$.

Proof. Since $W^{(\alpha)}(\mu - \nu) \ge 0$, $W^{(\alpha)}(\mu - \nu)(X_0) = 0$ and since $W^{(\alpha)}(\mu - \nu)$ is of class C^{∞} in a neighborhood of X_0 ,

$$W^{(\alpha)}(\mu - \nu)(X_0) = \frac{\partial}{\partial t} W^{(\alpha)}(\mu - \nu)(X_0) = 0$$

and

$$0 = L^{(\alpha)} W^{(\alpha)}(\mu - \nu)(X_0) = - C_{n,\alpha} \int_{\mathbb{R}^n} W^{(\alpha)}(\mu - \nu)(x_0 - y, t_0) |y|^{-n-2\alpha} dy$$

Then we have $W^{(\alpha)}\mu(x, t_0) = W^{(\alpha)}\nu(x, t_0) dx$ -a.e., so that for any s > 0 and for any $x \in \mathbb{R}^n$, we have

$$egin{aligned} W^{(lpha)} \mu(x,\,t_{0}\,+\,s) &= \int W^{(lpha)}(x\,-\,y,\,s) W^{(lpha)} \mu(y,\,t_{0}) \, dy \ &= \int W^{(lpha)}(x\,-\,y,\,s) W^{(lpha)}
u(y,\,t_{0}) \, dy \ &\leq W^{(lpha)}
u(x,\,t_{0}\,+\,s) \,. \end{aligned}$$

Therefore $W^{(\alpha)}\mu = W^{(\alpha)}\nu$ on $\{(x, t) \in \mathbb{R}^{n+1}; t > t_0\}$ and $\nu = 0$ on $\{(x, t) \in \mathbb{R}^{n+1}; t > t_0\}$, which shows Lemma 3.15.

Proof of Proposition 3.14. Put

$$s = \sup\{t \geqq t_{\scriptscriptstyle 0}; \operatorname{supp}[arepsilon'_{X_{\scriptscriptstyle 0},\, arepsilon}] \cap (R^n imes \{t\})
eq \phi\}$$
 .

Then Lemma 3.15 yields $s > t_0$ and

$$\mathrm{supp} \left[arepsilon_{X_0,\ arepsilon}
ight] = \overline{arepsilon \, \cap \, (R^n imes (t_0, \overline{s}))} \, .$$

Suppose that $s < t_1$ and $\Omega \cap (R^n \times (s, \infty)) \neq \phi$; we can take a nonempty open set ω in R^n and a positive number $\delta > 0$ such that $t_0 < s - \delta$ and

$$D_\delta = \omega imes (s-\delta,s) \subset C \overline{arDeta}$$
 .

Put $\nu_{\delta} = \varepsilon'_{X_0, \mathcal{Q} \cup D_{\delta}|_{\overline{D_{\delta}}}}$. If $\nu_{\delta} = 0$, then Proposition 3.12 gives $\varepsilon'_{X_0, \mathcal{Q}} = \varepsilon'_{X_0, \mathcal{Q} \cup D_{\delta}}$, so that Lemma 3.15 shows that $\varepsilon'_{X_0, \mathcal{Q}}$ vanishes on $\mathbb{R}^n \times (s - \delta, \infty)$, which is a contradiction. Hence $\nu_{\delta} \neq 0$ for every sufficiently small $\delta > 0$. By Lemma 3.15, there exists s' > s such that

$$W^{\scriptscriptstyle(lpha)}
u_{\delta}=\,W^{\scriptscriptstyle(lpha)}
u_{\delta,\,arsigma}^{\prime}\qquad ext{on}\;\;R^n imes\left[s^{\prime},\,\infty
ight).$$

Since Proposition 3.12 shows $\sup [\nu_{\delta} + \nu'_{\delta, \rho}] \subset \mathbb{R}^n \times (-\infty, s]$, for any s < t < s', we have

$$0 = W^{(\alpha)}\nu_{\delta}(0, s') - W^{(\alpha)}\nu'_{\delta, g}(0, s')$$

= $\int_{\mathbb{R}^n} (W^{(\alpha)}\nu_{\delta}(x, t) - W^{(\alpha)}\nu'_{\delta, g}(x, t))W^{(\alpha)}(-x, s'-t)dx$.

Since $W^{(\alpha)}\nu_{\delta} \ge W^{(\alpha)}\nu'_{\delta, \mathcal{Q}}$ on \mathbb{R}^{n+1} , Lemma 2.4, (3) shows

$$W^{(lpha)}
u_{\delta} \geqq W^{(lpha)}
u_{\delta,\,arrho}' \qquad ext{on } R^n imes (s,\,\infty)\,.$$

We may assume that $\left(\nu_{\delta} / \int d\nu_{\delta}\right)_{\delta>0}$ and $\left(\nu'_{\delta, 0} / \int d\nu_{\delta}\right)_{\delta>0}$ converges vaguely as $\delta \to 0$. Put

MASAYUKI ITÔ AND MASAHARU NISHIO

$$u = \operatorname{w*-lim}_{\delta \downarrow 0} \left(
u_{\delta} \Big/ \int d
u_{\delta}
ight) \quad ext{and} \quad
u' = \operatorname{w*-lim}_{\delta \downarrow 0} \left(
u_{\delta, \mathcal{Q}} \Big/ \int d
u_{\delta}
ight);$$

then Proposition 3.12 gives $\operatorname{supp}[\nu'] \subset \overline{\Omega} \cap (\mathbb{R}^n \times [t_0, s]), W^{(\alpha)}\nu \geq W^{(\alpha)}\nu'$ on \mathbb{R}^{n+1} and $W^{(\alpha)}\nu = W^{(\alpha)}\nu'$ on $\mathbb{R}^n \times (s, \infty)$. Since $\operatorname{supp}[\nu] \subset \mathbb{R}^n \times \{s\}, W^{(\alpha)}\nu = 0$ on $\mathbb{R}^n \times (-\infty, s]$. Hence $W^{(\alpha)}\nu = W^{(\alpha)}\nu'$ on \mathbb{R}^{n+1} , which implies $\nu = \nu'$. But this contradicts $\operatorname{supp}[\nu] \subset C\overline{\Omega}$ and $\operatorname{supp}[\nu'] \subset \overline{\Omega}$. Thus Proposition 3.14 is shown.

§ 4. $L^{(\alpha)}$ -regular points and a Poincaré type condition

As in the classical potential theory, we define $L^{(\alpha)}$ -regular points for Dirichlet problem.

DEFINITION 2. Let Ω be an open set in \mathbb{R}^{n+1} and $X_0 \in \partial \Omega$. Then X_0 is said to be regular for the Dirichlet problem of $L^{(\alpha)}$ on Ω if

$$\underset{X\in \mathcal{Q}, X\to X_0}{\text{w*-lim}}\varepsilon_{X, C\mathcal{Q}}''=\varepsilon_{X_0}.$$

PROPOSITION 4.1. Let Ω and Ω' be open sets in \mathbb{R}^{n+1} and $X_0 \in \partial \Omega \cap \partial \Omega'$. If there exists a neighborhood V of X_0 such that $\Omega \cap V = \Omega' \cap V$ and if X_0 is regular for the Dirichlet problem of $L^{(\alpha)}$ on Ω' , then X_0 is so on Ω .

Proof. Let U be an open neighborhood of X_0 with $\overline{U} \subset V$. Then w*-lim_{$X \in \Omega, X \to X_0$} $\varepsilon_{X, C\Omega'}^{\prime\prime}|_U = \varepsilon_{X_0}$. For any $X \in \Omega$, Lemma 3.5 and the domination principle of $\widetilde{W}^{(\alpha)}$ (Proposition 3.11) show

$$ilde{W}^{(a)}(arepsilon_{X,\ CB'}|_U) \leqq ilde{ ilde{R}}^{(a)}_{CB} ilde{W}^{(a)} arepsilon_X = ilde{R}^{(a)}_{CB} ilde{W}^{(a)} arepsilon_X = ilde{W}^{(a)}(arepsilon_{X,\ CB}) \leqq ilde{W}^{(a)} arepsilon_X \,.$$

Let $(X_m)_{m=1}^{\infty}$ be an arbitrary sequence in Ω with $\lim_{m\to\infty} X_m = X_0$. Since $\int d\varepsilon'_{X_m, C\Omega} \leq 1$, it suffices to show w*- $\lim_{m\to\infty} \varepsilon''_{X_m, C\Omega} = \varepsilon_{X_0}$ in the case that $(\varepsilon''_{X_m, C\Omega})_{m=1}^{\infty}$ converges vaguely. Put $\mu =$ w*- $\lim_{m\to\infty} \varepsilon''_{X_m, C\Omega}$. Since for any non-negative $f \in C_{\kappa}(\mathbb{R}^{n+1})$, $W^{(\alpha)}(fdX)$ is finite continuous and vanishes at the infinity,

$$\int \tilde{W}^{(\alpha)} \varepsilon_{X_0} f \, dX = \lim_{m \to \infty} \int \tilde{W}^{(\alpha)} (\varepsilon_{X_m, C\Omega'}^{\prime\prime}|_U) f \, dX$$
$$\leq \lim_{m \to \infty} \int \tilde{W}^{(\alpha)} (\varepsilon_{X_m, C\Omega}^{\prime\prime}) f \, dX = \int \tilde{W}^{(\alpha)} \mu \cdot f \, dX$$
$$\leq \int \tilde{W}^{(\alpha)} \varepsilon_{X_0} f \, dX \, .$$

Therefore $\tilde{W}^{(\alpha)}\varepsilon_{X_0} = \tilde{W}^{(\alpha)}\mu$ a.e., so that $\tilde{W}^{(\alpha)}\varepsilon_{X_0} = \tilde{W}^{(\alpha)}\mu$, which gives $\mu = \varepsilon_{X_0}$. This shows that X_0 is regular for the Dirichlet problem of $L^{(\alpha)}$ on Ω . PROPOSITION 4.2. Let Ω be an open set in \mathbb{R}^{n+1} and $X_0 = (x_0, t_0) \in \partial \Omega$ such that for any neighborhood V of X_0 ,

$$V \cap \, arOmega \, \cap \, \{(x,\,t); \, t < t_{\scriptscriptstyle 0}\}
eq \phi \, .$$

Then the following four conditions are equivalent:

(1) X_0 is regular for the Dirichlet problem of $L^{(\alpha)}$ on Ω .

(2) For any $u \in S_{\alpha}$, $R^{\scriptscriptstyle(\alpha)}_{\scriptscriptstyle C\mathcal{Q}} u(X_{\scriptscriptstyle 0}) = u(X_{\scriptscriptstyle 0}).$

Proof. Proposition 3.8 shows for any $\mu \in M_a$, $R_{Ca}^{(\alpha)}W^{(\alpha)}\mu(X_0) = \int W^{(\alpha)}\mu d\varepsilon_{X_0,Ca}^{\prime\prime}$, so that (2) \leftrightarrow (4) holds.

(1) \rightarrow (3): Choose $f \in C_{\kappa}(\mathbb{R}^{n+1})$ such that $f \geq 0$ and that f > 0 on a neighborhood of X_0 . Then $W^{(\alpha)}(fdX)$ is a required function. In fact, since $W^{(\alpha)}(fdX)$ is finite continuous and vanishes at the infinity, we have

$$\lim_{Y \in \mathcal{Q}, Y \to X_0} \int W^{(\alpha)}(fdX) d\varepsilon_{Y, C\mathcal{Q}}^{\prime\prime} = W^{(\alpha)}(fdX)(X_0) ,$$

so that Proposition 3.8 gives

$$\lim_{Y \in \mathscr{Q}, Y \to X_0} R^{(\alpha)}_{CD} W^{(\alpha)}(fdX)(Y) = W^{(\alpha)}(fdX)(X_0) \, .$$

Since

$$Q^{\scriptscriptstyle(lpha)}_{\scriptscriptstyle CarOmega}W^{\scriptscriptstyle(lpha)}(fdX)(Y)=W^{\scriptscriptstyle(lpha)}(fdX)(Y) \qquad ext{on } CarOmega \;,$$

we have

$$R^{(lpha)}_{C\mathcal{Q}}W^{(lpha)}(fdX)(X_0) = W^{(lpha)}(fdX)(X_0) \, .$$

Assume $W^{(\alpha)}(fdX) = R^{(\alpha)}_{C2}W^{(\alpha)}(fdX)$ on $R^n \times (t, t_0)$ with some $t < t_0$ and denote by f_1 the restriction of f to $R^n \times (t, t_0)$. Then Propositions 3.8, 3.11 show

$$W^{(\alpha)}(f_1 dX) = R^{(\alpha)}_{CQ} W^{(\alpha)}(f_1 dX) \quad \text{on } R^{n+1},$$

which contradicts Proposition 2.10. Thus (3) holds.

(3) \rightarrow (4): By Proposition 3.7, $u - R_{CQ}^{(\alpha)}u$ is lower semi-continuous on Ω . Furthermore for any $\delta > 0$,

 $\{X \in arOmega \ ; \ u(X) > R^{\scriptscriptstyle(a)}_{\scriptscriptstyle C arOmega} u(X)\} \cap (R^n imes (t_{\scriptscriptstyle 0} - \delta, t_{\scriptscriptstyle 0}))
eq \phi \, .$

In fact, if $u(X) = R^{(\alpha)}_{CQ}u(X)$ on $\Omega \cap (R^n \times (t_0 - \delta, t_0)), L^{(\alpha)}u = 0$ on $\Omega \cap$

 $(R^n \times (t_0 - \delta, t_0))$ (in the sense of distributions), because $L^{(\alpha)}(R^{(\alpha)}_{CQ}u) = 0$ on Ω , and hence for any $(x, t) \in \Omega \cap (R^n \times (t_0 - \delta, t_0))$,

$$\int_{R^n} (u - R_{CB}^{(\alpha)} u)(x + y, t) |y|^{-n - 2\alpha} dy = 0,$$

that is, $u = R_{CB}^{(\alpha)} u$ on $R^n \times (t_0 - \delta, t_0)$ (see Lemma 2.4, (3)), which contradicts (3). Hence we can choose $\mu_{\delta} \in M_{\alpha}$ such that $\mu_{\delta} \neq 0$, $\operatorname{supp}[\mu_{\delta}] \subset \Omega \cap$ $(R^n \times (t_0 - \delta, t_0))$ and that $u - R_{CB}^{(\alpha)} u \ge W^{(\alpha)} \mu_{\delta}$ on a certain neighborhood of $\operatorname{supp}[\mu_{\delta}]$. Then Proposition 3.11 gives

$$u - R^{(\alpha)}_{CQ} u \ge W^{(\alpha)} \mu_{\delta} - W^{(\alpha)} \mu'_{\delta, CQ}$$
 on R^{n+1} ,

so that by Proposition 3.8, and the assumption that $u(X_0) = R_{CB}^{(\alpha)} u(X_0)$,

$$\tilde{W}^{(\alpha)}\varepsilon_{X_0} = \tilde{W}^{(\alpha)}\varepsilon_{X_0,C\Omega}^{\prime\prime} \qquad \mu_{\delta}\text{-a.e.},$$

which implies $\tilde{W}^{(\alpha)}\varepsilon_{x_0} = \tilde{W}^{(\alpha)}\varepsilon_{x_0, CG}^{\prime\prime}$ on $R^n \times (-\infty, t_0 - \delta)$ by Lemma 3.15 for $\tilde{L}^{(\alpha)}$. Therefore let $\delta \rightarrow 0$; then Proposition 2.10 yields

$$\varepsilon_{X_0} = \varepsilon_{X_0, C\Omega}^{\prime\prime}$$

which shows (4).

(2) \rightarrow (1): Let $(X_m)_{m=1}^{\infty}$ be an arbitrary sequence in Ω with $\lim_{m\to\infty} X_m = X_0$. To show w*- $\lim_{m\to\infty} \varepsilon_{X_m, C\Omega}' = \varepsilon_{X_0}$, we may assume that $(\varepsilon_{X_m, C\Omega}')_{m=1}^{\infty}$ converges vaguely. Put $\nu =$ w*- $\lim_{m\to\infty} \varepsilon_{X_m, C\Omega}'$. For any $\mu \in M_{\alpha, c}$ whose support is compact, we have

$$egin{aligned} &\int ilde{W}^{(lpha)}
u \, d\mu &= \lim_{m o \infty} \int W^{(lpha)} \mu \, darepsilon^{\prime\prime}_{X_{m}, \ C \mathcal{G}} &= \lim_{m o \infty} W^{(lpha)} \mu^{\prime}_{C \mathcal{G}}(X_{m}) \ & \geq W^{(lpha)} \mu^{\prime}_{C \mathcal{G}}(X_{0}) = W^{(lpha)} \mu(X_{0}) = \int ilde{W}^{(lpha)} arepsilon_{X_{0}} \, d\mu \, , \end{aligned}$$

so that $\tilde{W}^{(\alpha)}\nu \geq \tilde{W}^{(\alpha)}\varepsilon_{x_0}$ a.e., that is, $\tilde{W}^{(\alpha)}\nu = \tilde{W}^{(\alpha)}\varepsilon_{x_0}$, which shows $\nu = \varepsilon_{x_0}$. Thus X_0 is regular. This completes the proof.

For any $(x, t) \in \mathbb{R}^{n+1}$ and $k \in \mathbb{R}$, we set

$$\tau_k^{(\alpha)}(x, t) = (2^k x, 2^{2\alpha k} t).$$

Remark 4.3. Let $u \in S_{\alpha}$ and $k \in R$ and put $v(X) = u(\tau_k^{(\alpha)}X)$. Then $v \in S_{\alpha}$.

We shall prove the following main theorem.

THEOREM. Let Ω be an open set in \mathbb{R}^{n+1} and $X_0 \in \partial \Omega$. If there exists a non-empty open set ω in \mathbb{R}^n such that α -tusk $T_{X_0}^{(\alpha)}(\omega)$ of ω at X_0 is in $C\Omega$, then X_0 is regular for the Dirichlet problem of $L^{(\alpha)}$ on Ω .

Proof. We may assume that X_0 is the origin 0 of \mathbb{R}^{n+1} . By Proposition 4.1, we may assume that

$$T_{0}^{(\alpha)}(\omega) = \{(px, -p^{2\alpha}); x \in \omega, 0$$

Put

$$egin{aligned} V &= \{(x,t); -1 < t < 1, |x| < 1\}\,, \ V_k &= \{ au_k^{(lpha)}(X); \, X \in V\}\,, \ D &= V ackslash \overline{T}_0^{(lpha)}(\omega) ext{ and } D_k &= V_k \cap D \,\,(k: \, ext{integer}) \end{aligned}$$

By Propositions 4.1 and 4.2, it suffices to show that 0 is regular on D. For any $\delta > 0$, we can choose a positive integer k such that

(4.1)
$$\sup_{X \in V} \int_{CV_k} d\varepsilon_{X, C\bar{D}}' < \delta ,$$

because for any $X \in \overline{D}$, $\varepsilon_{X, c\bar{D}}' - \varepsilon_{X} = \tilde{L}^{(\alpha)}(\tilde{W}^{(\alpha)}\varepsilon_{X, c\bar{D}}' - \tilde{W}^{(\alpha)}\varepsilon_{X})$ in the sense of distribution, that is,

$$(4.2) \quad \varepsilon_{X, C\bar{D}}^{\prime\prime} = C_{n, \alpha} \Big(\int_{\mathbb{R}^n} (\tilde{W}^{(\alpha)} \varepsilon_X(y-z,t) - \tilde{W}^{(\alpha)} \varepsilon_{X, C\bar{D}}^{\prime\prime}(y-z,t)) |z|^{-n-2\alpha} dz \Big) dy dt$$

in CD. Put

$$u_1(X) = \int_{CV} d\varepsilon_{X, C\bar{D}}'',$$
$$\beta = \sup_{X \in V-1} \int_{CV} d\varepsilon_{X, C\bar{D}}'',$$

and

$$u_2(X) = \beta \int_{CV_{-k-1}} d\varepsilon_{X, C\overline{D_{-k-1}}}'' + (1-\beta) \int_{CV_{-1}} d\varepsilon_{X, C\overline{D_{-k-1}}}'.$$

Then $\beta < 1$. In fact, we take a sequence $(X_m)_{m=1}^{\infty} \subset V_{-1} \cap \overline{D}$ such that $\lim_{m \to \infty} \int_{CV} d\varepsilon_{X_m, C\overline{D}}' = \beta$. We may assume that $(\varepsilon_{X_m, C\overline{D}}')_{m=1}^{\infty}$ converges vaguely to some $\nu \in \widetilde{M}_{\alpha}$ as $m \to \infty$ and that $(X_m)_{m=1}^{\infty}$ converges to some point $X_{\infty} = (x_{\infty}, t_{\infty})$. Then

$$ilde{W}^{\scriptscriptstyle(lpha)}arepsilon_{X_{\infty}}\geqq ilde{W}^{\scriptscriptstyle(lpha)}
u$$
 on R^{n+1}

Since the family of the density of $\varepsilon_{X, C\overline{D}}^{"}$ $(X \in \overline{D})$ with respect to dX is uniformly bounded on every compact set in $C\overline{D}$ (see (4.2) in this proof), we have

$$ilde{W}^{\scriptscriptstyle(lpha)}arepsilon_{{}_{X_{\infty}}}=\, ilde{W}^{\scriptscriptstyle(lpha)}
u\,\,\, ext{on}\,\,\, C\overline{D}\,\,\,\, ext{and}\,\,\,\,\int d
u=1\,.$$

Assume that $\beta = 1$; $\int_{V} d\nu \leq \liminf_{m \to \infty} \int_{V} d\varepsilon''_{X_m, c\bar{D}} = 0$ and hence $\operatorname{supp}[\nu] \subset CV$. Since for any $\lambda \in M_{\alpha}$, $W^{(\alpha)} \lambda'_{C\bar{D}}$ is continuous on D, the function $\int W^{(\alpha)} \lambda d\varepsilon''_{X, c\bar{D}}$ of X is continuous on D (see Proposition 3.8), so that the mapping $D \ni X \to \varepsilon''_{X, c\bar{D}}$ is vaguely continuous. Therefore Proposition 3.14 gives $X_{\infty} \in \overline{V_{-1}} \cap \partial D$, because if $X_{\infty} \in D$, then $\nu = \varepsilon''_{X_{\infty}, c\bar{D}}$, which contradicts $\operatorname{supp}[\nu] \subset CV$ and Proposition 3.14. By Lemma 3.15, $\tilde{W}^{(\alpha)}\varepsilon_{X_{\infty}} = \tilde{W}^{(\alpha)}\nu$ on $\{(x, t); t < t_{\infty}\}$. Proposition 2.10 gives $\nu = \varepsilon_{X_{\infty}}$, which contradicts $\operatorname{supp}[\nu] \subset CV$. Thus $\beta < 1$.

Let $(\phi_m)_{m=1}^{\infty}$ be an increasing sequence in $C_K^{\infty}(R^{n+1})$ such that $0 \leq \phi_m \leq 1$, $\lim_{m\to\infty} \phi_m = 1$ on CV and that $\phi_m = 0$ on V_{-1} . We write $\phi_m = W^{(\alpha)}\lambda_m$ with some signed measure λ_m . Then

$$\int_{V_{-k-1}} \left(\int_{CV} d\varepsilon_{Y,\,c\,\overline{D}}' \right) d\varepsilon_{X,\,c\,\overline{D_{-k-1}}}'(Y) \leq \lim_{m \to \infty} \int_{V_{-k-1}} W^{(a)} \lambda_{m,\,c\,\overline{D}}' \, d\varepsilon_{X,\,c\,\overline{D_{-k-1}}}',$$

where $\lambda'_{m, C\bar{D}} = (\lambda^+_m)'_{C\bar{D}} - (\lambda^-_m)'_{C\bar{D}}$. Since Corollary 3.13 gives

$$(\varepsilon_{X,\,c\overline{D}-k-1}^{\prime\prime})_{c\overline{D}}^{\prime} = \varepsilon_{X,\,c\overline{D}-k-1}^{\prime\prime}|_{V-k-1} + (\varepsilon_{X,\,c\overline{D}-k-1}^{\prime\prime}|_{cV-k-1})_{c\overline{D}}^{\prime\prime},$$

we have

$$\int_{V_{-k-1}} W^{(\alpha)} \lambda'_{m, C\overline{D}} d\varepsilon''_{X, C\overline{D_{-k-1}}} = \int_{V_{-k-1}} W^{(\alpha)} \lambda_m d(\varepsilon''_{X, C\overline{D_{-k-1}}}) = 0.$$

Let $(\phi_m)_{m=1}^{\infty}$ be a sequence in $C_{\kappa}^{\infty}(\mathbb{R}^{n+1})$ such that $0 \leq \phi_m \leq 1$ and $\lim_{m \to \infty} \phi_m(X) = 1$ on CV and = 0 on V. Since $\phi_m = W^{(\alpha)}\lambda_m$ with some signed measure λ_m , by Proposition 3.8, we have, for $X \in V_{-\kappa-1}$,

$$egin{aligned} u_1(X) &= \lim_{m o \infty} \int \phi_m \, darepsilon_{X,\,\, Car{D}}' = \lim_{m o \infty} \iint \phi_m \, darepsilon_{Y,\,\, Car{D}}' \, darepsilon_{X,\,\, Car{D-k-1}}'(Y) \ &= \int \Bigl(\int_{CV} darepsilon_{Y,\,\, Car{D}}' \Bigr) darepsilon_{X,\,\, Car{D-k-1}}'(Y) \ &= \int_{CV_{-k-1}} \Bigl(\int_{CV} darepsilon_{Y,\,\, Car{D}}' \Bigr) darepsilon_{X,\,\, Car{D-k-1}}'(Y) \ &\leq u_2(X) \leq eta u_1(au_{k+1}^{(lpha)}(X)) + (1-eta) \delta \,. \end{aligned}$$

Thus we obtain inductively

$$\limsup_{X\to 0}\, u_{\scriptscriptstyle 1}\!(X) \leqq \sum_{k=0}^\infty \beta^k (1-\beta)\delta = \delta\,,$$

which gives

$$\lim_{X\to 0} u_1(X) = 0$$

By Proposition 3.14, we can choose $f \in C_{\kappa}(\mathbb{R}^{n+1})$ such that $0 \leq f \leq 1$, $\operatorname{supp}[f] \subset CV$ and that

$$u(X) = \int f(Y) d\varepsilon_{X, C\bar{D}}^{\prime\prime}(Y) > 0$$
 on D .

Take $\phi \in C_{\kappa}(\mathbb{R}^{n+1})$ such that $\operatorname{supp}[\phi] \subset D$, $\phi \geq 0$, $\operatorname{Int}(\operatorname{supp}[\phi]) \cap \{(x, t); t < 0\}$ $\neq \phi$ and that $W^{(\alpha)}(\phi dX) \leq u$ on $\operatorname{supp}[\phi]$. For any open set $\omega \supset CD$, we put $\omega_0 = \{X; \phi(X) > 0\} \cup \omega$. Let $(\omega_m)_{m=1}^{\infty}$ be an exhaustion of ω_0 . Then we have

$$egin{aligned} W^{(lpha)}(lpha)(X) &- W^{(lpha)}(\phi dX)'_{arphi}(X) \ &= \int (W^{(lpha)}(\phi dX) - W^{(lpha)}(\phi dX)'_{arphi}) darepsilon'_{X, \, arphi_0} \ &= \lim_{m o \infty} \int (W^{(lpha)}(\phi dX) - W^{(lpha)}(\phi dX)'_{arphi}) darepsilon'_{X, \, arphi_m} \ &\leq \lim_{m o \infty} \int u \, darepsilon'_{X, \, arphi_m} = \lim_{m o \infty} \int \left(\int f darepsilon'_{Y, \, Car D}
ight) darepsilon'_{X, \, arphi_m}(Y) = u(X) \,. \end{aligned}$$

By Lemma 3.5, we have

$$W^{(\alpha)}(\phi dX)(X) - W^{(\alpha)}(\phi dX)'_{CD}(X) \leq u(X)$$
 on R^{n+1} ,

which implies

$$\lim_{X\in \mathscr{Q}, X
ightarrow 0} W^{\scriptscriptstyle(a)}(\phi dX)'_{\scriptscriptstyle CD}(X) = \ W^{\scriptscriptstyle(a)}(\phi dX)(0) \ .$$

Hence

$$W^{(\alpha)}(\phi dX)'_{CD}(0) = W^{(\alpha)}(\phi dX)(0)$$

(see, for example, the proof of $(1) \rightarrow (3)$ in Proposition 4.2). By Proposition 4.2, (3), 0 is regular for the Dirichlet problem of $L^{(\alpha)}$ on D. This completes the proof.

ACKNOWLEDGEMENT. The authors are thankful to the referee for his suggestions.

References

- C. Berg and G. Forst, Potential theory on locally compact abelian groups, Springer-Verlag, Berlin Heiderberg New York, 1975.
- [2] G. Choquet and J. Deny, Sur l'equation de convolution $\mu = \mu * \sigma$, C. R. Acad. Sci., 250 (1960), 799-801.

- [3] E. Effros and J. Kazdan, On the Dirichlet problem for the heat equation, Indiana U. Math. J., 20 (1971), 683-693.
- [4] J. Elliot, Dirichlet spaces and integro-differential operators, Part I, Illinois J. Math., 9 (1965), 87-98.
- [5] L. Evans and R. Griepy, Wiener's criterion for the heat equation, Arch. Rational Mech. Anal., 78 (1982), 293-314.
- [6] L. L. Helms, Introduction to potential theory, Wiley-Interscience, New York, 1969.
- [7] C. R. Herz, Analyse harmonique à plusiers variables, Sém. Math. d'Orsay, 1965/66.

M. Itô Department of Mathematics College of General Education Nagoya University Chikusa-ku, Nagoya, 464, Japan

M. Nishio Department of Mathematics School of Sciences Nagoya University Chikusa-ku, Nagoya, 464, Japan