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SYMBOLIC POWERS OF PRIME IDEALS WITH APPLICATIONS

TO HYPERSURFACE RINGS

SAM HUCKABA

Introduction

Let R be a commutative Noetherian ring and suppose q is a prime
ideal of R. A fundamental problem is to decide when powers qn of q
are primary (that is qn is its own primary decomposition). If q is gen-
erated by a regular sequence then powers of q are always primary, be-
cause G(q, R) (the associated graded ring of R with respect to q) is an
integral domain (see [12 page 98] and also [5 (2.1)]). Let q{n) denote the
nth symbolic power of g-defined by q{n) = {reR\there exists seR\q such
that sr e qn). Then qn is primary if and only if qn = qin\ If q is gen-
erated by a regular sequence then we call it a complete intersection
prime ideal, so if q is a complete intersection prime ideal then qn — q{n)

for all n > 1. If q is not a complete intersection then powers need not
be primary. If J? is a three-dimensional regular local ring and q is a
non-complete intersection height two prime ideal for example, then
Huneke showed [11 Corollary (2.5)] that qn Φ qin) for all n > 2. Thus,
for such a prime q it is impossible for qn to occur in the primary de-
composition of any ideal. This phenomena increases the difficulty in
finding a primary decomposition for an ideal having q as an associated
prime.

One objective in the present article is to compare powers and sym-
bolic powers, for prime ideals in hypersurface rings. Recall that T is
said to be regular if its localizations at prime ideals are regular local
rings. We call R a hypersurface ring if R = T/fT where T is a regular
ring and / is a non-unit element of T. If J? is a hypersurface ring, then
any prime ideal q of R has the form q = PjfT where P is a prime ideal
of T. If we assume that Pn = P ( n ) for all n > 1 then one might hope
that this propery is preserved in q—that is qn = q{n) for all n > 1.
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Simple examples show that this is asking too much; e.g. Let

R = K[U, V, W]/(V2 - UW)K[U, V, W]

and

q = P/(V2 - UW)K[U, V, W]

where P = (U, V)K[U, V, W\. Then Pn = P ( n ) for all n > 1, but qn Φ qw

for all n > 2. A more subtle question can be constructed by employing
a condition on the analytic spread l(qRQ) of #i?Q for Q > ςr (see Section
One for the definition). We will prove that if P is a complete intersec-
tion prime ideal and l(qRQ) < height (Q) for all prime ideals Q properly
containing g, then qn = g(7° for all n > 1 (see Corollary 2.2). In fact, we
obtain a more general result (Theorem 2.1) which does not assume that
R is a hypersurface ring, but instead assumes only that R is Noetherian
and G(q, R) is Cohen-Macaulay (a property which is forced in the hyper-
surface case when P is a complete intersection). The condition that
l(qRQ) < height (Q) for all Q properly containing q has been investigated
frequently during the past (see for example [9], [17] or [13 Chapter 4]).
It forces the so-called linear equivalence of the g-adic and ^-symbolic
topologies in the case that R is locally unmixed (see [17 Corollary 1]).
Recall that the g-adic and g-symbolic topologies are said to be linearly
equivalent if there exists an integer c > 0 such that g(7l+c) c qn for all
n > 0. As a corollary to Theorem 2.1 we establish that in the hypersurface
case with P a complete intersection and q = P//Ϊ7, the g-adic and q-
symbolic topologies are linearly equivalent if and only if qn = q{n) for
all n > 1.

In Section One we review definitions and notation, as well as giving
some background material.

Section Two is devoted to proving our main result (Theorem 2.1)
from which some example producing corollaries follow, and to discussing
several illustrative examples.

ACKNOWLEDGEMENT. The author is grateful to P. Eakin and A.
Sathaye for numerous helpful conversations. He is also indebted to the
referee for a careful reading (including helpful suggestions), along with a
strengthening of the original version of Theorem 2.1.
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1. Background

Throughout the paper we assume that all rings are commutative and
Noetherian, and contain a unit element. Let R be such a ring and let
I be an ideal in R. The associated graded ring of R with respect to I,
denoted by G(I, i?), is defined by

G(I, R) = R/IΘ IIP Θ P/Γ Θ .

If (i?, M) is local with maximal ideal M, and R/M is infinite, then we
define the analytic spread of I by

1(1) = dim (R/M Θ J/M/ Θ PIMP φ .. .)

(Northcott and Rees introduced and studied analytic spread in [14]). Thθ
analytic spread of I roughly measures the growth of the number of gen-
erators of In as n increases. One always has the inequalities

height (I) < 1(1) < dim (R).

If q is a prime ideal in a Noetherian ring R, then the condition
l(qRQ) = height (Q) for some prime ideal Q properly containing q is re-
levant in discussing symbolic powers. According to [13 Proposition 4.1]
(see also [9 Theorem 2.1]) followed by [13 Proposition 3.17] (see also [15]),
if l(qRQ) — height (Q) for some prime ideal Q properly containing q, then
qn φ qW for all large n. Thus if (i?, M) is local and q is a prime ideal
of R such that height (q) = dim (R) - 1 and l(q) Φ height (q), then qn Φ qin)

for all large n. Notice that Huneke's result (mentioned in the introduc-
tion) considerably sharpens this in the special case when q is a height
two prime ideal, not a complete intersection, and R is a three-dimensional
regular local ring (by [2 Theorem 1], l(q) = 3 for such q).

In light of the above comments, when searching for prime ideals in
a ring R whose powers are primary, one must investigate the class of
primes q for which l(qRQ) < height (Q) for every Q properly containing
q, or perhaps even the smaller class of primes q for which l(qRQ) =
height (q). These conditions are satisfied by complete intersection prime
ideals. In general it can happen that l(qRQ) = height (q) for all Q > q
while qn Φ q(n) for all large n. A relatively simple example appears in
[7 Example 1.5] (e.g. Let R = K[x\ x*y,y\y% K a field, and let q =
(x\ xzy)R. Then l(qRM) = height (q) = 1 where M = (x\ x*y, y\ f)R, but
qn φ g(n) for a U n ^ 3 β) β
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Suppose R is a Noetherian ring, let q be a prime ideal of R, and

assume G(q, R) is a Cohen-Macaulay ring. We will show below that if

l(qRQ) < height (Q) for every prime ideal Q properly containing q, then

the powers of q are all primary. The proof involves the use of various

graded rings, so we take a moment to settle on notation and recall some

technical points.

If R is an arbitrary Noetherian ring and I is an ideal in R, the

Rees ring of R with respect to I (also known as the Rees algebra) is

defined and denoted by R[It] — φlntn, where t is an indeterminate.

A useful isomorphism connecting the Rees ring with the associated

graded ring is that G(I, R) ^ R[It]IIR[It]. If R is local with maximal

ideal M, another frequently used isomorphism is

0 ? / M ? g* R[It]/MR[It].

Notice that 1(1) can thus be computed by calculating dim (R [It]/MR [It]).

If a e R we denote by ar the leading form of a in G(I, R). Recall that if

a' is a regular element (not a zero-divisor) in G(I, R), then

G((I, aR)/aR, R/aR) g* G(I, R)la'G(l R)

([12 page 118]). For terminology not otherwise explained, we direct the

reader to [12].

Much work has been done involving symbolic powers. For a sample

see [5], [6], [8], [9], [10], [11], [2], [1], [13], [15], [16] and [17].

2. Main results and examples

Throughout this section we will assume that all local rings have

infinite residue fields. Although we have an eye on hypersurface rings,

the result we are aiming for is true more generally. Theorem 2.1 below

illustrates this point, and the corollaries which follow are applications

of the theorem.

THEOREM 2.1. Let R be a Noetherian ring and suppose q is a prime

ideal of R. Assume that G(q, R) is a Cohen-Macaulay ring and q satisfies

the property that l(qRQ) < height (Q) for every prime ideal Q properly con-

taining q. Then qn = q{n) for every n > 1.

Proof. Suppose qn Φ q{n) for some positive integer n. Then there

exist seR\q and zeR\qn such that szeqn. Hence s'zf = 0 in G(q, R)
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so that s' is a zero-divisor in G(g, R). Since G(g, i?) = R[qt\lqR[qt] with

the isomorphism sending sf to s where t f~" denotes image modulo giϊfeί],

it follows that se U Ass (R [qt]/qR [qt]), say s e P e Ass (i?[qt]/qR [qt]).

Clearly q a P and since s&q, q is properly contained in Q = P Π -R.

Since G(q, R) is Cohen-Macaulay, the localization (i2[ςfί]/gi2[gί])s where

g = i2\Q is also Cohen-Macaulay. One can routinely verify that

(R[qt\lqR[qt])s ς* RQ[qRQt]lqRQ[qRQt] .

Furthermore, P is an associated prime of qRQ[qRqt] since S (Ί P = 0 .

By the Cohen-Macaulay property on RQ[qRQt]lqRQ[qRQt] it follows that

dim (RQ[qRQt]/qRQ[qRQt]) = dim (RQ[qRQt]/Ps). Since qRQ[qRQt] C QRQ[qRQt]

C P s it is therefore true that dim (22ρ[gi^*]/g^Rρ[giϊρί]) = dim (RQ[qRQt\j

QRQ[qRQt\). By using the property that dim (G(qRQ, RQ)) = dim (iτ!ρ), we

obtain height (Q) = dim (RQ) = dim G(gEQ, # ρ ) = dim (i?J^Eρί]/Qi?ρ[ςfJ?ρί])

= l(qRQ). This contradiction completes the proof of Theorem 2.1.

Remark. Theorem 2.1 can actually be strengthened by assuming only

that the zero ideal in G(q, R) is unmixed and locally equidimensional,

instead of the full Cohen-Macaulay assumption.

The following corollary yields a wide class of examples.

COROLLARY 2.2. Let T be a regular ring and P a complete intersec-

tion prime ideal of T. Let feP, set R = T\fT and let q = P\fT. If

l(qRQ) < height Q for every prime ideal Q properly containing q, then
qn = q(n) for au n > l β

Proof. Since P is a complete intersection prime ideal of T it follows

that TIP is Cohen-Macaulay and that G(P, T) is a polynomial ring over

TIP. Thus G(P, T) is Cohen-Macaulay domain. Therefore G(q, R) ^

G(P, T)lf'G(Py T) is Cohen-Macaulay and the result follows from Theorem

2.1.

For the next two corollaries we recall some notation from [13]. For

R a Noetherian ring and I an ideal of R we define A*(I) = {P/P is a

prime ideal of R such that P e Ass (R/In) for all large n} and Ά*(I) =

{PIP is a prime ideal of R such that Pe Ass (22/(/n);) for all large n},

where for an ideal J of R, Jf denotes the integral closure of J (see [13,

page 3 and Chapter 3]).

COROLLARY 2.3. Let T be a regular ring and P a complete intersection

prime ideal of T. Let feP, set R= T\fT and let q = P/fT. Then the
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q-adic and q-symbolic topologies are linearly equivalent if and only if
qn = goo for au n > ι t

Proof. If qn = q{n) for all n > 1 then the two topologies are clearly

linearly equivalent. If the topologies are linearly equivalent then by [17

Corollary 1] we have that l(qRQ) < height (Q) for every prime ideal Qe

A*(q)\{q). In fact we claim that l(qRQ) < height Q for every prime ideal

Q properly containing P. If l(qRQ) = height (Q) then Q e A*(q) by [13

Proposition 4.1], hence QeA*(g) by [13 Proposition 3.17]. Thus the only

possible prime ideals Q for which l(qRQ) = height (Q) are those in A*(q)

and we have observed that l(qRQ) < height (Q) for those primes. Now

by Corollary 2.2 qn = q{n) for all n > 1.

COROLLARY 2.4. Let T be a regular local ring and P a complete in-

tersection prime ideal of T with height (P) = dim T — 1. Let feP, R —

T\fT and q = P\fT. Then l(q) = height (q) if and only if qn = q{n) for all

n>l.

Proof. If l(q) = height (q) then qn = q{n) for all n > 1 by Corollary

2.2. Conversely, if qn = g(κ) for all rc > 1 then A*(q) = {g}, hence A*(g)

= {g} by [13 Proposition 3.17]. Therefore l(q) = l(qM) < height (M) =

dim R — height (q) + 1 (where M is the maximal ideal of R) by [13 Prop-

osition 4.1]. Thus height (q) < /(#) < height (q) + 1 so it follows that

height (q) = l(q).

We now present a few examples to illustrate the Theorem and its

Corollaries. Let K denote an infinite field, and let X, Y, Z, U, V and W

be indeterminates in what follows.

EXAMPLE 2.5. Let R = K{Xa, XbYc, Yd] where α, 6, c and d are

positive integers, and let q = (Xa, XbYc)R. If l(q) = 1 then gw = q(n) for

all 7i > 1.

Proof. Since i? is a subring of K{X, Y] over which if [X, Y] is in-

tegral, dim(i?) = dim (K[X, Y]) = 2. Thus, i? is a hypersurface ring by

considering K{U, V, WJ -> R given by C7->Xα, y-+X δY c and W"-* Y<*.

Furthermore, g is the image of (C7, F)if[i7, V, W] in iϊ. By Corollary

2.4 qn = <?(w) or all Λ > 1.

We use Corollary 2.2 on the next example for the sake of application,

but observe that G(q, R) is actually a domain so that Theorem 2.1 could

be bypassed.
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EXAMPLE 2.6. Let T = K[X, Y, Z, W] and / = XYa - ZWb where a
and b are positive integers. Set R = T//T and let q = (X, Z)T/fT. Then
qn = g(») for a l l ^ > L

Proo/. Since g is generated by two elements we must have l(qRM) <
2 < 3 = dim (R) = height (M) where M is any maximal ideal of R. If Q
is a height two prime ideal of R which contains g, then Q is the image
of a height three prime ideal Pί of T such that either Y &PX or W g P^
If Y g P! then gi?ρ is principal generated by the image of Z in RQ, and
if W £ P1 then gi?ρ is principal generated by the image of X in RQ.
Therefore l(qRQ) < 1 < height (Q). By Corollary 2.2 qn = q{n) for all
n> 1.

It is surprising to note that Corollary 2.2 is false if R is merely a
complete intersection (a homomorphic image of a regular ring by a regular
sequence). The next example shows this. It is lifted from [7 Example
1.6] where is appears in more detail.

EXAMPLE 2.7. Let

R = K[U, V, W, Z]/(W7 - IP"Z\ V3 - WZ)K[U, V, W, Z]

and let q be the image of (U, V, W)K[U, V, W, Z] in i?. Then R is a
two-dimensional domain isomorphic to K[X\ X5Y\ Xl5Y\ Y7], and q is a
prime ideal of R satisfying l(qRQ) < height (Q) for all Q properly con-
taining g, while qn Φ q{n) for all n > 2.

Proof. See [7 Example 1.6].

Remark. For another example which achieves the same conclusion
as Example 2.7, see [4 Example 1].

Another interesting problem arises upon viewing more closely the
nature of the prime ideals to which Corollary 2.4 applies. Assume T is
a regular local ring and P is a prime ideal of T such that height (P) =
dim(T) — 1. If feP then the key hypothesis for Corollary 2.4 is that
liPlfT) = height (P/fT) = l(P) - 1 (that is the analytic spread behaves
the same as the height and drops by exactly one). A simple example
where the analytic spread drops is given by taking R = K[U, V, W}[
(u6 - uW)K{U, V, W] = TlfT, and P = (U9 V)K{U, V, WJ. Then l(P/fT)
= 1. On the other hand, if we let P = (V, W)KIU, V, WJ then l(P/fT)
= 2 so that the analytic spread does not drop. In order to find non
complete intersection prime ideals P which satisfy the condition that
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l(P/fT) = height (P/fT) it is necessary that l(P/fT) drop by more than
one. We will give examples to show that this can in fact happen (Ex-
amples 2.8 and 2.10). In addition, Example 2.8 will give an application
of Theorem 2.1 (see Observation 2.9), while Example 2.10 will show how
Theorem 2.1 can be used to test whether or hot G(q, R) is Cohen-
Macaulay. The examples themselves were discovered by studying height
two primes in a three-dimensional regular local ring rather than studying
specific hypersurface rings. Huneke's paper [10] was quite instrumental
in supplying the techniques for finding these examples. In particular
Propositions 2.2 and 2.3 of [10] were very useful.

EXAMPLE 2.8. Let T = K\U, V, WJ, suppose t is an indeterminate,
and let P be the kernel of the homomorphism T-+K\t, t*,fj given by
U-+t\ V->t\ W-> t\ Then there exists feP such that l(q) = 1 if q =
P/fT (note that l(P) = 3 since P is not a complete intersection).

Proof. By Herzog's work (see [20, page 137]) it follows that P =
(α, 6, c)T where a, b and c are the alternating 2 X 2 minors of the matrix

A ι v w u
By the Hilbert-Burch Theorem [19], a minimal resolution of P is given

by

Therefore, the relations on a, b, c are generated by the equations

aW+ bU2 + cV = 0

aV + bW + cU = 0.

By eliminating W in the above equations one gets

-ac)= V(a2 - 6c).

Since {£/, V} is a T-regular sequence, it follows that there exists feT
such that

Uf = α2 - be
Vf= b2U -ac.

Furthermore, by eliminating V instead of W above one can show that



HYPERSURFACE RINGS 169

Wf=c2-abU.

Now consider the prime ideal q = PjfT in the hypersurface ring R —

TjfT (notice that feP since it multiplies elements outside P into P).

Let aί9 bt and cx denote the images of α, b, and c modulo (/T). Then

q2 z= 6αg, hence l(q) = 1. Explicitly, / is given by

f=U2a+ UVb + We

= U" - 3U2VW + UVZ +

OBSERVATION 2.9. Set i? = TlfT and g = P//ϊ where P, f and T7 are

the same as those defined in Example 2.8. Then G(q, R) is Cohen-

Macaulay. Consequently, qn = q{n) for all n > 1 by Theorem 2.1.

Proof. By the computation above we have that l(q) == height (g) and

q2 = 6^. Furthermore J?/g is a one-dimensional local domain, hence

is Cohen-Macaulay. Thus by [21 Proposition 7.4], G(q, R) is Cohen-

Macaulay.

Remark. Observation 2.9 shows that Example 2.8 is an application

of Theorem 2.1 for the case where q is not the image of a complete in-

tersection prime ideal of T and R is the hypersurface T/fT.

Our next example shows how Theorem 2.1 may be used as a test for

deciding when G(q, R) is Cohen-Macaulay. It also provides an example

of a prime ideal in a local hypersurface ring whose adic and symbolic

topologies are linearly equivalent but whose powers are not primary.

EXAMPLE 2.10. Let T = K[U, V, W] localized at (17, V, W)K[U, V, W],

suppose t is an indeterminate, and let P be the kernel of the homomor-

phism T->K[t\ t\ f](ti)t5)t7). Then there exists geP such that l(q) = 1

and q2 Φ q{2) where q = PjgT in R = T\gT. Consequently G(q, R) is not

Cohen-Macaulay by Theorem 2.1.

Proof. By using Herzog and Hilbert-Burch once again we find that

P = (a, fe, c)T where α, b and c are the alternating 2 X 2 minors of the

matrix

_ ίW U V

" [v2 w u2

and the relations on a, b and c are generated by
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( 1 ) aW + bU + cV = 0

( 2 ) aV2 + bW + cU2 = 0.

By eliminating W and using that {U, V) is a Γ-regular sequence (as

in Example 2.8), we find an element fe T such that

( 3 ) Uf=a2V-bc

(4) Vf= b2 -acU.

Furthermore, elimination of V yields

( 5 ) Wf= c2U -abV.

The relations produced by going modulo (fT) in (3), (4) and (5) are not

enough to force l(PjfT) = 1, hence we construct another candidate. If we

multiply (5) by c and use (1) to eliminate cV in the resulting equation,

we get Wcf = czU + a2bW + ab2U. Thus W(cf - a2b) = U(cz + αδ2), and

since {U, W} is a T-regular sequence there exists g e T such that

( 6 ) Ug = cf-a2b

( 7) Wg = c3 + ab2.

Furthermore, if we multiply (5) by b and use (1) to eliminate bU we get

Wbf=: - ac2W - c3V - α6 2y which implies (using that {V, W} is a T-

regular sequence) that (8) Vg = — bf — ac2. Multiplying (6) by U and

using (3) yields

( 9) U2g = ca2V - 6c2 - α2

Similarly we get

(10) UVg = b2c -ac2U - a2bV

(11)

Now let, au bx and ĉ  denote the images of α, 6, and c modulo (gT),

and set q = P/gT in the hypersurface ring R = T/gT. Using the relations

(7), (9), (10) and (11), it follows routinely that qz = axq
2. Therefore l(q) = 1.

We have left to show that q2 is not primary. To do this we first grade T

by setting deg [7 = 4, deg V — 5 and deg W = 7. Then P becomes homo-

geneous of degree 12 with deg a = 12, deg b = 15, deg c = 14, deg / = 25

and degg = 35. By using (3), (4) or (5) it follows that feP{2\ hence
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/i e g(2) where /Ί is the image of / modulo (gT), We claim that fx & q2. If

fxeq2 then fe(P2,g). A straight computation shows however that P 2

cannot contain any element of degree 25, thus (P2, g) cannot contain any

element of degree 25. It follows that fx & q2, therefore q2 Φ q{2\

Explicitly,

/ = U2Va + V2b + UWc = WV - 3U2V?W + V" + UWZ

g= We2 - 2U2Vsa + U'Wa - UV2Wc - V'b

= w* - WV2WZ + 5U2V4W - 2£75V3 + UΊW - VΊ - U'VW2.

Remark, In fact it is true that qn Φ qin) for all n > 2 in Example

2.10.

Proof, We have seen above that /i e q{2)\q2. Since αi e g it follows

that αϊ"2/i e <?(7° for all n > 2. Since R is Cohen-Macaulay g contains a

regular element, and since axq
2 = g3, αi itself must be a regular element

of R, Furthermore, qm+1 = α^"1 = αf"^2 for all m>2. Suppose αΓ2/i e qn

for some τι > 2. Then α?~2/i 6 α?" V which implies /x e g2, a contradiction.
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