A RIESZ DECOMPOSITION THEOREM

S. E. GRAVERSEN

Introduction

The topic of this note is the Riesz decomposition of excessive functions for a "nice" strong Markov process X. I.e. an excessive function is decomposed into a sum of a potential of a measure and a "harmonic" function. Originally such decompositions were studied by G.A. Hunt [8]. In [1] a Riesz decomposition is given assuming that the state space E is locally compact with a countable base and X is a transient standard process in strong duality with another standard process \hat{X} having a strong Feller resolvent. Recently R.K. Getoor and J. Glover extended the theory to the case of transient Borel right processes in weak duality [6].

In a different direction K.L. Chung and M. Rao [2] discussed the Riesz representation and other related topics without assuming duality. Their conditions are analytic ones imposed on the potential density $u(x, y)$. To be precise, they assume that $u(x, y)$ is the potential density of a transient Hunt process and satisfies:
$u(x, y)$ is extended continuous in y for any fixed $x, u(x, y)>0$ for any (x, y) and $u(x, y)=\infty$ if and only if $x=y$.
It is proved in [2] that the Riesz decomposition holds for any excessive function. In [9] Ming Liao extends the results of Chung and Rao under slightly weaker assumptions.

The frame for this note is a transient Borel right process X on a Lusin topological space E with potential density $u(x, y)$ with respect to a given excessive reference measure m. No duality is assumed. In Section 1-using pure potential theoretic standard H-cone technique-we construct the potential part $U_{\mu_{s}}$ of the Riesz decomposition of a given excessive function s. The assumption on $u(x, y)$ needed for this construction is properness and a point separating property of the dual operator \hat{U} defined by

$$
\hat{U} f(x):=\int f(y) u(y, x) m(d y)
$$

for non-negative Borel measurable functions f. In Section 2, which is more probabilistic in nature, it is proved under further conditions on \hat{U} that the function h in the decomposition $s=U \mu_{s}+h$ is harmonic in the following sense: $h=\tilde{P}_{K c} h$ for every set K compact in a specified topology τ where \tilde{P}. is the kernel associated with first penetration time. The main results are contained in Theorems 1.2 and 2.1 , and the principal assumptions are contained in Assumptions 1.1 and 2.1.

Section 0. Notation

We shall use the standard notation ([1], [5]) of Markov processes without special mention. The following notation and minimal hypothesis will remain in force throughout.
(0.1) E is a Lusin topological space ([5]) with Borel σ-field $\mathscr{B}(E)$.
(0.2) $\mathscr{B}(E)_{b}=\{f: E \rightarrow R \mid f$ bounded and Borel measurable $\}$ $\mathscr{B}(E)_{+}=\{f: E \rightarrow R \cup\{\infty\} \mid f$ non-negative and Bore] measurable $\}$ $\mathscr{B}(E)_{b_{+}}=\mathscr{B}(E)_{b} \cap \mathscr{B}(E)_{+}$
(0.3) $\quad\left(P_{t}\right)_{t \geq 0}$ is a Borel semigroup on $(E, \mathscr{B}(E))$ with resolvent $\left(U^{\alpha}\right)_{\alpha \geq 0}$.
(0.4) $X=\left(\Omega, \mathscr{F}_{,} \mathscr{F}_{t}, X(t), \Theta_{t}, P^{x}\right)$ is a Borel right process in E with transition function $\left(P_{t}\right)$, lifetime ξ, death point Δ.
(As usual Δ is adjointed to E as an isolated point.)
(0.5) m is a σ-finite excessive reference measure for X :
(0.6) q is an element of $\mathscr{B}(E)_{b_{+}}$so that $0<q \leqq 1$ and $0<U q \leqq 1$. ($U=U^{0}$).

If f, g are Borel measurable functions, $\langle f, g\rangle$ denotes the integral $\int f \cdot g d m$.
Using (0.5) and Theorem 14, Chapter IX in [4], we can construct a family of submarkovian Borel kernels $\left(\hat{P}_{t}\right)$ so that for $t>0$,

$$
\left\langle f, P_{t} g\right\rangle=\left\langle\hat{P}_{t} f, g\right\rangle \quad f, g \in \mathscr{B}(E)_{+} \cdot
$$

Section 1.

Let \mathscr{E} denote the cone of $\left(P_{t}\right)$-excessive functions finite [m] a.e., i.e. s is in \mathscr{E} if
a) $s \in \mathscr{B}(E)_{+}$and $m((s=\infty))=0$
b) $P_{t} s(x) \leqq s(x), x \in E, t>0$
c) $\sup _{t>0} P_{t} s(x)=s(x), x \in E$.

The properties of the potential density required in this section are gathered in the following assumption.

Assumption 1.1. There exists a non-negative $\mathscr{B}(E) \times \mathscr{B}(E)$ measurable function $u(x, y)$ such that

$$
\begin{array}{ll}
U(x, d y)=u(x, y) m(d y) & \text { for } x \in E, \\
x \longrightarrow u(x, y) \text { is excessive for } X & \text { for } y \in E,
\end{array}
$$

and there exists $\left\{g, g_{i}, i \geqq 1\right\} \cong \mathscr{B}(E)_{b_{+}}$so that

1) $0<g, 0 \leqq g_{i} \leqq g$ and $\langle g, 1\rangle<\infty$.
2) $0<\hat{U g}<\infty$ everywhere.
3) $\left(\hat{U} g_{i} / \hat{U} g, i \geqq 1\right)$ separates points in E.
4) If a Borel measurable function k satisfies $\langle | k\left|, g_{i}\right\rangle<\infty$ and $\left\langle k, g_{i}\right\rangle \geqq 0$ for all i, then $k \geqq 0[m]$ a.e. and $m((k=\infty))=0$.

Denote by Q_{+}the positive rational numbers and let A denote the smallest set of functions which is closed under finite sums, multiplication by positive constants, finite minimum and contains the following functions:

$$
\hat{U} g_{i}, \quad \hat{U} g, \quad \hat{U} \hat{P}_{t} g_{i} \wedge \hat{U} g_{i}, \quad \hat{U} \hat{P}_{t} g \wedge \hat{U} g \quad i \geqq 1, t \in Q_{+}
$$

Lemma 1.1. For all h in $A, h \cdot d m$ is an excessive measure for X and there exists a constant $\alpha(h) \geqq 0$ so that $0 \leqq h \leqq \alpha(h) \hat{U} g$.

Proof. Since every h in A is finite everywhere, $h d m$ is σ-finite. Denote by \tilde{A} the subset of A having the desired properties. \tilde{A} is then stable under finite sums, multiplication by positive constants and forming a finite minimum; therefore it suffices to prove that \tilde{A} contains the set of functions listed above. Because $\hat{U} g \geqq \hat{U} g_{i}, i \geqq 1$, only the excessive property needs to be verified.

For k in $\mathscr{B}(E)_{b_{+}}$and all t in Q_{+}we have

$$
\left\langle k, \hat{U} \hat{P}_{t} g_{i}\right\rangle=\left\langle P_{t} U k, g_{i}\right\rangle \leqq\left\langle k, \hat{U} g_{i}\right\rangle,
$$

and likewise $\left\langle k, \hat{U} \hat{P}_{t} g\right\rangle \leqq\langle k, \hat{U} g\rangle$.
This means $\hat{U} \hat{P}_{t} g_{i} \leqq \hat{U} g_{i}$ and $\hat{U} \hat{P}_{t} g \leqq \hat{U} g[m]$ a.e. Thus we need only
prove that $\hat{U} k d m$ is excessive for $k \in \mathscr{B}(E)_{b_{+}}$with $\hat{U} k<\infty$. But this is clear.

Lemma 1.2. For all h in A there is a unique σ-finite measure γ_{h} on ($E, \mathscr{B}(E))$ so that

$$
h d m=\gamma_{h} U \quad\left(=\int \gamma_{h}(d y) U(y, d x)\right)
$$

Proof. Let h in A be given. Define $\nu:=h d m$ and $\mu:=\alpha(h) g d m$. For all $k \in \mathscr{B}(E)_{b_{+}}$we have

$$
\begin{aligned}
\int k(y) \mu U(d y) & =\int U k(y) \mu(d y) \\
=\langle U k, \alpha(h) g\rangle & =\langle k, \alpha(h) \hat{U} g\rangle
\end{aligned}
$$

i.e. $\mu U=\alpha(h) \hat{U} g d m$, and thus $\nu \leqq \mu U$. The result is now implied by Theorem 4.2 and Proposition 1.1 in [7].

Remark. Easy computations show that $\gamma_{\hat{\theta}_{g}}=g d m, \gamma_{\hat{\theta}_{g i}}=g_{i} d m, \gamma_{h}=$ $\hat{P}_{t} g d m$ if $h=\hat{U} \hat{P}_{t} g \wedge \hat{U} g$ and $\gamma_{h}=\hat{P}_{t} g_{i} d m$ if $h=\hat{U} \hat{P}_{t} g_{i} \wedge \hat{U} g_{i}$.

Define $C:=\{s \in \mathscr{E} \mid\langle s, g\rangle<\infty\}$.
Lemma 1.3. $\int s(y) r_{h}(d y)<\infty \quad$ for $s \in C, h \in A$.
Proof. Let $s \in C$ and $h \in A$ be given. Theorem IX T64 ([8]) implies that there exist $\left(\varnothing_{n}\right)_{n=1}^{\infty} \subseteq \mathscr{B}(E)_{b_{+}}$so that $U \varnothing_{n} \uparrow s$. Therefore

$$
\begin{aligned}
\int s(y) \gamma_{h}(d y) & =\sup _{n} \int U \emptyset_{n}(y) \gamma_{n}(d y)=\sup _{n}\left\langle\emptyset_{n}, h\right\rangle \\
& \leqq \sup _{n}\left\langle\emptyset_{n}, \alpha(h) \hat{U} g\right\rangle=\sup _{n}\left\langle U \varnothing_{n}, \alpha(h) g\right\rangle \leqq \alpha(h)\langle s, g\rangle<\infty
\end{aligned}
$$

Define $\check{\mathscr{H}}:=A-A$.
$\widetilde{\mathscr{H}}$ is a linear space of finite real valued Borel functions stable under finite minimum and finite maximum.

For s in C, denote by $L(s, \cdot)$ the function on $\widetilde{\mathscr{H}}$ defined by

$$
\begin{equation*}
L(s, h):=\int s d r_{h_{1}}-s d r_{h_{2}} \tag{1.1}
\end{equation*}
$$

where $h_{i} \in A, i=1,2$ and $h=h_{1}-h_{2}$.
The proof of Lemma 1.3 shows that $L(s \cdot)$ is a well defined positive linear functional on $\widetilde{\mathscr{H}}$ and that $s \rightarrow L(s, h)$ is additive for each h in $\widetilde{\mathscr{H}}$. Likewise, if s, s_{1} and s_{2} are in C with $s=s_{1}+s_{2}$, then we have

$$
\begin{equation*}
L(s, h) \geqq L\left(s_{1}, h\right) \quad \text { for } h \in \widetilde{\mathscr{H}}_{+} . \tag{1.2}
\end{equation*}
$$

Define $\mathscr{H}:=\{h / \hat{U} g \mid h \in \widetilde{\mathscr{H}}\}$.
Then \mathscr{H} is a linear space of bounded real valued Borel functions stable under finite infimum and finite maximum, containing constants and separating points in E. Furthermore, \mathscr{H}_{+}is separable in the supnorm. Let \bar{E} denote the compactification of E by means of \mathscr{H}_{+}([5]). \bar{E} is a compact metric space with Borel field $\mathscr{B}(\bar{E})$. The assumptions imply that $E \in \mathscr{B}(\bar{E})$ and $\mathscr{B}(E)=\mathscr{B}(\bar{E}) \cap E$. Since E is dense in \bar{E}, every element h in \mathscr{H} has a unique continuous extension \bar{h} to \bar{E}, and $\overline{\mathscr{H}}:=$ $\{\bar{h} \mid h \in \mathscr{H}\}$ is dense in $\mathscr{C}(\bar{E})$.

Daniell's theorem implies that every positive linear functional \bar{L} on $\overline{\mathscr{H}}$ is of the form

$$
\begin{equation*}
\bar{L}(\bar{h})=\int_{E} \bar{h} d \mu_{\bar{L}}+\int_{\bar{E} \backslash E} \bar{h} d \bar{\mu}_{\Sigma}, \tag{1.3}
\end{equation*}
$$

where $\mu_{\bar{L}}$ and $\bar{\mu}_{\bar{E}}$ are uniquely determined bounded measures on ($\bar{E}, \mathscr{B}(\bar{E})$) satisfying $\bar{\mu}_{\bar{L}}(E)=0$ and $\mu_{\bar{L}}(\bar{E} \backslash E)=0$. Thus $\mu_{\bar{L}}$ is a bounded measure on ($E, \mathscr{B}(E)$).

Every positive linear functional L on $\breve{\mathscr{H}}$ can be regarded as a positive linear functional \bar{L} on $\overline{\mathscr{H}}$ through the formula

$$
\bar{L}(\bar{h})=L(\tilde{h}) \quad \text { where } \bar{h}=\overline{\tilde{h} / \hat{U} g} .
$$

Since $\hat{U} g>0$ everywhere, this proves that every positive linear functional L on $\breve{\mathscr{P}}$ is of the form

$$
\begin{equation*}
L(h)=\int_{E} h d \mu_{L}+\int_{\hat{E} \backslash E} \overline{h / \hat{U} g} d \bar{\mu}_{L}, \tag{1.4}
\end{equation*}
$$

where μ_{L} is a uniquely determined σ-finite measure on ($E, \mathscr{B}(E)$) and $\bar{\mu}_{L}$ is a bouned measure on ($\bar{E}, \mathscr{B}(\bar{E})$) so that $\bar{\mu}_{L}(E)=0$.

Notation. A positive linear functional L on $\breve{\mathscr{H}}$ is called singular if $\mu_{L}=0$, and it is called an integral if $\bar{\mu}_{L}=0$.

Remark. Daniell's theorem implies that a positive linear functional L on $\widetilde{\mathscr{H}}$ is an integral if and only if

$$
\begin{equation*}
L\left(f_{n}\right) \downarrow 0 \quad \text { if } \quad\left(f_{n}\right) \subseteq \widetilde{\mathscr{H}}_{+} \quad \text { and } \quad f_{n} \downarrow 0 \tag{1.5}
\end{equation*}
$$

A consequence of this is that L is an integral if there exists $\left(L_{L}\right)$ all integrals, so that $L_{n}(h) \uparrow L(h)$ for all h in $\breve{\mathscr{H}}_{+}$.

The proof of the following Lemma is immediate and therefore omitted.
Lemma 1.4. Let L_{1} and L_{2} be two positive linear functionals on $\breve{\mathscr{H}}$ so that $L_{1}(h) \geqq L_{2}(h)$ for all h in $\widetilde{\mathscr{H}}_{+}$. Then
L_{1} is an integral (singular) $\Longrightarrow L_{2}$ is an integral (singular).
Translating these results gives that for s in C

$$
\begin{equation*}
L(s, h)=\int_{E} h d \mu_{s}+\int_{\overline{\bar{E} \backslash E}} \overline{\bar{h} / \hat{U} g} d \bar{\mu}_{s}, \quad h \in \widetilde{\mathscr{H}}, \tag{1.6}
\end{equation*}
$$

where μ_{s} is a uniquely determined σ-finite measure on ($E, \mathscr{B}(E)$) and $\bar{\mu}_{s}$ is a bounded measure on $\left(\bar{E}, \mathscr{B}(\bar{E})\right.$ so that $\bar{\mu}_{s}(E)=0$. Furthermore $s \in C$ is called singular (an integral) if $L(s, \cdot)$ is singular (an integral). Denote by $\boldsymbol{S}(\boldsymbol{I})$ the set of singular (integral) elements in C.

Theorem 1.1. Let s_{1} and s_{2} in C be given. Assume $s_{1} \gg s_{2}$ (strong order). Then

$$
s_{1} \in S(I) \Longrightarrow s_{2} \in S(I) .
$$

Proof. Use Lemma 1.4 and formula (1.2).
In order to state the main theorem of this section, we need to define the so-called "harmonic" elements in C.

Definition. s in C is called "harmonic" iff $u \in I$ and $s \gg u \Rightarrow u \equiv 0$. Let \boldsymbol{H} denote the set of "harmonic" elements in \boldsymbol{C}. Clearly $\boldsymbol{S} \subseteq \boldsymbol{H}$.

Theorem 1.2. For s in C, the following decomposition is valid,

$$
s=U_{\mu_{s}}+s_{1},
$$

and $U_{\mu_{s} \in \boldsymbol{I}}$ and $s_{1} \in \boldsymbol{H}$. Furthermore, a decomposition of s into a sum of an integral and a "harmonic" element is unique.

The proof of Theorem 1.2 is based on the following lemmas.
Lemma 1.5. s in C admits at most one decomposition of the form $u+v$, where $u \in \boldsymbol{I}$ and $v \in \boldsymbol{H}$.

Proof. Lemma 1.5 is related to the "Riesz splitting property" see
[12]. Let s in C be given and assume $s=u_{i}+v_{i}$, where $u_{i} \in \boldsymbol{I}$ and $v_{i} \in \boldsymbol{H}$ for $i=1,2$.

$$
u_{2} \ll s \Longrightarrow u_{2}=u_{12}+u_{22}, \quad \text { where } u_{12} \ll u_{1} \text { og } u_{22} \ll v_{1} .
$$

Since $u_{22} \ll u_{2}$ and $u_{22} \ll v_{1}, u_{22}$ equals 0 by Theorem 1.1. Thus $u_{2} \ll u_{1}$ which by symmetry gives the result.

Lemma 1.6. $s=U \mu_{s}$ for all s in I.
Proof. Let s in C be given. For all $i \geqq 1$ we have

$$
\begin{aligned}
\left\langle U \mu_{s}, g_{i}\right\rangle & =\int \hat{U} g_{i} d \mu_{s}=L\left(s, \hat{U} g_{i}\right) \\
& =\int s d r_{\hat{U}_{g_{i}}}=\left\langle s, g_{i}\right\rangle<\infty
\end{aligned}
$$

which by Assumption 1.1 provides the result.
Lemma 1.7. For s in $C, A_{s}=\{u \in C \mid s \gg u, u \in I\}$ admits an upper bounded in the strong order.

Proof. Let s in C be given. Since I is stable under addition, it follows that A_{s} is upwards filtering in the strong order. Theorem 1.5, p. 198 [1] now implies the existence of a sequence $\left(u_{n}\right) \subseteq A_{s}$ so that $u_{n} \ll u_{n+1}$, $n \geqq 1$ and $\sup _{n} u_{n}=\sup \left\{u \mid u \in A_{s}\right\}$ (pointwise). $u_{\infty}:=\sup _{n} u_{n}$. A simple argument shows that $u_{\infty} \in C$ and $u_{\infty} \ll s$.
Because $u_{n} \ll u_{n+1}, n \geqq 1$, there exists $\left(\varnothing_{k}^{n}\right)_{k, n \geqq 1} \subseteq \mathscr{B}(E)_{b_{+}}$so that
a) $\varnothing_{k}^{n} \leqq \varnothing_{k}^{n+1}, n \geqq 1, k \geqq 1$,
b) $U\left(\varnothing_{k}^{n}\right) \uparrow_{k \rightarrow \infty} u_{n}, n \geqq 1$.
a) and b) imply that $U\left(\varnothing_{n}^{n}\right) \uparrow_{n \rightarrow \infty} u$. Therefore

$$
L(u, h)=\lim _{n}\left\langle\varnothing_{n}^{n}, h\right\rangle \geqq \lim _{n}\left\langle\varnothing_{n}^{n_{0}}, h\right\rangle=L\left(u_{n_{0}}, h\right)
$$

for all h in $\widetilde{\mathscr{H}}$ and all $n_{0} \geqq 1$.
But by monotone convergence we have

$$
\int u_{n} d r_{h} \xrightarrow[n \rightarrow \infty]{\longrightarrow} \int u_{\infty} d r_{h} \quad \text { for all } h \text { in } \widetilde{\mathscr{H}}
$$

and thus $L\left(u_{n}, h\right) \uparrow_{n \rightarrow \infty} L\left(u_{\infty}, h\right)$ for $h \in \widetilde{\mathscr{H}}_{+} . \quad u_{\infty}$ is therefore an integral. The fact that u_{∞} is an upper bound for A_{s} is immediate.

Proof of Theorem 1.2. Only the existence of a decomposition remains to be shown. Let s in C be given and let u be the upper bound for A_{s}
constructed in Lemma 1.7,

$$
u \ll s \Longrightarrow \exists v \in C: s=u+v .
$$

If v does not belong to \boldsymbol{H}, there exists $v_{1} \in \boldsymbol{I} \backslash\{0\}$ so that $v \gg v_{1}$, but this leads to a contradiction because in that case $u+v_{1}$ will be an element of A_{s}. The proof of Theorem 1.2 is thus complete.

Section 2.

Throughout the rest of this paper we will assume, together with Assumption 1.1, the following

Assumption 2.1. There exists a second countable metric topology τ on E so that
a) $\mathscr{B}(\tau)=\mathscr{B}(E)$.
b) Every function in $\check{\mathscr{H}}$ is τ-continuous.
c) τ is finer than the given topology on E.
d) There exists a Borel semipolar set B so that $\left.\tau\right|_{B_{c}}$ is coarser than the fine topology restricted to B^{c}.

The aim of this section is to show that the elements in \boldsymbol{H} deserve the name "harmonic" elements.

Definition. For every $F \in \mathscr{B}(E)$, let \tilde{T}_{F} denote the penetration time into F, i.e.

$$
\tilde{T}_{F}(\omega):=\inf \left\{t \geqq 0 \mid[0, t] \cap\left\{u \geqq 0 \mid X_{u}(\omega) \in F\right\} \text { is uncountable }\right\}
$$

\tilde{T}_{F} is a stopping time and exact terminal time satisfying $\tilde{T}_{F} \cdot \Theta_{\tilde{T}_{F}}=0$ on $\left\{\tilde{T}_{F}<\infty\right\}$ [3]. For all s in \mathscr{E} and F in $\mathscr{B}(E)$, denote by $\tilde{P}_{F} s(x)$ the value $E_{x}\left(s\left(X_{\tilde{T}_{F}}\right)\right)$. The properties of \tilde{T}_{F} imply that $x \rightarrow \tilde{P}_{F} s(x)$ is again an element of \mathscr{E}.

Lemma 2.1. Let O denote a τ-open set. There exists a finely open set V so that $O \cap B^{c}=V \cap B^{c}$ and

$$
\tilde{P}_{o} s(x)=P_{V} s(x)=E_{x}\left(s\left(X\left(T_{V}\right)\right)\right)
$$

for $x \in E$ and $s \in \mathscr{E}$, where T_{V} is the first hitting time to V.
Proof. Let $s \in \mathscr{E}$ be given. Using Assumption 2.1 d), there exists a finely open set V so that $O \cap B^{c}=V \cap B^{c}$. Since B is semipolar and thus only visited countably often, we have $\tilde{T}_{o}=\tilde{T}_{o \cap B^{c}}$ and $\tilde{T}_{V}=\tilde{T}_{V \cap B^{c}}$ a.s.
P^{x} for $x \in E$. But since V is a finely open set, $T_{V}=\tilde{T}_{V}$ a.s. P^{x} for $x \in E$. Thus

$$
\tilde{T}_{o}=T_{V} \quad \text { a.s. for } x \in E \text {, }
$$

so that $\tilde{P}_{o} s=P_{V} s$.
Lemma 2.2. Let $s \in \boldsymbol{H}$ and $K a \tau$-compact set be given. There exists $a \tau$-open set O containing K so that $s \neq \tilde{P}_{o} s$.

Proof. Since $s \notin \boldsymbol{I}$, there exists $h,\left\{h_{n}\right\}_{n}$ in $\widetilde{\mathscr{H}}_{+}$, so that $h_{n} \uparrow h$ and $L(s, h)-\sup _{n} L\left(s, h_{n}\right)=\beta>0$. $\hat{U} g$ is strictly positive, so we can choose $\varepsilon>0$ so that

$$
K \subseteq\{\hat{U} g>\varepsilon\}
$$

Pick an $\alpha>0$ so that $\alpha \varepsilon^{-1}\langle s, g\rangle<\beta$. Since $h-h_{n} \downarrow 0$, a Dini argument implies the existence of a τ-open set O and an $n_{0} \geqq 1$, so that

$$
K \cong O \cong\{\hat{U} g>\varepsilon\} \quad \text { and } \quad O \cong\left\{h-h_{n_{0}}<\alpha\right\}
$$

We claim that $s \neq \tilde{P}_{0} s$. Assume the opposite. Choose V finely open according to Lemma 2.1 and the given set O. Since V is finely open and B is semipolar, we can find, since $s=\tilde{P}_{o} s=P_{v} s$ (see page 88 in [1]), $\left(\varnothing_{k}\right)_{k} \cong \mathscr{B}(E)_{b+}$ satisfying $U \varnothing_{k} \uparrow s$ and $\operatorname{supp}\left(\varnothing_{k}\right) \cong V \cap B^{c} \cong O$ for $k \geqq 1$. Now

$$
\begin{aligned}
L(s, h)-L\left(s, h_{n_{0}}\right) & =\lim _{h \rightarrow \infty}\left\langle\varnothing_{k}, h-h_{n_{0}}\right\rangle \leqq \alpha \lim _{k} \sup \left\langle\varnothing_{k}, 1\right\rangle \\
& \leqq \alpha \varepsilon^{-1} \lim _{k} \sup \left\langle\varnothing_{k}, \hat{U} g\right\rangle \leqq \alpha \varepsilon^{-1}\langle s, g\rangle<\beta
\end{aligned}
$$

i.e. we have derived a contradiction.

Remark. A similar argument implies that if s in C satisfies $s=\tilde{P}_{o} s$ for a τ-relative compact τ-open set O, then $s \in \boldsymbol{I}$.

Definition. s in \mathscr{E} is said to be minimal if, whenever u, v are in \mathscr{E} and $s=u+v$, both u and v are proportional to s.

Notation. The set of minimal elements of C, I and \boldsymbol{H} will be denoted $\boldsymbol{C}^{e}, \boldsymbol{I}^{e}$ and \boldsymbol{H}^{e}.

It is immediately seen that we have the following set identity

$$
\begin{equation*}
C^{e}=\boldsymbol{I}^{e} \cup \boldsymbol{H}^{e} \tag{2.1}
\end{equation*}
$$

Lemma 2.3. For s in H^{e} and every τ-compact set K we have $s=\tilde{P}_{K \circ} s$.

Proof. Let s in \boldsymbol{H}^{e} and K a τ-compact set be given. According to Lemma 2.2 there exists a τ-open set O containing K so that $s \neq \tilde{P}_{o} s$. Choose V finely open according to Lemma 2.1 and the given O,

$$
s=P_{v} s+a
$$

where

$$
a= \begin{cases}0 & \text { on the fine closure of } V \\ s-P_{V} s & \text { elsewhere } .\end{cases}
$$

Using a theorem of G. Mokobodzki ([12]), we have $s=v+\underline{R} a$, where $v \in \mathscr{E}$ and $v \leqq P_{V} s$ and $\underline{R} a$ is the excessive regularisation of

$$
R a=\inf \{u \mid u \geqq a \text { and } u \text { supermedian }\}
$$

Since s is minimal and $a \neq 0$, we have $s=\beta \underline{R} a$ for some β in (0,1$]$. Let O_{1} denote a τ-open set so that $K \subseteq O_{1} \subseteq \bar{O}_{1}^{\text {₹ }} \subseteq O$, where $-\tau$ denotes the τ-closure. The existence of O_{1} is ensured by the regularity of τ. We now now claim that $s=\tilde{P}_{0_{2}} s$, where $O_{2}=\left(\bar{O}_{\mathrm{I}}\right)^{c}$. Denote by V_{2} the finely open set chosen according to Lemma 2.1 and $O_{2} . s=P_{V_{2}}$ on V_{2}, and since we have $\quad V_{2} \cap B^{c}=O_{2} \cap B^{c} \supseteqq O^{c} \cap B^{c}=V^{c} \cap B^{c} \supseteqq\left(\bar{V}^{f}\right)^{c} \cap B^{c}, \quad s=P_{V_{2}} s$ on $\left(\bar{V}^{f}\right)^{c} \backslash B$. But B is semipolar and $\left(\bar{V}^{f}\right)^{c}$ finely open, so this implies $s=P_{V_{2}} s$ on $\left(\bar{V}^{f}\right)^{c}$ and thus $\beta^{-1} P_{V_{2}} \geqq \underline{R}\left(s-P_{V} s\right)$. The conclusion $s=P_{V_{2}} s$ is now immediate, and since $K^{c} \supseteqq O_{2}$, we also have $s=\tilde{P}_{K_{K}} s$.

Theorem 2.1. For s in \boldsymbol{H} and every τ-compact set K we have $s=\tilde{P}_{K_{K}} s$.
Proof. Let s in \boldsymbol{H} be given. A famous theorem of G. Mokobodzki ([13], see also [14]) ensures that s can be represented as an integral of elements belonging to C^{e}. But this implies, together with Theorem 1.1 and formula (2.1) that s can be represented as an integral of excessive functions belonging to \boldsymbol{H}^{e}. The conclusion of the theorem is now a consequence of Lemma 2.3 and Fubini's theorem.

An example which fits into the framework of this paper but not into that of [6]:
X is a Brownian motion of $(-1,1)$ which is reflected at 0 when approaching from the right. Here no dual process exists, but the assumptions of this paper is fulfilled with τ equal to the sum topology on $(-1,0) \cup[0,1]$.

References

[1] Blumenthal, R. M., Getoor, R. K., Markov processes and potential theory, New York, Academic Press, 1968.
[2] Chung, K. L., Rao, M., A new setting for potential theory, Ann. Inst. Fourier, 30 (1980), 167-198.
[3] Dellacherie, C., Capacités et processus stochastiques, Berlin-Heidelberg-New York, Springer Verlag, 1972.
[4] Dellacherie, C., Meyer, P. A., Probabilités et potentiel: Théorie discrète du potentiel, Herman, 1983.
[5] Getoor, R. K., Ray processes and right processes, Lecture Notes in Math., 440, Berlin-Heidelberg-New York, Springer Verlag, 1975.
[6] Getoor, R. K., Glover, J., Riesz decompositions in Markov process theory, Trans. Amer. Math. Soc., 285 (1984), 107-132.
[7] -, Markov processes with identical excessive measures, Math. Z., 184 (1983), 187-300.
[8] Hunt, G. A., Markov processes and potentials I, Illinois J. Math., 1 (1957), 44-93.
[9] Liao, M., Riesz representation and duality of Markov processes, Séminaire de Probabilités XIX, 366-396, Lecture Notes in Math., 1123.
[10] Meyer, P. A., Probability and potentials, Blaisdell, 1966.
[11] ——, Processus de Markov: la frontière de Martin, Lecture Notes in Math., 77, Berlin-Heidelberg-New York, Springer Verlag, 1968.
[12] Mokobodzki, G., Densité relative de deux potentiels comparables, Lecture Notes in Math., 124, Sem. de Prob. IV (1970), 170-194.
[13] ——, Dualité formelle et représentation des fonctions excessives, Actes du Congrès Int. des Mathematiciens, t. 2, 1970, 531-535.
[14] Walsh, J. B., The cofine topology revisited, Proc. Symp. in Pure Math., 31 (1977), 131-152. AMS, Providence.

Department of Mathematics
Aarhus University
Ny Munkegade, 8000 Aarhus C
Denmark

