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A RIESZ DECOMPOSITION THEOREM

S. E. GRAVERSEN

Introduction

The topic of this note is the Riesz decomposition of excessive func-
tions for a "nice" strong Markov process X. I.e. an excessive function
is decomposed into a sum of a potential of a measure and a "harmonic"
function. Originally such decompositions were studied by G.A. Hunt [8].
In [1] a Riesz decomposition is given assuming that the state space E is
locally compact with a countable base and X is a transient standard
process in strong duality with another standard process X having a strong
Feller resolvent. Recently R.K. Getoor and J. Glover extended the theory
to the case of transient Borel right processes in weak duality [6].

In a different direction K.L. Chung and M. Rao [2] discussed the
Riesz representation and other related topics without assuming duality.
Their conditions are analytic ones imposed on the potential density
u(x, y). To be precise, they assume that u(x, y) is the potential density
of a transient Hunt process and satisfies:

u(x, y) is extended continuous in y for any fixed x, u(x, y) > 0 for
any (x, y) and u(x, y) = oo if and only if x = y.

It is proved in [2] that the Riesz decomposition holds for any ex-
cessive function. In [9] Ming Liao extends the results of Chung and Rao
under slightly weaker assumptions.

The frame for this note is a transient Borel right process X on a
Lusin topological space E with potential density u(x, y) with respect to
a given excessive reference measure m. No duality is assumed. In Sec-
tion 1—using pure potential theoretic standard if-cone technique—we
construct the potential part Uμs of the Riesz decomposition of a given
excessive function s. The assumption on u(x, y) needed for this construc-
tion is properness and a point separating property of the dual operator
U defined by
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Uf(x):=jf(y)u(y,x)m(dy)9

for non-negative Borel measurable functions /. In Section 2, which is
more probabilistic in nature, it is proved under further conditions on U
that the function h in the decomposition s = Uμs + h is harmonic in the
following sense: h = Pκch for every set K compact in a specified topology
τ where P. is the kernel associated with first penetration time. The
main results are contained in Theorems 1.2 and 2.1, and the principal
assumptions are contained in Assumptions 1.1 and 2.1.

Section 0. Notation

We shall use the standard notation ([1], [5]) of Markov processes
without special mention. The following notation and minimal hypothesis
will remain in force throughout.

(0.1) E is a Lusin topological space ([5]) with Borel σ-field &(E).

(0.2) 36{E\ = {/: E->R\f bounded and Borel measurable}
)+ = {/: E-^R U {oo} I/ non-negative and Bore] measurable}

n

(0.3) (PΛso is a Borel semigroup on (E, @(E)) with resolvent

(0.4) X = (β, &, &t, X(t), θt, P
x) is a Borel right process in E with tran-

sition function (Pt)9 lifetime ξ, death point Δ.
(As usual Δ is adjointed to E as an isolated point.)

(0.5) m is a σ-finite excessive reference measure for X:

(0.6) q is an element of &(E)b+ so that 0 < q <£ 1 and 0 < Uq ^ 1.
(U= U°).

If /, g are Borel measurable functions, </, #> denotes the integral f gdm.

Using (0.5) and Theorem 14, Chapter IX in [4], we can construct a
family of submarkovian Borel kernels (Pf) so that for t > 0,

Section 1.

Let $ denote the cone of (P^-excessive functions finite [m] a.e., i.e.
s is in $ if
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a) se &(E)+ and m((s = oo)) = 0

b) Pts(x)<s(x), xeE, t>0

c) sup ί > 0 Pts(x) = s(x), x e E.

The properties of the potential density required in this section are

gathered in the following assumption.

ASSUMPTION 1.1. There exists a non-negative &(E)χ&(E) measura-

ble function u(x, y) such that

U(x, dy) = u(x, y)m{dy) for x e E,

x > u(x, y) is excessive for X for y e E,

and there exists {g,gif ί ^ 1} Q &(E)b+ so that

1) 0 < ί , 0 ^ f t ^ and (g, l> < oo.

2) 0 < Ug < oo everywhere.

3) (UgilUg, i^> 1) separates points in E.

4) If a Borel measurable function k satisfies (\k\, #*) < oo and

(k, gi) ^ 0 for all i, then & ̂  0[m] a.e. and m((β = oo)) = 0.

Denote by Q+ the positive rational numbers and let A denote the

smallest set of functions which is closed under finite sums, multiplica-

tion by positive constants, finite minimum and contains the following

functions:

Ugi9 Ug, UPtgiAUgii UPtgΛUg i^l,teQ+.

LEMMA 1.1. For all h in A, h dm is an excessive measure for X and

there exists a constant a(h) ^ 0 so that 0 <- h ^ a(h)Ug.

Proof. Since every h in A is finite everywhere, hdm is <7-finite.

Denote by A the subset of A having the desired properties. A is then

stable under finite sums, multiplication by positive constants and forming

a finite minimum; therefore it suffices to prove that A contains the set

of functions listed above. Because Ug ^ Ugu ί ^ 1, only the excessive

property needs to be verified.

For k in &(E)b+ and all t in Q+ we have

<*, UPtgi) = (PtUk,gi) ^ <*, Ugi) ,

and likewise (k, UPtg} ^ (k, ϋg}.

This means UPtgi ^ Ugi and UPtg ^ Ug[m] a.e. Thus we need only
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prove that Ukdm is excessive for ke&(E)b + with Uk < oo. But this is

clear.

LEMMA 1.2. For all A in A there is a unique σ-finite measure ϊh on

(E, a(E)) so that

= J rh(dy) U(y,

Proof. Let h in A be given. Define v : = hdm and μ : = a(h)gdm.

For all ke&(E)b+ we have

= <kMh)Ug>

i.e. μt/ = a(h)Ugdm, and thus v <L μU. The result is now implied by

Theorem 4.2 and Proposition 1.1 in [7].

Remark. Easy computations show that r ^ = g dm, Γ ^ = gt dm, ΐh =

Ptgdm if A = tfP,£ Λ ί/̂  and ϊh = Ptgtdm if h = UPtgt A Ugt.

Define C : = {s e δ\ <s, g> < oo}.

LEMMA 1.3. s{y)Th(dy) < oo for s e C, h e A .

Proof. Let s e C and Λ e i be given. Theorem IXT64 ([8]) implies

that there exist (0n)~5βl g ^(J5)δ+ so that i70 n t s. Therefore

f s(y)γh{dy) = sup ί U0n{y)γh{dy) = sup <0 n ,

£ sup <0 n , a(h)Ug} = sup <C/0?ι, ^(Λ)^> ^ α(A)<s, ̂ > < oo .

Define # : = A - A.

/ i s a linear space of finite real valued Borel functions stable under

finite minimum and finite maximum.

For 8 in C, denote by L(s, •) the function on J? defined by

(1.1) Uβ,h) :=^sdrhl- sdrh2,

where ht e A, i = 1, 2 and h — hx — h2.

The proof of Lemma 1.3 shows that L(s ) is a well defined positive

linear functional on J? and that s -» L(s, A) is additive for each A in «#.

Likewise, if s, sί and s2 are in C with s — s1 + s2, then we have
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(1.2) L(s, ft) ^ L(sl9 ft) for ft e # + .

Define jf := {h/Ug\he #}.

Then / is a linear space of bounded real valued Borel functions

stable under finite infimum and finite maximum, containing constants

and separating points in E. Furthermore, j ^ + is separable in the sup-

norm. Let E denote the compactification of E by means of Jf+ ([5]). E

is a compact metric space with Borel field &(E). The assumptions imply

that E e &(E) and SS{E) = SS(E) Π E. Since E is dense in E, every ele-

ment ft in / has a unique continuous extension ft to E, and ^f : =

{ftI ft e ^f} is dense in <g(E).

DanielΓs theorem implies that every positive linear functional L on

Jf is of the form

(1.3) L(h) = [ h dμL + ί hdpΣ,
J E J E\E

where μL and ρL are uniquely determined bounded measures on.(E,$t(E))

satisfying βz(E) = 0 and μL(E\E) = 0. Thus μL is a bounded measure

on (E, a(E)).
Every positive linear functional i o n / can be regarded as a posi-

tive linear functional L on 3? through the formula

L(h) = L(h) where ft = h/Ug.

Since 27^ > 0 everywhere, this proves that every positive linear func-

tional L on / is of the form

(1.4) L(h)=\ hdμL+[ h[UgdμL9
J E J E\E

where μL is a uniquely determined σ-finite measure on (E, ^(E)) and ρL

is a bouned measure on (E, &(E)) so that ρL(E) = 0.

NOTATION. A positive linear functional L on / is called singular

if μL = 0, and it is called an integral if pL = 0.

Remark. DanielΓs theorem implies that a positive linear functional

L on <# is an integral if and only if

(1.5) L(fn) 10 if ( A ) S # + and /n j 0.
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A consequence of this is that L is an integral if there exists (LL) all in-
tegrals, so that Ln(h) | L(h) for all h in Jf+.

The proof of the following Lemma is immediate and therefore omitted.

LEMMA 1.4. Let Lx and L2 be two positive linear functionals on JF so
that L,(h) ̂  L2(h) for all h in JF+. Then

Lx is an integral (singular) ==> L2 is an integral (singular).

Translating these results gives that for s in C

(1.6) L(s, h)=[ h dμs + f hlϋgdμs, fte/,
J E J E\E

where μs is a uniquely determined σ-finite measure on (E, &(E)) and μs

is a bounded measure on (E, @(E) so that ρs(E) = 0. Furthermore s e C
is called singular (an integral) if L(s, •) is singular (an integral).
Denote by S(I) the set of singular (integral) elements in C.

THEOREM 1.1. Let st and s2 in C be given. Assume Si > s2 (strong
order). Then

SleS(I)=$s2eS(I).

Proof. Use Lemma 1.4 and formula (1.2).

In order to state the main theorem of this section, we need to define
the so-called "harmonic" elements in C.

DEFINITION, S in C is called "harmonic" iff u e / and s > u Φ u = 0.

Let H denote the set of "harmonic" elements in C. Clearly S g H.

THEOREM 1.2. For s in C, the following decomposition is valid,

s= Uμs + sly

and Uμs e I and st e H. Furthermore, a decomposition of s into a sum of
an integral and a "harmonic" element is unique.

The proof of Theorem 1.2 is based on the following lemmas.

LEMMA 1.5. s in C admits at most one decomposition of the form
u + v, where uel and ve H.

Proof Lemma 1.5 is related to the "Riesz splitting proparty" see
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[12]. Let s in C be given and assume s = ut + υi9 where ut e / and vte H
for i = 1, 2.

w2 < 5 = > w2 = w12 + u22, where w12 < ut og u22 < υx.

Since w22 < u2 and w22 < u1? u22 equals 0 by Theorem 1.1. Thus u2 < u^
which by symmetry gives the result.

LEMMA 1.6. s — Uμs for all s in I.

Proof. Let s in C be given. For all ί ^ 1 we have

<Uμs,gί) = I Ugidμ, = L(s, Ugi)

= J s dγύgi = (s, gt} < oo ,

which by Assumption 1.1 provides the result.

LEMMA 1.7. For s in C, As = {ue C\s > u, u e 1} admits an upper
bounded in the strong order.

Proof. Let s in C be given. Since / is stable under addition, it fol-
lows that As is upwards filtering in the strong order. Theorem 1.5, p. 198
[1] now implies the existence of a sequence (un) g As so that un < un+l9

n^l and supn un = sup {u\ue As} (pointwise). u^ := supw un. A simple
argument shows that u^e C and u^ < s.
Because un < un+1, n >̂ 1, there exists (02)jfe,n̂ i £ &(E)b+ so that

a) 01 ^ 0Γ 1 , n ^ 1, * ^ 1,
b) 17(02) t*-oK«, n ^ l .

a) and b) imply that U(0Z) f „_«, M. Therefore

L(M, Λ) = lim <0^, h) ^ lim <0^°, Λ> = L(uno, h)
n n

for all h in J? and all nQ ^ 1.
But by monotone convergence we have

I undϊh -^> I u^dϊj, for all ftin/,

and thus L(un, h)]n^^ Liu^ h) for heJ?+. u^ is therefore an integral.
The fact that u^ is an upper bound for As is immediate.

Proof of Theorem 1.2. Only the existence of a decomposition remains
to be shown. Let s in C be given and let u be the upper bound for As
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constructed in Lemma 1.7,

u < s = > ZveC: s = u + υ.

If υ does not belong to H, there exists υt e /\{0} so that u > î , but

this leads to a contradiction because in that case u + υx will be an ele-

ment of As. The proof of Theorem 1.2 is thus complete.

Section 2.

Throughout the rest of this paper we will assume, together with As-

sumption 1.1, the following

ASSUMPTION 2.1. There exists a second countable metric topology τ

on E so that

a) a(τ) = a(E).
b) Every function in <# is r-continuous.

c) τ is finer than the given topology on E.

d) There exists a Borel semipolar set B so that τ\BC is coarser than

the fine topology restricted to Bc.

The aim of this section is to show that the elements in H deserve

the name "harmonic" elements.

DEFINITION. For every F e &(E), let fF denote the penetration time

into F, i.e.

fF(ω) : = inf {t ^ 01 [0, t] Π {u ^ 01 Xu(ω) e F} is uncountable}

fF is a stopping time and exact terminal time satisfying fF ΘfF = 0 on

{fF < oo} [3]. For all s in δ and F in &(E), denote by PFs(x) the value

Ex(s(XfF)), The properties of TF imply that x -> PFs(x) is again an ele-

ment of δ.

LEMMA 2.1. Let O denote a τ-open set There exists a finely open set

V so that O Π Bc = VΠBC and

Pos(x) = Pvs(x) = E

for xe E and s e δ, where Tv is the first hitting time to V.

Proof. Let s e δ be given. Using Assumption 2.1 d), there exists a

finely open set V so that O Π Bc = V Π Bc. Since B is semipolar and

thus only visited countably often, we have f0 = f0(]BC and fv = fvnBC a.s.
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Px for xe E. But since V is a finely open set, Tv = fv a.s. Px for xe E.

Thus

f0 = TV a.s. for x e £ ,

so that Pos = PΓs.

LEMMA 2.2. Lei s e Γ̂ and K a τ-compact set be given. There exists

a τ-open set O containing K so that s Φ Pos.

Proof. Since eg/, there exists h, {hn}n in «#+, so that hn f h and

L(s, h) — supw L(s, hn) = jS > 0. £?g is strictly positive, so we can choose

ε > 0 so that

Pick an a > 0 so that aε~\s, g} < β. Since h — hn j 0, a Dini argument

implies the existence of a τ-open set O and an n0 ^ 1, so that

K g O g {ί?g > ε} and O g {h — /&„<, < <*} .

We claim that s Φ Pos. Assume the opposite. Choose V finely open ac-

cording to Lemma 2.1 and the given set O. Since V is finely open and

B is semipolar, we can find, since s = Pos = Pvs (see page 88 in [1]),

(0*)* S <^(#)δ+ satisfying U0k | s and supp (0 f c) g VΓi Bc g O for β :> 1.

Now

i) — L(s, Λno) = lim <0 f c, Λ — hno} ^ a lim sup <0 f c, 1>

i.e. we have derived a contradiction.

Remark. A similar argument implies that if s in C satisfies s = Pos

for a τ-relative compact τ-open set O, then s e / .

DEFINITION, S in ^ is said to be minimal if, whenever u, v are in

$ and s = u + v, both w and v are proportional to s.

NOTATION. The set of minimal elements of C, / and H will be de-

noted Ce, Γ and He.

It is immediately seen that we have the following set identity

(2.1) Ce = Γ U He.

LEMMA 2.3. For s in He and every τ-compact set K we have s = Pκcs.
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Proof. Let s in He and K a τ-compact set be given. According to

Lemma 2.2 there exists a τ-open set O containing K so that s Φ Pos.

Choose V finely open according to Lemma 2.1 and the given O,

s = Pvs + a

where

fO on the fine closure of V

[s — Pvs elsewhere .

Using a theorem of G. Mokobodzki ([12]), we have s = v + Ra, where

v e £ and υ <I PFs and Ra is the excessive regularisation of

Ra = inf {u\u^> a and w supermedian}.

Since s is minimal and a Φ 0, we have s = β#α for some β in (0,1]. Let

Oχ denote a τ-open set so that K g Ĉ  g O[ g O, where — τ denotes the

τ-closure. The existence of Ox is ensured by the regularity of τ. We now

now claim that s = Pθ2s, where O2 =.(O0c. Denote by V2 the finely open

set chosen according to Lemma 2.1 and O2. s = PΓ 2 on V2f and since we

have V2f)Bc = O2 Π JBC 2 Oc Π Bc = Vc
 ΠJBC 2 (V0c Π ΰ c , s = PΓ2s on

(V^XiJ But S is semipolar and (F 7) 6 finely open, so this implies s = PVis

on (Vf)c a n ( i ^hus β~ιPv% ^ S(s — PFs). The conclusion s = PV2s is now

immediate, and since Kc Ξg O2, we also have s = Pκcs.

THEOREM 2.1. For s m // and every τ-compact set K we have s = Pκcs.

Proof. Let s in if be given. A famous theorem of G. Mokobodzki

([13], see also [14]) ensures that s can be represented as an integral of

elements belonging to Ce. But this implies, together with Theorem 1.1

and formula (2.1) that s can be represented as an integral of excessive

functions belonging to He. The conclusion of the theorem is now a con-

sequence of Lemma 2.3 and Fubini's theorem.

An example which fits into the framework of this paper but not into

that of [6]:

X is a Brownian motion of (— 1,1) which is reflected at 0 when ap-

proaching from the right. Here no dual process exists, but the assump-

tions of this paper is fulfilled with τ equal to the sum topology on

(-1,0)11 [0,1].
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