H. Hauser and G. Müller Nagoya Math. J. Vol. 113 (1989), 181-186

ALGEBRAIC SINGULARITIES HAVE MAXIMAL REDUCTIVE AUTOMORPHISM GROUPS

HERWIG HAUSER AND GERD MÜLLER

§1. Introduction

Let $X = \mathcal{O}_n/i$ be an analytic singularity where i is an ideal of the *C*-algebra \mathcal{O}_n of germs of analytic functions on $(\mathbb{C}^n, 0)$. Let m denote the maximal ideal of X and $A = \operatorname{Aut} X$ its group of automorphisms. An abstract subgroup $G \leq A$ equipped with the structure of an algebraic group is called *algebraic subgroup* of A if the natural representations of G on all "higher cotangent spaces" $\mathfrak{m}^k/\mathfrak{m}^{k+1}$ are rational. Let π be the representation of A on the first cotangent space $\mathfrak{m}/\mathfrak{m}^2$ and $A_1 = \pi(A)$.

Cartan's Uniqueness Theorem [8] asserts that every reductive algebraic subgroup of A is faithfully represented by π . This was strengthened by the second author in [9]: Any two reductive algebraic subgroups G, H of A are conjugate if and only if $\pi(G)$ and $\pi(H)$ are conjugate in A_1 .

Since A_1 is an algebraic subgroup of $\operatorname{GL}(\operatorname{m/m^2})$ it has by [7, Chapter VIII, Theorem 4.3] a Levi subgroup, i.e. a reductive subgroup containing every reductive subgroup of A_1 up to conjugacy. (Hence a Levi subgroup is a maximal reductive subgroup, unique up to conjugacy.) A reductive algebraic subgroup G of A will be called a *Levi subgroup* of A if $\pi(G)$ is a Levi subgroup of A_1 . It follows from the result cited above that a Levi subgroup of A (if it exists) contains every reductive algebraic subgroup of A up to conjugacy. Let us mention an interesting consequence hereof. A rational action of a reductive algebraic group on a singularity $X = \mathcal{O}_n/i$ can be lifted to an action on \mathcal{O}_n , linear in suitable coordinates. In the presence of a Levi subgroup of Aut X this linearization can be done simultaneously for (up to conjugacy) all reductive group actions on X.

In [9] it was shown that weighted homogeneous singularities with positive weights and complete intersections with isolated singularity admit

Received June 22, 1987.

a Levi subgroup in their group of automorphisms. In the present paper we shall extend this by proving

THEOREM 1. Any algebraic singularity has a Levi subgroup in its group of automorphisms.

Here a singularity $X = \mathcal{O}_n/i$ is called *algebraic* if i can be generated by power series algebraic over the polynomials. Special cases are arbitrary isolated singularities (cf. [1, Theorem 3.8]) and plane curves (possibly non-reduced, cf. [5, 1.11]). The main step in the proof of Theorem 1 is

THEOREM 2. If a reductive algebraic group acts rationally on the completion of an algebraic singularity then it also acts on the singularity itself (with the same representation on the cotangent space).

Theorem 2 also yields an extension of Saito's characterization of weighted homogeneous isolated hypersurface singularities: If $f \in \mathcal{O}_n$ is algebraic over the polynomials and belongs to $\mathfrak{m} \cdot j(f)$ then f is weighted homogeneous in suitable coordinates. (Here \mathfrak{m} denotes the maximal ideal of \mathcal{O}_n and j(f) the Jacobian ideal of f.)

We thank Dorin Popescu for valuable discussions.

§2. Proofs

Let GL (C^n) act contragrediently on \mathcal{O}_n and its completion $\hat{\mathcal{O}}_n$. We shall prove the following more precise version of Theorem 2:

THEOREM 2'. Let $G \leq \operatorname{GL}(\mathbb{C}^n)$ be reductive. Suppose that the ideal $i \leq \mathcal{O}_n$ is generated by power series algebraic over the polynomials. Then i is equivalent to a G-stable ideal $j \leq \mathcal{O}_n$ if and only if $i \cdot \hat{\mathcal{O}}_n$ is formally equivalent to a G-stable ideal $j' \leq \hat{\mathcal{O}}_n$.

Theorem 1 is a corollary of Theorem 2' by

LEMMA. Let $X = \mathcal{O}_n/i$ be an arbitrary analytic singularity. Then Aut X has a Levi subgroup if and only if the assertion of Theorem 2' holds for every reductive subgroup $G \leq \operatorname{GL}(\mathbb{C}^n)$.

Proof. "if". Take a Levi subgroup G of A_1 . By [9, Satz 4] there is a faithful rational action $G \to \operatorname{Aut}(\hat{\mathcal{O}}_n/i \cdot \hat{\mathcal{O}}_n)$. Hence by the formal version of [9, Satz 6] there is a faithful rational representation $G \to \operatorname{GL}(\mathbb{C}^n)$ such that $i \cdot \hat{\mathcal{O}}_n$ is formally equivalent to a G-stable ideal of $\hat{\mathcal{O}}_n$. By the assertion of Theorem 2' we obtain a faithful rational action $\alpha \colon G \to \operatorname{Aut}(\mathcal{O}_n/i)$.

182

Without loss of generality $\pi(\alpha(G)) \leq G$. Counting dimensions and numbers of components we conclude $\pi(\alpha(G)) = G$.

"only if" is an immediate consequence of the analytic version of [9, Satz 6].

The proof of Theorem 2' relies on an approximation theorem for polynomial equations with formal solutions. It was conjectured by Artin [2, Conjecture 1.3] and recently proven by Popescu [10, Theorem 1.3] and Rotthaus [11, Theorem 4.2] that excellent Henselian local rings have the approximation property. This implies (cf. [3, Remark 1.5]) the following approximation theorem with nested subring condition. For a coordinate system $x = (x_1, \dots, x_n)$ denote by $C\{x\}$ the algebra of convergent power series and by $C\langle x \rangle$ the algebra of algebraic power series, i.e. those $f \in C\{x\}$ which are algebraic over C[x].

THEOREM 3. If a system of polynomial equations over $C\langle u, x \rangle$ admits formal solutions $\overline{y}(u)$, $\overline{z}(u, x)$,

$$F(u, x, \overline{y}(u), \overline{z}(u, x)) = 0$$

then it has convergent (in fact, algebraic) solutions y(u), z(u, x),

F(u, x, y(u), z(u, x)) = 0,

approximating $\overline{y}(u)$, $\overline{z}(u, x)$ up to any given order.

Remark. An example of Gabriélov [6] shows that in general the corresponding statement with $C\langle u, x \rangle$ replaced by $C\{u, x\}$ is false.

Proof of Theorem 2'. One implication being obvious let us assume that $i \cdot \hat{\mathcal{O}}_n$ is formally equivalent to a G-stable ideal $j' \leq \hat{\mathcal{O}}_n$. Let x_1, \dots, x_n be the natural coordinates on $(\mathbb{C}^n, 0)$.

By [9, Hilfssatz 2] there are a rational representation of G on C^m and generators $\overline{g}_1(x), \dots, \overline{g}_m(x) \in \hat{\mathcal{O}}_n$ of j' such that the vector $\overline{g}(x)$ with components $\overline{g}_i(x)$ is G-equivariant. Since G is reductive the C-algebra $C[x]^G$ of invariant polynomials and the $C[x]^G$ -module of equivariant polynomial mappings $C^n \to C^m$ are finitely generated, cf. [13, Corollary 2.4.10 and Proposition 2.4.14]. Let $u(x) = (u_1(x), \dots, u_r(x))$ and $p(x) = (p_1(x), \dots, p_s(x))$ be corresponding generator systems. We get

$$\overline{g}(x) = \overline{y}(u(x)) \cdot p(x) = \overline{y}_1(u(x)) \cdot p_1(x) + \cdots + \overline{y}_s(u(x)) \cdot p_s(x)$$

with suitable $\overline{y}(u) \in C[[u]]^s$.

Let $f_1(x), \dots, f_m(x) \in C\langle x \rangle$ generate i. By assumption there are a formal coordinate system $\overline{z}(x) \in C[[x]]^n$ and a matrix $\overline{M}(x) \in GL(m, C[[x]])$ such that

$$f(x) = \overline{g}(\overline{z}(x)) \cdot \overline{M}(x) ,$$

hence

$$f(x) - \overline{y}(u(\overline{z}(x))) \cdot p(\overline{z}(x)) \cdot \overline{M}(x) = 0.$$

By Taylor expansion there is an $r \times m$ – matrix $\overline{N}(u, x)$ with entries in C[[u, x]] such that

$$f(x) - \overline{y}(u) \cdot p(\overline{z}(x)) \cdot \overline{M}(x) = (u - u(\overline{z}(x))) \cdot \overline{N}(u, x) .$$

This is a system of polynomial equations over $C\langle u, x \rangle$ in unknowns y, z, M, N. By Theorem 3 the formal solutions $\overline{y}(u)$, $\overline{z}(x)$, $\overline{M}(x)$, $\overline{N}(u, x)$ can be approximated up to order 2 by algebraic solutions y(u), z(u, x), M(u, x), N(u, x),

$$f(x) - y(u) \cdot p(z(u, x)) \cdot M(u, x) = (u - u(z(u, x))) \cdot N(u, x)$$

Since the matrix $(\partial_x z(u, x))(0)$ is invertible and $(\partial_u z(u, x))(0) = 0$ there is $w(u, x) \in C\{u, x\}^n$ such that z(u, w(u, x)) = x, $(\partial_x w(u, x))(0)$ is invertible, and $(\partial_u w(u, x))(0) = 0$. We conclude

$$f(w(u, x)) - y(u) \cdot p(x) \cdot M(u, w(u, x)) = (u - u(x)) \cdot N(u, w(u, x)).$$

Setting $\tilde{w}(x) = w(u(x), x)$ and $\tilde{M}(x) = M(u(x), \tilde{w}(x))$ this implies

 $f(\tilde{w}(x)) = y(u(x)) \cdot p(x) \cdot \tilde{M}(x) .$

Since $\tilde{w}(x)$ is a coordinate system and $\tilde{M}(x) \in \text{GL}(m, \mathbb{C}\{x\})$ we have proven that i is equivalent to the *G*-stable ideal of \mathcal{O}_n generated by the components of $y(u(x)) \cdot p(x)$.

Remark. The assertion of Theorem 2' holds for finite groups G and arbitrary singularities $X = \mathcal{O}_n/i$. This is a corollary of the following observation:

Let $G \leq \operatorname{GL}(\mathbb{C}^n)$ be finite. If a system of analytic equations,

$$F(x, y, z) = 0,$$

has formal solutions $\overline{y}(x)$, $\overline{z}(x)$ without constant terms and such that $\overline{y}(x) = (\overline{y}_1(x), \dots, \overline{y}_m(x))$ is G-equivariant with respect to a representation of G on C^m , then it has convergent solutions y(x), z(x), approximating

184

 $\overline{y}(x)$, $\overline{z}(x)$ up to any given order, and such that y(x) is again *G*-equivariant. (Note that this is false, in general, for infinite *G*. Take $G = C^*$ acting on C^n by

$$t \cdot (x_1, \cdots, x_n) = (x_1, \cdots, x_r, t \cdot x_{r+1}, \cdots, t \cdot x_n).$$

Then $C[x]^{a} = C[x_{1}, \dots, x_{r}]$ and we can use Gabriélov's example.)

For the proof of the observation write $z = (z_1, \dots, z_k) = {}_e z$, where e denotes the unit element of G, and introduce dummy-variables ${}_7 z = ({}_7 z_1, \dots, {}_7 z_k)$ for $e \neq i \in G$. Put ${}_7 \overline{z}(x) = \overline{z}(ix)$ for $i \in G$. Then $(\overline{y}(x), {}_7 \overline{z}(x), i \in G)$ is equivariant with respect to a suitable representation of G on $C^{m+k+|G|}$. A theorem of Bierstone and Milman [4, Theorem A] yields the desired y(x), z(x).

§ 3. Saito's problem

Let x_1, \dots, x_n be coordinates on $(\mathbb{C}^n, 0)$ and $\lambda, \lambda_1, \dots, \lambda_n \in \mathbb{Z}$. A power series $f \in \hat{\mathcal{O}}_n$ is called weighted homogeneous with weights $\lambda_1, \dots, \lambda_n$ and degree λ (with respect to the coordinates x) if $\lambda = \lambda_1 \cdot \alpha_1 + \cdots + \lambda_n \cdot \alpha_n$ for all monomials $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ of f. This is equivalent to: f is equivariant with respect to the representations of \mathbb{C}^* on \mathbb{C}^n and \mathbb{C} defined by

$$egin{pmatrix} t^{\lambda_1} & & \ & \cdot & \ & t^{\lambda_n} \end{pmatrix} \quad ext{and} \quad t^{\lambda} \, .$$

THEOREM 4. For an algebraic hypersurface singularity $X = \mathcal{O}_n/(f)$ the following conditions are equivalent:

i) $f \in \mathfrak{m} \cdot j(f)$, $(\mathfrak{m} \leq \mathcal{O}_n$ the maximal ideal, $j(f) = (\partial_1 f, \dots, \partial_n f)$).

ii) There is an analytic coordinate change z(x) such that g(x) = f(z(x)) is weighted homogeneous of non-zero degree.

Proof. One implication being obvious let us assume that $f \in \mathfrak{m} \cdot j(f)$. By [12, Korollar 3.3 and Lemma 1.4] there is a formal coordinate change $\overline{z}(x)$ such that $\overline{g}(x) = f(\overline{z}(x))$ is weighted homogeneous of non-zero degree λ . By Theorem 2' and [9, Hilfssatz 2] there are an analytic coordinate change z(x) and a unit $u(x) \in \mathcal{O}_n$ such that $g(x) = f(z(x)) \cdot u(x)$ is weighted homogeneous of degree λ . Since $\lambda \neq 0$ this implies (ii) with suitably modified z(x).

References

- M. Artin, Algebraic approximation of structures over complete local rings, Publ. Math. Inst. Hautes Etud. Sci., 36 (1969), 23-58.
- [2] —, Construction techniques for algebraic spaces, Actes Congrès Intern. Math. 1970, tome 1, pp. 419-423.
- [3] J. Becker, J. Denef and L. Lipshitz, The approximation property for some 5dimensional Henselian rings, Trans. Amer. Math. Soc., 276 (1983), 301-309.
- [4] E. Bierstone and P. Milman, Invariant solutions of analytic equations, Enseign. Math., 25 (1979), 115-130.
- [5] J. Bingener and H. Flenner, Einige Beispiele nichtalgebraischer Singularitäten, J. Reine Angew. Math., 305 (1979), 182–194.
- [6] A. M. Gabriélov, Formal relations between analytic functions, Funct. Anal. Appl., 5 (1971), 318-319.
- [7] G. P. Hochschild, Basic theory of algebraic groups and Lie algebras, Springer, 1981.
- [8] W. Kaup, Einige Bemerkungen über Automorphismengruppen von Stellenringen, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber., 1967 (1968), 43-50.
- [9] G. Müller, Reduktive Automorphismengruppen analytischer C-Algebren, J. Reine Angew. Math., 364 (1986), 26-34.
- [10] D. Popescu, General Néron desingularization and approximation, Nagoya Math. J., 104 (1986), 85-115.
- [11] C. Rotthaus, On the approximation property of excellent rings, Invent. Math., 88 (1987), 39-63.
- [12] K. Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math., 14 (1971), 123-142.
- [13] T. A. Springer, Invariant theory, Springer, 1977.

Herwig Hauser Institut für Mathematik Universität Innsbruck Technikerstr. 25 A–6020 Innsbruck Austria

Gerd Müller Fachbereich Mathematik Universität Mainz Saarstr. 21 D-6500 Mainz Federal Republic of Germany