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RANDOM INTEGRAL REPRESENTATIONS FOR CLASSES OF

LIMIT DISTRIBUTIONS SIMILAR TO LEVY CLASS Lo, II

ZBIGNIEW J. JUREK1

§ 0. Introduction

Let ξ(t) and η{t) be two stochastic processes such that ξ has stationary
independent increments and ξ(0) = 0 a.s. Suppose that ?(1) = tξ(tβ) + η(t)
for each 0 < t < 1, with ξ(tβ) independent of φ) and a fixed parameter
βe(—2, 0). It is shown that ξ(l) satisfies the above equation if and only
if f(l) is a sum of two independent r.v.'s: strictly stable one with the

exponent — β and the one given by a random integral tdY(tβ), where
J (0,1)

Y has stationary independent increments and E [\\Y(ΐ)\\~β] < oo.
The aim of this paper is to find a random integral representation for

some classes of limit distributions. Such representations give a very
natural connection between theory of limit distributions and theory of
stochastic processes. In some sense this note complements the subject,
with a long history, of characterizations of stochastic processes by ran-
dom integrals; cf. B.L.S. Praksa Rao (1983). On the other hand, this is
a continuation of the study begun in Jurek (1988) but basically in a
case of a Hubert space and the identity operator. Recall that an infi-
nitely divisible measure μ belongs to the class <%β if and only if

(0.1) V(0<C<l)3μc 6 ID, μ = Tcμ*cβ * μc .

Here Tc is the linear operator of multiplying by a scalar c. In terms of
stochastic processes the equation (0.1) can be rewritten as follows: There
exist processes ξ(t) and η(t) such that ξ has stationary independent in-
crements (μ - &(£$)) and ξ(ί) = cξ(cβ) + η(c) for 0 < c < 1, with η(c)
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independent of ξ(cβ) and infinitely divisible distribution. Note that %

coincides with the Levy class Lo of so called self-decomposable measures.

Class ^ i consists of so called s-self-decomposable measures, which are

obtained as limit distributions when the summands in partial sums are

deformed by some nonlinear transformation; cf. Jurek (1985). In any

case, the classes °Uβ defined by (0.1) are classes of limit distributions.

Moreover, assuming that μ is non-degenerate measure, we have that β >

— 2. The main characterization of elements from %β, with β > 0, is the

following:

(0.2) μeΦβ if and only if μ = J2?(f tdY{τβ(t))) ,
\J (0,1) /

with τβ(t) : = tβ for β Φ 0 and τQ(t) := — Int and a process Y which has

stationary independent increments. The random integral (0.2) exists for

all Y's in the case of β > 0. For β = 0, the existence of the integral in

(0.2) is equivalent to £[log(l + || Y(l)||)] < oo, cf. Jurek (1988) and Jurek-

Vervaat (1983) respectively. In the present paper we discuss the case of

— 2 < β < 0. We show that ^_ 2 consists only of Gaussian measures and

each μ e °Uβ, for — 1 < β < 0, is a convolution of a strictly stable meas-

ure with the exponent — β and a distribution of a random integral like

this in (0.2). The existence of these integrals is equivalent to the condi-

tion 2?[|| Y(l)||"*] < °°. Similar characterizations hold true for the class

°ttβ with — 2 < β < — 1 provided the measure μ in (0.1) is symmetric. Ex-

pressing the characterization in Theorem 1.2 in terms of the characteristic

function, we will get the conjectured formula for the classes La : = ^ _ α ,

with 1 < a < 3; cf. O'Connor (1979) p. 268 and Jurek (1988), Section 4.

Finally we would like to emphasize that the classes °Uβ with — 2 <

β < 0 are essentially different from those with β > 0. This has led us to

conviction to present these results (for <%β9 with β < 0), although they

are complete only in the case of a Hubert space.

The paper is organized as follows: Section 1 contains notations and

main results. The existence of the pathwise random integrals (like those

in the formula (0.2)) is discussed in Section 2. Section 3 basically gives

the proofs, especially the main construction of the process Y needed in

the proof of Theorem 1.2. All theorems, lemmas and formulas are num-

bered separately in each section.
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§1. Notations and results

Let E and H denote a real separable Banach and Hubert space re-
spectively. Let ID (E) (ID (H)) denote the closed topological convolution
semigroup of all infinitely divisible measures on E (or H). Recall that
μ e ID (E) if and only if its characteristic functional μ (Fourier transform)
is of the following form

(1.1) fi(y) = exp {i(y, α> - i-<y, Ry) + f KE(y, x)M(dx)} , yeE'.

(E' is the topological dual of E; < , •> is a bilinear form between Ef and

E; KE(y, x) := exp i(y, x} — 1 — ί(y, x}lB(x), where lB(x) is the indicator
of the unit ball in E; cf. Araujo-Gine (1980)). Since μ uniquely deter-
mines a vector a, a Gaussian covariance operator R and a Levy spectral
measure M in (1.1), in the sequel, we will write μ = [α, R, M\. In the
case of a Hubert space, the kernel KH{y, x) : = exp (y, x) — 1 — /<y, x)
• (1 + II^H2)"1 and the parameters R and M are completely characterized;
cf. Parthasarathy (1967), Theorem VI. 4.10. In particular, M is a Levy
spectral measure if and only if min(l, ||x||2)M(dx) < oo. This charac-
terization is very crucial for the proof of Lemma 2.3.

For a measure v and a measurable mapping /, we write fv = vf~ι for
the measure defined by the means of the formula

(1.2) (fv)(F) : = v(f~\F)) for all measurables sets F.

In particular, if A is bounded linear operator on E then

) for yeE'.

Furthermore, if μ and v are infinitely divisible on E, A is a bounded
linear operator and t > 0, then

(1.3) (A(μ * *))** = A((/i * *)*') = Aμ*4 * Av*'.

In fact, we will use (1.3) for the operators Tcx : = ex (multiplication by a
scalar c), x e E and c e R.

Let jS e 1? be fixed and define subsets %β of ID (E) as follows:

(1.4) μeWβ if and only if V(0 < c < 1)3^ e ID (E) μ = Tcμ*ci3 * ^ c .

The classes %β coincide with some classes of limit distributions and form
closed subsemigroups of ID (E). Furthermore, if μ Φ δ(x0) (i.e. μ is non-
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degenerate) then β > — 2; cf. Jurek (1988). The class ^_ 2 is well-known

because of the following proposition.

PROPOSITION 1.1. The class ^_2 on a Banach space E coincides with

the class of all Gaussian measures.

Proof. Of course, Gaussian measures [α, R, 0] belong to ^_2. Con-

versely, if μ = [α, R, M] is in ^_2, then M > c~2TcM for all 0 < c < 1.

Hence, for each ε > 0, y e E' and B,iV : = {x: |<y, x)

oo > ί <y, x>2M(dx) > c-2 ί <y, xyAUfi^dx)
J B9fy J Bgfy

= ί <y, x>*Λf (dx) + f <y, x>2M(dx) > 0 .
J Be%y J {x:ε<\ζy,x)\ζc-iε}

Thus M vanishes on the sets Bc

Syy. Since ||x|| = sup,,^,,^ |<yn, x}\, cf. [1],

p. 34, Problem 9, we conclude that M(\\x\\ > ε) = 0 for ε > 0. Hence

M Ξ O and therefore μ is a Gaussian measure which completes the proof.

The next theorem gives the conditions for the existence of some

random integrals: deterministic integrands and Levy processes as the in-

tegrators. For our purposes we adopt the formal integration by parts

formula as the definition of random integrals, cf. Section 2 for details.

Also, cf. Prakasa Rao (1983), Section 2.

THEOREM 1.1. Let Y be a DH[0, oo)-valued r.υ. with stationary inde-

pendent increments, Y(0) = 0 α.s., JS?(Y(1)) = [x, R, M] and let Zβ(t) : =

ί sdY(sβ) for t > 0.
J[e-M)

(a) For — 1 < β < 0 the following conditions are equivalent:

(1) U[| |Y(l) | |- ']<oo;

(2) lim^oo S£{Z\t)) exists in weak topology;

(3) there exist yte H such that (^(Zβ(t) + yt))t^0 is conditionally

compact in weak topology as t —> oo.

(b) For — 2 < β < — 1 and symmetric Y(ϊ) the following are equivalent:

(1) £ [ | | Y ( l ) | M < o o ;

(2) l i m ^ &(Zβ(t)) exists in weak topology;

(3) (J?(Zβ(t)))t^Q is conditionally compact in weak topology as t -> oo.

Remark 1.1. Since the processes Zβ are with independent increments

we can add an equivalent condition

(4) lim^oo Zβ(t) exists in probability;

to"" those in the above Theorem 1.1.
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Now we are in a position to give the description of elements from

classes $ΐβ9 on a Hubert space, in terms of random integrals as it is

stated in the title of this note. It might be worthwhile to mention here

that ΰUβ form an increasing family of measures i.e., for — 2 < βt < 0 <

β2 < 1 < βz < co we have

* - Ϊ £ tyβι c ^ 0 = Lo c ^ 2 c ^ c ^ , £ ID (H),

where ^ 0 = Lo is the Levy class of self-decomposable measures and (%l

was originally defined as limit distributions for some nonlinear deforma-

tions of random variables, cf. Jurek (1985).

THEOREM 1.2. (a) Let — 1 < β < 0. Then an infinitely divisible

measure μ on a Hilbert space H belongs to the class <%β if and only

if there exists a strictly stable measure Tβ with the exponent — β and a

DH[0, oo)-valued r.v. Y with stationary independent increments such that

E[\\Y(ΐ)\\-t]< oo and

(1.5) μ = rβ*&([ tdY(tfi)).
\J(O,1) /

(b) Let — 2 < j3 < — 1. Then a symmetric infinitely divisible measure μ

on H belongs to °ttβ if and only if μ is of the form (1.5), where Tβ is sym-

metric stable measure with the exponent — β and Y is symmetric DH[0, oo)-

valued r.v. with stationary independent increments and E]\\ Y(l)\\~β] < oo.

§2. A pathwise random integral

Let DE[a, b] denote the set of all E-valued cadlag functions on an

interval [a, 6], i.e., functions that are right-continuous on [a, b) and have

left-hand limits on (α, b]. Recall that DE[a, b] becomes a complete sepa-

rable metric space under Skorohod metric. Similarly we define DE[0, oo);

cf. Pollard (1984). Let r be a strictly monotone function from (α, b] into

[0, oo), Y be a DE[0, oo)-valued random variable and fe DR[a, b] has

bounded variation. Then we define f(t)dY(r(t)) by formal integration
J <α,δ]

by parts:

(2.1) f f(t)dY(r(t)) : = f(t)Y(r(t)) "* - f Y(r(t))df(t).
J (α,δ] ί = α J (a,b]

The integral on the right-hand side exists for time scale deformations r

that are left- or right-continuous and have bounded range. We realize
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that the above definition of random integrals is very "ancient," but it is

sufficient for our purposes. Integrals over (α, c) are defined as limit in

probability of (2.1) when b f c. For r decreasing, integrals over [α, b) are,

in fact, over (c, d] by changing r(t) to s in (2.1).

LEMMA 2.1. Let Y be a DE[0, oo)-valued r.v. with stationary independ-

ent increments, Y(0) = 0 a.s. and r be strictly decreasing function. Then

(a) J?(j(Λ J(t)dY(r(t))yy) = exp {- £ [log J?(F(1))(- yf(t))]dr(t)}

for y e E'.

(b) If Y has values in the Hίlbert space H and i?( Y(l)) = [x, R, M], r(t)

= tβ, - 2 < β < 0, and f(t) = ί, ί/ie/z for s > 0

/[e-M)

where

( \ \ γ —γ\ frffβ __ D V L

Je-S Je-sjH 1

(Bochner integral)

(ii) i ? s : = - f ^
i3 + 2^

(iii) MS(A) := — M(— t~ίA)dtβ for Ae&(H\{0}).

Proof, (a) The proof is similar to the one of Lemma 2.2 in Jurek

(1988). Two minus signs in the formula (a) are due to the fact that r

is a decreasing function.

(b) The formula (i)-(iii) follow from (a) and the form of the charac-

teristic functions of infinitely divisible measures on Hubert spaces cf.

Parthasarathy (1967), Chapter VI.

Remark 2.1. (1) In the case of a Banach space only the shift x8

has slightly different form. Gaussian covariance operator Rs and Levy

spectral measure Ms are as in Hubert space case.

(b) We will use ΛL and M^ as the limits of (i) and (iii) when s -> oo,

provided the limits exist. Of course, Rm = — β(β + 2)~ιR.

LEMMA 2.2. For a r.v. Y as is in Lemma 2.1 (b), we have the following:

(a) // — 1 < β < 0, then x^ :=lims_oo xs exists (in the norm of H) when
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(b) if — 2 < β < — 1, x = 0 and M is symmetric then xs = £«, = 0

/or s > 0.

Proof. Let F(s) : = M(||x| | > s) for s > 0. Then *«, exists if

(1) | |S | | Γ tβdt < oo and (2) - Γ Γ f #& ~ *LdF{s)dt < oo ,
Jo J o J o l + s 2 l + s zr

cf. the formula (i) in Lemma 2.1(b). The integral (2) can be written as

the sum of the following two:

l - - Γ ^^B(s)dF(s) I2 : = - Γ -
Jo 1 + S2 Jo 1

+ S2

where

:= Γ T-7^idι;' ^s> : = Γ T^dv

Jo 1 + V Jo 1 + u2

Note that g(s) exists (for some 5 > 0) if and only if — 1 < β < 0. More-

over, lim^eo g(s) < Γ (vβ/(l + v2))dv + Γ (dv/(l + v2)) < oo. Since - MF(t)
JO J 1

is a finite positive measure on [0,1] and

- Γ -*g(t)t->dF(t)
J 1 1 + Γ0 1 + ί2 J 1 1 +

we conclude that ^ is finite because \\x\\~βM(dx) < oo. For the inte-
J IWi>i

gral J2, at first we should observe that

^ = 0 and lim M . = 0.

This together with

Λl Q - ( 2 + iS) foo

J o 1 + S2 J l 1

gives that J2 is finite since \\x\\-βM(dx) < oo. Thus part (a) is proved.
J I|Λ| |>1

Part (b) is obvious and therefore the lemma is proved completely.

LEMMA 2.3. Let N and Nm be two Borel measures on H\{Q\ related

each to the ether by formula
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N.(A) = ( - β) Γ 2V(- t-
Jo

where β is a constant from the interval (—2, 0). Then N^ is a Levy spec-

ral measure if and only if N is a Levy spectral measure and \\x\\~β

J I|Λ?||>1

•N(dx)< oo.

Proof. Recall that in Hubert spaces a measure is a Levy spectral

leasure if and only if it is finite outside every neighborhood of zero and

integrates ||x||2 on the unit ball around zero; cf. Parthasarathy (1967),

Theorem VI.4.10. This together with the following equalities

ΛU||x|| > ε) = - βεβ Γ iV(||x|| > v)v~(β+1)dv

= - βeβ\ v~^dvN(dx)
J \\X\\>8 J e

= e'f \\x\\-W(dx) - N(\\x\\>ε),

f \\xtfN.(dx) = - jS Γ f \\z\fN(dz)t^dt

- β \\zf t^
JWzW^i J o

= - β(β + 2)-1f f \\z\fN(dz) + f \\z\\-W(dz)] ,
U \\z\\£l J ||z||>l J

concludes the proof.

§ 3. Proofs

Proof of Theorem 1.1. Lemmas 2.2 and 2.3 combined with Theorem

VI.5.5 in Parthasarathy (1967) show for - 1 < β < 0, [xt, Rt, Mt] =φ>

[Xco, Λoo, AfJ as t->oo if £Ό|7(1)||-^] < oo, i.e., (1) => (2). Here we also

use the fact for infinitely divisible measure v with Levy spectral measure

JV and subadditive function / (f(t + s) < K(f{t) + f(s)) for all s, t > 0 and

a constant K)

f /(||*|Di<dx) < oo if and only if f f(\\x\\)N(dx) < oo
J E J ||a?ltel

cf. for instance deAcosta (1980). Implication (2) =̂> (3) is obvious.
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(3) => (1): Suppose that for each sequence V -> co there exists a subse-

quence ί"->oo and a r.v. ξ such that if(Z'(ί") + yt.) φ f as ί" -> oo.

Then the f's are infinitely divisible measures with the Levy spectral

measure MM. So, by Lemma 2.3 we get \\x\\~βM(dx) < oo, which
J 11*11 £1

completes the proof of part (a).

The proof of part (b) is contained in Lemmas 2.2 and 2.3 together

with reasoning as it is in part (a).

Remark 3.1. If — 2 < /3 < — 1 and there exist yte H such that

(&(Zβ(t) + yt))t>o is conditionally compact as t -> oo then we have

E[\\Y(ϊ)\\-t]<™.

The most crucial part of the proof of Theorem 1.2 is given in the

construction presented in Lemma 3.1. In fact, the construction in ques-

tion is a further extension of the one given in the proof of Theorem

1.2(a) in Jurek (1988).

LEMMA 3.1. Let — 2 < β < 0, μ e ID (E) and for each t > 0 there ex-

ists μt e ID (E) such that

(3.1) /£= Tβ-φ*'-βt * μt .

Then there exists a DE[0, co)-valued r.v. Y with stationary independent in-

crements such that Y(0) = 0 a.s. and for t > 0

udY(uβ)\.
Ce-M) /

Proof. As in the case of β > 0 (cf. Jurek (1988)) we construct a

Z)[0, oo)-valued r.v. Z with independent increments such that Z(0) — 0

and

(3.2) &(Z(t)) = μt for t > 0.

Furthermore, the process Ϋ defined as follows

(3.3) Ϋ(t) := ί esdZ(s)
Jco.ί]

has independent increments and for 0 < s < t and he R such that 8 +

h >, 0 we obtain

(3.4) S£(Y{t + h) - Ϋ(s + A)) = S£{Ϋ(t) - Ϋ(sψβ'βh,
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cf. formula (3.8) in Jurek (1988). Now let Y, be a D[l, oo)-valued r.v.

with independent increments, Yj(l) = 0 and such that for 0 < υ < w

(3.5) &&&->») - Y,{e^υ)) : = 2(Ϋ{υ) - Ϋ(w)) .

Hence and from (3.4) we get for c > 0 and such that ce~βυ > 1

- Y1{ce-^)} = se[Ϋ(υ + 0-1 log cr1) - Ϋ(w + β-'log

Ϋ - Ϋ{w))*c =

Putting c:=eβυ we obtain se{Yx(e'^-^)) = ^(Y^e'^) - Y^e-**))*'1* or

equivalently for 1 < s < t we have

(3.6) &(Yι(tls)) = &(Yi(t) - Yi(s))* ~ι

Since Yx has independent increments and Yi(l) = 0, therefore for 1 < s <

a < b we have

)*' = JSf(Yi(α/s) - YX

This together with (3.6) gives

and consequently

- Y1(a)) = Se(Yx(bla) - ΓXα/s))*1 for 1 < s < α < 6 .

Putting f(a, b) : = log ^(^(ft) - Y^α)) for 1 < a < b we obtain f(a, a) = 0,

/(α, 6) + /(&, c) = f(a, c) for 1 < a < b < c and sf(a/s9 b/s) = /(σ, 6) for

1 < s < a < b. Furthermore putting g(υ) : = /(I, u) = log ^(Yi(ι )), i; > 1

we have

s^(Wβ) = /(s, υ) = /(I, v) - /(I, s) = g(u) - ί(s) for 1 < s < v

or equivalently

g(si) = sg(t) + g(s) for all s, t > 1.

Hence sg(t) + £(s) = g{ts) == ί^(s) + g(ί), i.e., (s - l)g(ί) = (ί - ΐ)g(s) and

therefore ^(ί) = (t — l)g(2) for all t > 1. Since Yj has independent in-

crements and YXl) = 0 we conclude that the increments of Yx are also

stationary. Finally, Y(i) : = Yt(t + 1 ) for t > 0 gives a Z>J0, cx>)-valued

r.v. with independent and stationary increments and Y(0) = 0. Moreover,

taking into account (3.2), (3.3) and (3.5) we get
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μt = Z(Z(t)) = Se(\ e-sdΫ(s)) = Se(- \ e -
\J(θ,ί] / \ J (o,o

= se([ vdYlu*)\ = J£?(T
\J[e-M) / \J[e-«,

which completes the proof of Lemma 3.1.

Proof of Theorem 1.2. At first, let us note that for a strictly stable

measure ϊβ with the exponent — β and a positive constant c we have

Tjβ = 7?e~'. Since

(0,1) / \J (0,c) / \J (0,c)

we infer that measures of the form (1.5) belong to the class °UQ with

μc = Se( [ tdY(tβ)) in (1.4) for 0 < c < 1.
\J[C,Ό /

Conversely, if μ satisfies (3.1), we infer that (μt)t>o is shift condition-

ally compact; cf. Parthasarathy (1967), Theorem IΠ.2.2. If - 1 < β < 0,
then Theorem 1.1 (a) gives that μt^se{\ tdY(tβ)) as ί->oo. Conse-

\J (0,1) /

quently, the first factor in (3.1) Te-tμ*e~βt converges, say to Tβ9 as t —> oo.

But for α > 0

τaγβ = iim(Te-sμ*e-βTa~β = rΓ~'
S—»oo

which shows that Tβ is a strictly stable measure with the exponent — β.

Assuming that μ is symmetric in (3.1) we have that both factors are

symmetric and conditionally compact. In fact, both converge because of

Theorem 1.1 (b). Consequently, similar arguments apply for — 2 < β < 1

as they did for - 1 < β < 0.
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