V. Barucci

Nagoya Math. J.
Vol. 113 (1989), 99-119

A LIPMAN'S TYPE CONSTRUCTION, GLUEINGS AND COMPLETE INTEGRAL CLOSURE

VALENTINA BARUCCI

§ 0. Introduction

Given a semilocal 1-dimensional Cohen-Macauly ring A, J. Lipman in [10] gives an algorithm to obtain the integral closure \bar{A} of A, in terms of prime ideals of A. More precisely, he shows that there exists a sequence of rings $A=A_{0} \subset A_{1} \subset \cdots \subset A_{i} \subset \cdots$, where, for each $i, i \geq 0$, A_{i+1} is the ring obtained from A_{i} by "blowing-up" the Jacobson radical \mathscr{R}_{i} of A_{i}, i.e. $A_{i+1}=\cup_{n}\left(\mathscr{R}_{i}^{n}: \mathscr{R}_{i}^{n}\right)$. It turns out that $\cup\left\{A_{i} ; i \geq 0\right\}=\bar{A}$ (cf. [10, proof of Theorem 4.6]) and, if \bar{A} is a finitely generated A-module, the sequence $\left\{A_{i} ; i \geq 0\right\}$ is stationary for some m and $A_{m}=\bar{A}$, so that

$$
\begin{equation*}
A=A_{0} \varsubsetneqq A_{1} \varsubsetneqq \cdots \varsubsetneqq A_{m}=\bar{A} . \tag{+}
\end{equation*}
$$

In [15] G. Tamone studies when in the Lipman's sequence $(+) A_{i}$ is a "glueing of primary ideals of A_{i+1} over a prime ideal of A " (see [14] for definition). She shows in particular that A_{i} is not always a glueing of primary ideals of A_{i+1}.

In this paper we give an algorithmic construction, for a Noetherian domain A of any dimension, such that \bar{A} is a finitely generated A-module, defining a new sequence $\left\{A_{i} ; i \geq 0\right\}$ of overrings of $A ; A_{i+1}$ is obtained from A_{i}, taking the dual of a distinguished radical ideal of A_{i}. We show that such a sequence is stationary for some $m, A_{m}=\bar{A}$ (cf. Theorem 1.8), and A_{i} is always a glueing of primary ideals of A_{i+1} (cf. Proposition 2.7 and Remark 2.2, a)).

A similar sequence was considered in [17] by K. Yoshida in the case of a Noetherian ring satisfying the S_{1}-condition. As a matter of fact, the intermediate rings of the Yoshida sequence are defined in a rather different way, but the prime ideals occuring in their definition are linked to those that we use in our sequence (cf. for more details Remark 1.7).

[^0]However our result holds in a more general situation which turns out to be its natural context, that is A is just a Mori domain. We recall that a Mori domain is a domain such that the ascending chain condition holds for integral divisorial ideals (e.g. Noetherian and Krull domains are Mori; for other examples and further properties of these domains cf. [11, $12,13,2,4]$). In this case the sequence of overrings of A is stationary at A^{*}, the complete integral closure of A (for a Noetherian domain, it coincides with \bar{A}, the integral closure of A).

In Section 2 we study the general procedure in order to descend along the sequence $\left\{A_{i} ; \mathrm{i} \geq 0\right\}$ constructed above. This procedure consists in a "contraction of ideals of A_{i+1} over prime ideals of A_{i} " (cf. Definition 2.1), that, in the Noetherian case, coincides with the glueing of primary ideals, as defined by G. Tamone in [14].

With the additional hypothesis that in our sequence $\left\{A_{i} ; i \geq 0\right\}$ the conductor of A_{i} in A_{i+1} is a radical ideal of A_{i+1}, for each i (cf. Section 3), we show that the "contraction" coincides exactly with the glueing (of prime ideals), as defined by F. Ischebeck in [9]. Under this particular hypothesis, in the Noetherian case, we get a new characterization of seminormal domains (cf. Theorem 3.8); an analogous characterization, involving conductor ideals, was given by K . Yoshida, using his sequence (cf. [17, Theorem 2.2]). On the other hand, if the domain A is not Noetherian, but Mori, we obtain a natural extension of the notion of seminormal domain (not in the integral closure but) in its complete integral closure: similarly to Traverso's result for Noetherian seminormal rings, (cf. [16, Theorem 2.1]) such a domain A is obtained from its complete integral closure A^{*} (that is a Krull domain) with a finite number of glueings over prime ideals of A of a certain type (cf. Corollary 3.7). The paper ends with some examples of Mori, non-Noetherian domains of this kind.

Throughout the paper, if \mathfrak{F} is an ideal of an integral domain A, we denote, as usual, $A:(A: \mathfrak{J})$ by \tilde{J}_{v}. An ideal \mathfrak{J} is called divisorial if $\mathfrak{F}=\mathfrak{J}_{v}$, strong if $(A: \mathfrak{F})=(\mathfrak{F}: \mathfrak{F})$ (cf. [3]), strongly divisorial if it is strong and divisorial (cf. [11]).

§ 1. The algorithmic construction

We begin by showing that any non-zero intersection of strongly divisorial prime ideals is a strongly divisorial ideal. We need the following:

Lemma 1.1. Let \mathfrak{P} be a prime ideal containing a radical ideal \mathfrak{J} of an integral domain A. Then $(\mathfrak{B}: \mathfrak{P}) \subset(\mathfrak{F}: \mathfrak{N})$.

Proof. Let $\mathfrak{J}=\cap\left\{\mathfrak{R}_{\lambda} ; \lambda \in \Lambda\right\}$, where, for each $\lambda, \mathfrak{B}_{\lambda}$ is a minimal prime of \mathfrak{F}. Since $\mathfrak{J} \subset \mathfrak{P}$, we have $\mathfrak{F}(\mathfrak{B}: \mathfrak{B}) \subset \mathfrak{R}$. But, for each \mathfrak{R}_{λ}, we have $\mathfrak{F}(\mathfrak{P}: \mathfrak{P}) \subset \mathfrak{F}_{\lambda}(\mathfrak{F}: \mathfrak{P}) \subset \mathfrak{F}_{\lambda}(A: \mathfrak{P}) \subset\left(\mathfrak{R}_{2}: \mathfrak{P}\right)$. Notice that, for each \mathfrak{P}_{λ} with $\mathfrak{R}_{\lambda} \neq \mathfrak{R}$, we have $\left(\mathfrak{R}_{\lambda}: \mathfrak{R}\right) \cap A=\mathfrak{R}_{\lambda}$, because if $x \in A$ and $x \mathfrak{B} \subset \mathfrak{P}_{\lambda}$, then, since $\mathfrak{B} \not \subset \mathfrak{P}_{\lambda}, x \in \mathfrak{P}_{\lambda}$. Thus we have $\left.\mathfrak{F}(\mathfrak{P}: \mathfrak{P}) \subset \mathfrak{P} \cap\left\{\mathfrak{R}_{\lambda}: \mathfrak{P}\right) ; \mathfrak{P}_{\lambda} \neq \mathfrak{P}\right\} \subset$ $\mathfrak{P} \cap\left\{\mathfrak{P}_{\lambda} ; \mathfrak{R}_{\imath} \neq \mathfrak{B}\right\}=\mathfrak{J}$, that is $(\mathfrak{B}: \mathfrak{R}) \subset(\mathfrak{J}: \mathfrak{F})$.

Proposition 1.2. Let $\mathfrak{J}=\cap\left\{\mathfrak{\Re}_{\lambda} ; \lambda \in \Lambda\right\}$, where for each $\lambda \in \Lambda$, \mathfrak{P}_{λ} is a strongly divisorial prime ideal of an integral donxin A. If $\mathfrak{F} \neq(0)$, then \tilde{J} is a strongly divisorial ideal of A.

Proof. It is enough to show that $\mathfrak{J}=A$: ($\mathfrak{F}: \mathfrak{F}$) (cf. [3, Proposition 6]). It is obvious that $\mathfrak{J} \subset A:(\mathfrak{J}: \mathfrak{F})$. For the opposite inclusion, since, by Lemma 1.1, $\left(\mathfrak{F}_{\lambda}: \mathfrak{F}_{2}\right) \subset(\mathfrak{F}: \mathfrak{N})$ for each $\lambda \in \Lambda$, we have $\mathfrak{R}_{2}=A:\left(A: \mathfrak{R}_{2}\right)$ $=A:\left(\mathfrak{F}_{\lambda}: \mathfrak{F}_{\lambda}\right) \supset A:(\mathfrak{F}: \mathfrak{F})$. Thus $\cap\left\{\mathfrak{P}_{\lambda} ; \lambda \in \Lambda\right\}=\mathfrak{J} \supset A:(\mathfrak{J}: \mathfrak{J})$.

For a Mori domain, a "converse" for Proposition 1.2 holds:
Proposition 1.3. Let A be a Mori domain and let \mathfrak{J} be a strongly divisorial ideal of A. If \mathfrak{B} is a prime ideal minimal over \mathfrak{F}, then \mathfrak{P} is strongly divisorial.

Proof. Consider the localization $A_{\mathfrak{F}}$. Since $\left(\mathfrak{\Im} A_{\mathfrak{B}}\right)_{v}=\mathfrak{J}_{v} A_{\mathfrak{B}}=\mathfrak{J} A_{\mathfrak{B}}$ and $\left(A_{\mathfrak{F}}: \mathfrak{J} A_{\mathfrak{F}}\right)=A_{\mathfrak{\beta}}(A: \mathfrak{J})=A_{\mathfrak{F}}(\mathfrak{F}: \mathfrak{S})=\left(\mathfrak{F} A_{\mathfrak{\beta}}: \mathfrak{J} A_{\mathfrak{\beta}}\right)$ (cf. for example [11], proof of Theorem 2), $\mathfrak{J} A_{\mathfrak{F}}$ is a strongly divisorial ideal of $A_{\mathfrak{F}}$. Therefore $\mathfrak{J} A_{\mathfrak{B}}$ is contained in at least one strong maximal divisorial ideal of $A_{\mathfrak{B}}$ (cf. [5, Proposition (1.7)]), that is $\mathfrak{P} A_{\mathfrak{B}}$ is strongly divisorial. By [11, Lemma 4], we conclude that \mathfrak{B} is a strongly divisorial ideal of A.

As usual, we denote by A^{*} the complete integral closure of A. We consider in the following results mainly the case where the conductor of A in $A^{*},\left(A: A^{*}\right)$ is different from (0). This hypothesis is equivalent for a Noetherian domain A to suppose that the integral closure of A, $\bar{A}=A^{*}$ is a finitely generated A-module.

Lemma 1.4. Let A be a Mori domain such that $\left(A: A^{*}\right) \neq 0$. Then any decreasing chain of strongly divisorial ideals of A is stationary.

Proof. Let $\left\{\widetilde{S}_{n} ; n \geq 0\right\}$ be a strictly decreasing chain of strongly divisorial ideals of A. Since A is a Mori domain, $\cap\left\{\Im_{n} ; n \geq 0\right\}=(0)$ (cf. [12,

I, Theorem 1]). On the other hand, since $\left(A: A^{*}\right) \neq(0), \cap\left\{\widetilde{\Im}_{n} ; n \geq 0\right\} \neq(0)$ (cf. [3, Proposition 16]), a contradiction.

We denote, as in [4] by $D_{m}(A)$ the set of maximal divisorial ideals of a Mori domain A. The elements of $D_{m}(A)$ are prime ideals of A and, if $\mathfrak{\beta} \in D_{m}(A)$, either $A_{\mathfrak{B}}$ is a DVR or \mathfrak{B} is strong, i.e. strongly divisorial (cf. [4, Proposition (2.1) and Theorem (2.5)]). The set $\mathscr{S}(A)=\left\{\mathfrak{B} \in D_{m}(A) \mid \mathfrak{\beta}\right.$ is strong\} is nearly related to A^{*}, as we shall see later. At the moment we prove:

Proposition 1.5. Let A be a Mori domain such that $\left(A: A^{*}\right) \neq(0)$. Then $\mathscr{S}(A)$ is empty or finite.

Proof. The first case, $\mathscr{S}(A)=\varnothing$, occurs if and only if A is a Krull domain. In fact, if A is a Krull domain, it is well known that $A_{\mathfrak{B}}$ is a DVR, for each $\mathfrak{B} \in D_{m}(A)$ and, conversely, if $\mathscr{S}(A)=\varnothing, A$ is a Krull domain (cf. [4, Theorem (3.3)]). Suppose that $\mathscr{S}(A)$ is non empty. If $\mathscr{S}(A)$ is not finite, consider a countable set $\left\{\mathfrak{F}_{1}, \cdots \mathfrak{P}_{n}, \cdots\right\}$ of elements of $\mathscr{S}(A)$, with $\mathfrak{P}_{i} \neq \mathfrak{P}_{j}$, for $i \neq j$. We can consider the decreasing chain $\left\{\widetilde{S}_{n} ; n \geq 1\right\}$, where $\widetilde{\Im}_{n}=\cap\left\{\mathfrak{F}_{i} ; 1 \leq i \leq n\right\}$. For each n, \widetilde{J}_{n} is a strongly divisorial ideal by Proposition 1.2. Moreover the chain $\left\{\mathscr{J}_{n} ; n \geq 1\right\}$ is strictly decreasing because, if $\mathfrak{\Im}_{n}=\mathfrak{\Im}_{n+1}$, then $\mathfrak{P}_{1} \cdots \mathfrak{P}_{n} \subset \mathfrak{\Im}_{n}=\mathfrak{\Im}_{n+1} \subset \mathfrak{P}_{n+1}$, thus $\mathfrak{P}_{i} \subset \mathfrak{P}_{n+1}$ for some $i, 1 \leq i \leq n$, which is clearly impossible. By Lemma 1.4 we get a contradiction.

Corollary 1.6. Let A be a Mori domain such that $\left(A: A^{*}\right) \neq(0)$. Then the set of strongly divisorial prime ideals of A is empty or finite.

Proof. Let \mathscr{P} be the set of strongly divisorial prime ideals of A. $\mathscr{P}=\varnothing$ if and only if A is a Krull domain (cf. [3, Corollary 14]). If $\mathscr{P} \neq \varnothing$, notice that the set of the maximal elements of \mathscr{P} is exactly $\mathscr{P}(A)$. In fact, trivially, if $\mathfrak{\beta} \in \mathscr{S}(A)$, $\mathfrak{\beta}$ is a maximal element of \mathscr{P}. Conversely, let \mathfrak{P} be a maximal element of \mathscr{P}. Since \mathfrak{B} is divisorial, $\mathfrak{B} \subset \mathfrak{M}$ for some $\mathfrak{M} \in D_{m}(A)$. But $\mathfrak{P} A_{\mathfrak{n}}$ is a strongly divisorial ideal of $A_{\mathfrak{n}}$, thus $A_{\mathfrak{n}}$ is not a DVR and $\mathfrak{M} \in \mathscr{S}(A) \subset \mathscr{P}$. For the maximality of $\mathfrak{P}, \mathfrak{P}=\mathfrak{M} \in \mathscr{S}(A)$. Therefore, by Proposition 1.5, the maximal elements of \mathscr{P} are a finite number: $\mathfrak{F}_{1}, \cdots, \mathfrak{F}_{s}$. Arguing as in the proof of Proposition 1.5, we can show that $\mathscr{P} \backslash\left\{\mathfrak{F}_{1}, \cdots, \mathfrak{F}_{s}\right\}$ has a finite number of maximal elements $\mathfrak{P}_{1}^{\prime}, \cdots, \mathfrak{P}_{t}^{\prime}$ and trivially, for each $i, 1 \leq i \leq t, \mathfrak{P}_{i}^{\prime} \varsubsetneqq \mathfrak{ß}_{j}$ for some $j, 1 \leq j$ $\leq s$. To conclude the proof it is enough to observe that any decreasing
chain of elements of \mathscr{P} is finite (cf. Lemma 1.4).
Remark 1.7. Let A be a Noetherian ring satisfying the S_{1}-condition and let $R, R \subset \bar{A}$, be a finite overring of A. In this case K. Yoshida [17] considers a sequence of intermediate rings between A and R (ralated to a sequence that we are going to introduce) and a set of distinguished prime ideals of $A, D(A, R)$ (cf. [17, Proposition-Definition 1.1]). We notice that, if A is a Noetherian domain and $R=\bar{A}$, the set $D(A, \bar{A})$ of [17] coincides with the set of strongly divisorial prime ideals of A.

In fact, if $\mathfrak{\beta} \in \operatorname{Spec} A$ and ht $P=1$, then $\mathfrak{B} \in D(A, \bar{A})$ if only if $A_{\mathfrak{ß}}$ is not integrally closed (cf. [17, p. 54]), i.e. if and only if $\Re A_{\mathfrak{B}}$ is not principal (cf. for example [1, Proposition 9.2]). It is easy to prove that the previous statement is equivalent to assume that \mathfrak{B} is a strong ideal of A. Since in this case (ht $\mathfrak{B = 1)} \mathfrak{B}$ is always divisorial (cf. for example [11, Proposition 1]), we have that $\mathfrak{F} \in D(A, \bar{A})$ if and only if \mathfrak{P} is strongly divisorial. On the other hand, if $\mathfrak{B} \in \operatorname{Spec} A$ and ht $\mathfrak{B}>1$, then $\mathfrak{P} \in$ $D(A, \bar{A})$ if and only if \mathfrak{R} is divisorial (cf. [17, Proposition 1.10, (vi) $\Leftrightarrow(\mathrm{xi})]$). Since in this case (ht $\mathfrak{P}>1$) \mathfrak{P} is always strong (if not $\mathfrak{P} A_{\mathfrak{F}}$ would be a principal ideal of the Mori domain $A_{\mathfrak{ß}}$, a contradiction with [11, Lemma 3]), we have that $\mathfrak{B} \in D(A, \bar{A})$ if and only if \mathfrak{B} is strongly divisorial.

We notice in particular that Corollary 1.6 generalizes Yoshida's result on the finiteness of the set $\left\{\mathfrak{P} \in \operatorname{Spec} A \mid\right.$ ht $\mathfrak{P}>1$ and depth $\left.A_{\mathfrak{B}}=1\right\}$ (cf. [17, Proposition 1.10 and Corollary 1.12]).

We recall that if A is a Mori domain and \mathfrak{F} is a strongly divisorial ideal of A, then $(A: \mathfrak{F})=(\mathfrak{F}: \mathfrak{J})$ is a Mori overring of A (cf. [13, p. 11] or [3, Corollary 11]). If, moreover, A is a Mori domain such that $\left(A: A^{*}\right)$ $\neq(0)$, then also $(A: \mathfrak{F})$ has the same property, that is $\left((A: \mathfrak{F}):(A: \mathfrak{\Im})^{*}\right)$ $\neq(0)$, because $(A: \mathfrak{J})^{*}=A^{*}$. Thus, under the preceding hypothesis, we can construct a sequence of Mori overrings of A

$$
A=A_{0} \subset A_{1} \subset \cdots \subset A_{m} \subset \cdots
$$

setting for each $i \geq 0, A_{i+1}=\left(A_{i}: \mathscr{R}_{i}\right)$, where $\mathscr{R}_{i}=\cap\left\{\mathfrak{R} ; \mathfrak{B} \in \mathscr{S}\left(A_{i}\right)\right\}$, if $\mathscr{S}\left(A_{i}\right) \neq \varnothing$ and $A_{i+1}=A_{i}$, if $\mathscr{S}\left(A_{i}\right)=\varnothing$.

Notice that, in the first case, $\mathscr{R}_{i} \neq(0)$, by Proposition 1.5, and that \mathscr{R}_{i} is a strongly divisorial ideal of A_{i}, by Proposition 1.2; thus, if $\mathscr{S}\left(A_{i}\right)$ $\neq \varnothing, A_{i} \varsubsetneqq A_{i+1}$. Conversely, if $\mathscr{S}\left(A_{i}\right)=\varnothing, A_{i}=A_{j}$, for each $j \geq i$.

Theorem 1.8. Let A be a Mori domain such that $\left(A: A_{*}\right) \neq(0)$. Then
the sequence of overrings of A considered above is stationary for some $m \geq 0$ and $A_{m}=A^{*}$.

Proof. For any $i, i \geq 0$ it is easy to see that A_{i} is an overring of the type \mathfrak{J}_{i}^{-1} for some ideal \mathfrak{J}_{i} of A, that is A_{i} is a (fractional) divisorial ideal of A. In correspondence with the sequence $\left\{A_{i} ; i \geq 0\right\}$ of overrings of A, we get the decreasing sequence of strongly divisorial ideals of A, $\left\{\left(A: A_{i}\right) ; i \geq 0\right\}$. This is stationary by Lemma 1.4, thus the sequence of overrings $\left\{A_{i} ; i \geq 0\right\}$ is stationary too (cf. [3, Corollary 8]).

Therefore there exists an $m \geq 0$ such that $A_{m}=A_{m+1}$. Thus $\mathscr{S}\left(A_{m}\right)$ $=\varnothing$ i.e. A_{m} is a Krull domain (cf. [4, Theorem (3.3)]). However $A^{*}=$ $\left(A_{m}\right)^{*}$, because $\left(A: A_{m}\right) \neq(0)$ i.e. A and A_{m} have a nonzero ideal in common. On the other hand A_{m} is completely integrally closed, that is $\left(A_{m}\right)^{*}=A_{m}$, thus $A^{*}=A_{m}$.

Examples 1.9. a) Let $A=k \llbracket t^{3}, t^{5} \rrbracket$, where k is a field. A is a 1 -dimensional Noetherian (in particular Mori) local domain and its maximal ideal $\mathscr{M}=\left(t^{3}, t^{5}\right)$ is strongly divisorial. In this case $\mathscr{R}_{0}=\mathfrak{M}$ and $A_{1}=\left(A: \mathscr{R}_{0}\right)$ $=k \llbracket t^{3}, t^{5}, t^{7} \rrbracket ; \mathscr{R}_{1}=\left(t^{3}, t^{5}, t^{7}\right)$ and $A_{2}=\left(A_{1}: \mathscr{R}_{2}\right)=k \llbracket t^{2}, t^{3} \rrbracket ; \mathscr{R}_{2}=\left(t^{2}, t^{3}\right)$ and $A_{3}=\left(A_{2}: \mathscr{R}_{2}\right)=k \llbracket t \rrbracket$.

Observe that in this example our sequence of overrings of A is different from the sequence constructed by J. Lipman (cf. [10, p. 661]). As a matter of fact, in this case the steps in the Lipman sequence are $k \llbracket t^{3}, t^{5} \rrbracket \subset k \llbracket t^{2}, t^{3} \rrbracket \subset k \llbracket t \rrbracket$.
b) Let $A=k+X K[X]+Y K[X, Y, Z]$, where $k \varsubsetneqq K$ are fields. A is a Mori (possibly non-Noetherian) domain, because $A=K[X, Y, Z] \cap B_{1} \cap B_{2}$ where $B_{1}=k+(X, Y, Z) K[X, Y, Z]_{(X, Y, Z)}$ and $B_{2}=K(X)+Y K[X, Y, Z]_{(Y)}$ are Mori domains (cf. [12, I, Theorem 2] and [2, Proposition 3.4]). In this case $\mathscr{R}_{0}=X K[X]+Y K[X, Y, Z], \quad A_{1}=\left(A: \mathscr{R}_{0}\right)=K[X]+Y K[X, Y, Z]$, $\mathscr{R}_{1}=Y K[X, Y, Z]$ and finally $A_{2}=\left(A_{1}: \mathscr{R}_{1}\right)=K[X, Y, Z]$.

We recall that if A is a domain, \mathfrak{J} is a strongly divisorial ideal of A and $C=(A: \mathfrak{J})$, then Spec A and Spec C are closely related. More precisely the canonical map associated to the inclusion $i: A \rightarrow C,{ }^{a} i$: Spec C \rightarrow Spec A gives a one-to-one correspondence between $\{\mathfrak{Q} \in \operatorname{Spec} C \mid \Omega \not \supset \mathfrak{J}\}$ and $\{\mathfrak{B} \in \operatorname{Spec} A \mid \mathfrak{P} \not \supset \mathfrak{J}\}$; moreover, if $\mathfrak{Q} \in \operatorname{Spec} C, \mathfrak{\supset} \mathfrak{J}$ and $\mathfrak{P}=\mathfrak{Q} \cap A$, then $C_{\mathfrak{Q}}=A_{\mathfrak{B}}$ (cf. for instance [7, Theorem 1.4, c)]). We notice also that for any $\mathfrak{B} \in \operatorname{Spec} A, \mathfrak{B} \not \supset \mathfrak{J}$, the unique $\mathfrak{Q} \in \operatorname{Spec} C$ above \mathfrak{B} is $(\mathfrak{B}: \mathfrak{F}$). Actually $(\mathfrak{F}: \mathfrak{F})$ is a prime ideal of C, because if $a b \in(\mathfrak{F}: \mathfrak{F})$ and $a \notin(\mathfrak{F}: \mathfrak{F})$,
with $a, b \in C=(A: \mathfrak{F})$, then $a b \in\left(\mathfrak{P}: \mathfrak{J}^{2}\right)$ i.e. $a \mathfrak{F} b \mathfrak{F} \subset \mathfrak{P}$, so, since $a \mathfrak{F} \subset A$,
 $(\mathfrak{B}: \mathfrak{F}) \cap A=\mathfrak{R}$, because if $x \in A$ is such that $x \mathfrak{F} \subset \mathfrak{P}$, then, since $\mathfrak{J} \not \subset \mathfrak{P}$, $x \in \mathfrak{B}$, and, on the other hand, it is trivial that $\mathfrak{B} \subset(\mathfrak{B}: \mathfrak{F}) \cap A$.

We want to show that, if A is a Mori domain, in the previous one-to-one correspondence, strongly divisorial primes of C correspond to strongly divisorial primes of A.

Proposition 1.10. Let A be a Mori domain, \mathfrak{J} a strongly divisorial ideal of A and $C=(A: \mathfrak{F})$. If $\mathfrak{P} \in \operatorname{Spec} A, \mathfrak{B} \not \supset \mathfrak{F}$ and $\mathfrak{Q}=(\mathfrak{B}: \mathfrak{F})$ (i.e. $\mathfrak{Q} A=\mathfrak{P})$, then \mathfrak{P} is a strongly divisorial ideal of A if and only if \mathfrak{Q} is a strongly divisorial ideal of C. Moreover if $\mathfrak{B} \in \mathscr{S}(A)$, then $\mathfrak{Q} \in \mathscr{S}(C)$.

Proof. We know that C is a Mori domain and that, if $\mathfrak{B} \in \operatorname{Spec} A$, $\mathfrak{P} \not \supset \mathfrak{J}$, is a strongly divisorial ideal of A, then $\mathfrak{Q}=(\mathfrak{P}: \mathfrak{F})$ is a divisorial ideal of C (cf. [13, p. 11]). We want to prove that \mathfrak{Q} is strong.

Denote by F the quotient field of A (and of C). If \mathfrak{Q} is not strong, there exists $x \in F$ such that $x \mathfrak{C} \subset C$ and $x \mathfrak{Q} \not \subset$. Thus $x \mathfrak{Q} C_{\mathfrak{Q}}=C_{\mathfrak{\Omega}}$ and $\mathfrak{\Omega} C_{\Omega}=x^{-1} C_{\Omega}$ is principal. But C_{Ω} is a Mori domain (cf. [11, Corollary 3]) and so if ht $\mathfrak{Q} \geq 2$, we have a contradiction with [11, Lemma 2]. On the other hand, if ht $\mathfrak{Q}=1, C_{\mathfrak{Q}}=A_{\mathfrak{B}}$ is a DVR (cf. [13, Theorem A-4]). This also is a contradiction because \mathfrak{P} (and consequently $\mathfrak{P} A_{\mathfrak{B}}$) is strong.

Conversely, let $\mathfrak{Q}=(\mathfrak{B}: \mathfrak{F})$ be a strongly divisorial ideal of C, with $\mathfrak{B} \in \operatorname{Spec} A, \mathfrak{B} \not \supset \mathfrak{J}$. As noted before, $\mathfrak{P}=\mathfrak{Q} \cap A$, thus it is easy to see that \mathfrak{B} is a divisorial ideal of A. In fact, since $\mathfrak{Q}=\cap\{x C ; x \in F$ and $x C \supset \mathfrak{Q}\}, \mathfrak{B}=\cap\{x(A: \mathfrak{F}) ; x \in F$ and $x C \supset \mathfrak{N \}} \cap A$ is an intersection of divisorial ideals of A. We want to prove now that \mathfrak{P} is strong, i.e. that $(A: \mathfrak{P})=(\mathfrak{P}: \mathfrak{P}) . \quad$ Actually we have $(A: \mathfrak{P}) \subset(A: \mathfrak{F} \mathfrak{Q})=((A: \mathfrak{F}): \mathfrak{Q})=$ $(C: \mathfrak{Q})=(\mathfrak{Q}: \mathfrak{Q})$. Thus if $x \in(A: \mathfrak{F}), x \mathfrak{B} \subset x \mathfrak{\Omega}$. From $x \mathfrak{\beta} \subset A$ and $x \mathfrak{B} \subset \mathfrak{\Re}$, we get $x \mathfrak{B} \subset A \cap \mathfrak{Q}=\mathfrak{F}$, so $x \in(\mathfrak{P}: \mathfrak{P})$.

For the last part of Proposition notice that if $\mathfrak{B} \in D_{m}(A)$ and $\mathfrak{Q}=(\mathfrak{P}: \mathfrak{S})$ $\subset \mathfrak{M} \in D_{m}(C)$, then $\mathfrak{M} \cap A$ is a divisorial ideal of A. Thus $\mathfrak{M} \cap A=\mathfrak{B}$ and, for the one-to-one correspondence, $\mathfrak{Q}=\mathfrak{M}$.

Given a Mori domain A such that $\left(A: A^{*}\right) \neq(0)$, we have associated to A a sequence of Mori overrings:

$$
\begin{equation*}
A=A_{0} \varsubsetneqq A_{1} \varsubsetneqq \cdots \varsubsetneqq A_{m}=A^{*} . \tag{*}
\end{equation*}
$$

From the previous Proposition we get the following:

Corollary 1.11. Let A be a Mori domain such that $\left(A: A^{*}\right) \neq(0)$ and let (*) be the associated sequence. Then $m \geq$ sup \{lengths of chains of strongly divisorial primes of $A\}$.

Proof. Let $l_{i}=\sup \{l e n g t h s$ of chains of strongly divisorial primes of $\left.A_{i}\right\}$ and let $\mathfrak{R}_{0} \subset \mathfrak{P}_{1} \subset \cdots \subset \mathfrak{F}_{l_{i}}$ be a chain of strongly divisorial primes of A_{i}. Then necessarily $\mathfrak{ß}_{l_{i}} \in \mathscr{S}\left(A_{i}\right)$ and $\mathfrak{B}_{0}, \cdots, \mathfrak{P}_{l_{i-1}} \not \supset \mathscr{R}_{i}=\cap\left\{\mathfrak{F} ; \mathfrak{P} \in \mathscr{S}\left(A_{i}\right)\right\}$. So, by Proposition 1.10, there exists in $A_{i+1}=\left(A_{i}: \mathscr{R}_{i}\right)$ a chain of strongly divisorial primes of length at least $l_{i}-1$. Recalling that A_{m} is the only ring in the sequence (*) which does not have strongly divisorial primes, the conclusion follows easily.

Other informations about the relationship between strongly divisorial primes of two consecutive rings of the sequence (*) are given in the following:

Proposition 1.12. Let A be a Mori domain such that ($A: A^{*}$) $\neq(0)$ and let $B, C=(B: \mathscr{R})$ be consecutive (Mori) domains of the associated sequence (*), where $\mathscr{R}=\mathfrak{P}_{1} \cap \cdots \cap \mathfrak{P}_{n}$ and $\left\{\mathfrak{P}_{1}, \cdots, \mathfrak{B}_{n}\right\}=\mathscr{S}(B)$. If \mathfrak{Q} is a strongly divisorial prime ideal of C such that $\mathfrak{Q} \supset \mathscr{R}$, then $\mathfrak{Q} \cap B=\mathfrak{B}_{j}$ for some $j, j=1, \cdots, n$.

Proof. As in the proof of Proposition 1.10 it is easy to see that $\mathfrak{Q} \cap B$ is a divisorial ideal of B. But, since $\mathfrak{Q} \supset \mathscr{R}$ and $B \supset \mathscr{R}, \mathfrak{P}=\mathfrak{Q} \cap B$ $\supset \mathscr{R}=\mathfrak{R}_{1} \cap \cdots \cap \mathfrak{R}_{n} \supset \mathfrak{R}_{1} \cdots \mathfrak{P}_{n}$. Since \mathfrak{R} is a prime ideal, $\mathfrak{B} \supset \mathfrak{R}_{j}$ for some $j, j=1, \cdots, n$. Thus $\mathfrak{P}=\mathfrak{F}_{j}$, becasue \mathfrak{F} is divisorial and \mathfrak{P}_{j} is maximal divisorial in B.

For an example of the situation described in Proposition 1.12, look at Example 1.9 a). $\quad A_{1}$ (resp. A_{2}) has a strongly divisorial prime, \mathscr{R}_{1} (resp. \mathscr{R}_{2}), above $\mathscr{R}_{0} \in \mathscr{S}(A)$ (resp. $\mathscr{R}_{1} \in \mathscr{S}\left(A_{1}\right)$).

Clearly in this case, if (*) is the associated sequence of overrings of $A, m>\sup \{$ lengths of chains of strongly divisorial primes of $A\}$.

Proposition 1.13. Let A be a Mori domain and let $\mathfrak{\Re}_{1}, \cdots, \mathfrak{p}_{n} \in \mathscr{S}(A)$. If $\mathscr{R}=\mathfrak{ß}_{1} \cap \cdots \cap \mathfrak{B}_{n}$ and $C=(A: \mathscr{R})$, then $A=C \cap A_{\mathfrak{R}_{1}} \cap \cdots \cap A_{\Re_{n}}$.

Proof. The inclusion $A \subset C \cap A_{\Re_{1}} \cap \cdots \cap A_{\Re_{n}}$ is trivial. For the opposite inclusion we recall that if A is a Mori domain, $A=\cap\left\{A_{\mathfrak{B}} ; \mathfrak{ß} \in D_{m}(A)\right\}$ (cf. [4, Proposition (2.2) b)]). Thus it is enough to show that $C \subset A_{\mathfrak{B}}$, for any maximal divisorial ideal \mathfrak{B} of $A, \mathfrak{P} \neq \mathfrak{P}_{1}, \cdots, \mathfrak{P}_{n}$. Actually for such
maximal divisorial ideal \mathfrak{P} of $A, \mathfrak{B} \not \supset \mathscr{R}=\mathfrak{P}_{1} \cap \cdots \cap \mathfrak{P}_{n}$, thus there is exactly one $\mathfrak{Q} \in \operatorname{Spec} C$ above \mathfrak{B} and $A_{\mathfrak{F}}=C_{\mathfrak{Q}}$ (cf. [7, Theorem 1.4, c)]). Therefore it is clear that $C \subset A_{\mathscr{F}}$.

Next we study in greater detail the generic step $A_{i} \subset A_{i+1}$ in the sequence (${ }^{*}$). Putting $A_{i}=B$ and $A_{i+1}=C$ and using the notation of Proposition 1.12, we describe the extension $B \subset C$ in n steps, in correspondence with the n prime ideals $\mathfrak{ß}_{1}, \cdots, \mathfrak{ß}_{n}$.

We shall denote by $\mathscr{D}(A)$ the set of divisorial ideals of a domain A.
Let $B_{0}=B$ and $\alpha_{0}: \mathscr{D}(B) \rightarrow \mathscr{D}(B)$ the identity map. Define, for $1 \leq j$ $\leq n$, the pair $\left(B_{j}, \alpha_{j}\right)$ in the following way:

$$
\begin{aligned}
& B_{j}=B_{j-1}:\left(\alpha_{j-1} \circ \cdots \circ \alpha_{0}\left(\Re_{j}\right)\right) \\
& \alpha_{j}: \mathscr{D}\left(B_{j-1}\right) \longrightarrow \mathscr{D}\left(B_{j}\right) \\
& H \longrightarrow H:\left(\alpha_{j-1} \circ \cdots \circ \alpha_{0}\left(\mathfrak{P}_{j}\right)\right)
\end{aligned}
$$

Denote, for simplicity, the map $\left(\alpha_{j-1} \circ \cdots \circ \alpha_{0}\right): \mathscr{D}(B) \rightarrow \mathscr{D}\left(B_{j-1}\right)$ by Ψ_{j-1}.
Observe that, for each $j, j=1, \cdots, n, \Psi_{j-1}\left(\Re_{j}\right) \in \mathscr{S}\left(B_{j-1}\right)$. In fact, if $j=1, \Psi_{0}\left(\mathfrak{B}_{1}\right)=\mathfrak{B}_{1} \in \mathscr{S}\left(B_{0}\right)$. If $j \geq 2$, applying Proposition 1.10, we get that $\Psi_{k}\left(\Re_{j}\right) \in \mathscr{S}\left(B_{k}\right)$ and $\Psi_{k}\left(\Re_{j}\right) \not \supset \Psi_{k}\left(\Re_{k+1}\right)$ for any $k, k=0,1, \cdots, j-2$. So, again by Proposition 1.10, $\Psi_{j-1}\left(\Re_{j}\right) \in \mathscr{S}\left(B_{j-1}\right)$.

Therefore we have a sequence of Mori overrings of $B, B=B_{0} \subset B_{1}$ $\subset \cdots \subset B_{n}$ (cf. again [13, p. 11]). We can prove:

Proposition 1.14. Preserving the notation introduced above, the integral domain B_{n} coincides with C.

Proof. Observe first that for each $j, j=1, \cdots, n, \Psi_{j-1}\left(\mathfrak{P}_{j}\right)$ is a fractional ideal of B and that

$$
\begin{aligned}
B_{n} & =\left(B_{n-1}: \Psi_{n-1}\left(\mathfrak{ß}_{n}\right)\right)=\left(B_{n-2}: \Psi_{n-2}\left(\mathfrak{P}_{n-1}\right)\right):\left(\Psi_{n-1}\left(\mathfrak{P}_{n}\right)\right) \\
& =B_{n-2}:\left(\Psi_{n-2}\left(\mathfrak{B}_{n-1}\right) \Psi_{n-1}\left(\mathfrak{P}_{n}\right)\right)=\cdots=B:\left(\Psi_{0}\left(\mathfrak{P}_{1}\right) \cdots \Psi_{n-1}\left(\mathfrak{P}_{n}\right)\right) .
\end{aligned}
$$

Observe secondly that, since for each $j, j=1, \cdots, n, \mathfrak{ß}_{j} B_{\mathfrak{F}_{j}}=\left(\Re_{j} B_{\mathfrak{\Re}_{j}}\right)_{v}$
 $\cdots \cap \mathfrak{P}_{n} B_{\mathfrak{F}_{n}} \cap\left\{B_{\mathfrak{F}} ; \mathfrak{P} \in D_{m}(B), \mathfrak{B} \neq \mathfrak{P}_{j}\right\}=\left(\mathfrak{P}_{1} \cdots \mathfrak{P}_{n} B_{\mathfrak{F}_{1}}\right)_{v} \cap \cdots \cap\left(\mathfrak{P}_{1} \cdots \mathfrak{P}_{n} B_{\mathfrak{F}_{n}}\right)_{v}$ $\cap\left\{\left(\mathfrak{P}_{1} \cdots \mathfrak{P}_{n} B_{\mathfrak{F}}\right)_{v} ; \mathfrak{P} \in D_{m}(B), \mathfrak{P} \neq \mathfrak{P}_{j}\right\}=\left(\mathfrak{P}_{1} \cdots \mathfrak{F}_{n}\right)_{v}$ (cf. [4, Proposition (2.2), c)]).

Thus we have $C=\left(B: \mathfrak{F}_{1} \cap \cdots \cap \mathfrak{P}_{n}\right)=\left(B:\left(\mathfrak{F}_{1} \cdots \mathfrak{P}_{n}\right)_{v}\right)=\left(B: \mathfrak{F}_{1} \cdots \mathfrak{P}_{n}\right)$. Now, since for each $j, j=1, \cdots, n, \mathfrak{P}_{j} \subset \Psi_{j-1}\left(\mathfrak{B}_{j}\right)$, we have $\mathfrak{P}_{1} \cdots \mathfrak{B}_{n} \subset \Psi_{0}\left(\mathfrak{B}_{1}\right)$ $\cdots \Psi_{n-1}\left(\mathfrak{P}_{n}\right)$ and so $C \supset B_{n}$. For the opposite inclusion it is enough to
show by induction that $\Psi_{0}\left(\mathfrak{\Re}_{1}\right) \cdots \Psi_{n-1}\left(\mathfrak{P}_{n}\right) \subset \mathfrak{ß}_{1} \cap \cdots \cap \mathfrak{P}_{n}$. Trivially $\Psi_{0}\left(\mathfrak{P}_{1}\right)$ $=\mathfrak{P}_{1} \subset \mathfrak{P}_{1}$. Suppose that $\Psi_{0}\left(\mathfrak{ß}_{1}\right) \cdots \Psi_{n-2}\left(\mathfrak{B}_{n-1}\right) \subset \mathfrak{B}_{1} \cap \cdots \cap \Re_{n-1}(n \geq 2)$. Since $\Psi_{n-1}\left(\Re_{n}\right) \subset B_{n-1}$ and $\Psi_{n-2}\left(\mathfrak{ß}_{n-1}\right)$ is an ideal of B_{n-1}, we have that $\Psi_{n-2}\left(\mathfrak{B}_{n-1}\right) \Psi_{n-1}\left(\mathfrak{B}_{n}\right) \subset \Psi_{n-2}\left(\mathfrak{B}_{n-1}\right)$, thus $\Psi_{0}\left(\mathfrak{B}_{1}\right) \cdots \Psi_{n-1}\left(\mathfrak{B}_{n}\right) \subset \mathfrak{B}_{1} \cap \cdots \cap \mathfrak{B}_{n-1}$.

Moreover, since by definition $\Psi_{n-1}\left(\mathfrak{ß}_{n}\right)=\left(\Psi_{n-2}\left(\mathfrak{B}_{n}\right): \Psi_{n-2}\left(\mathfrak{B}_{n-1}\right)\right)$, it is clear that $\Psi_{n-1}\left(\mathfrak{B}_{n}\right) \Psi_{n-2}\left(\mathfrak{ß}_{n-1}\right) \subset \Psi_{n-2}\left(\mathfrak{P}_{n}\right)$. So $\Psi_{0}\left(\mathfrak{P}_{1}\right) \cdots \Psi_{n-1}\left(\mathfrak{P}_{n}\right) \subset \Psi_{n-2}\left(\mathfrak{P}_{n}\right) \cap$ $B=\mathfrak{P}_{n}$ and $\Psi_{0}\left(\mathfrak{F}_{1}\right) \cdots \Psi_{n-1}\left(\mathfrak{P}_{n}\right) \subset \mathfrak{B}_{1} \cap \cdots \cap \mathfrak{P}_{n-1} \cap \mathfrak{P}_{n}$.

§2. Contraction of ideals and glueings

To descend in the sequence (*) associated to a Mori domain, defined in Section 1, we need some further definitions.

Definition 2.1. Let $A \subset B$ be two rings and let $\tilde{\mathcal{J}}$ be an integral ideal of B such that $\mathfrak{F} \cap A=\mathfrak{p} \in \operatorname{Spec} A$. Let $S=A \backslash \mathfrak{p} . \quad S$ is a multiplicative set of A and of B. Denote by ϕ the composition of canonical maps $B \rightarrow S^{-1} B \rightarrow S^{-1} B / S^{-1} \mathfrak{J}$ and by $k(\mathfrak{p})$ the residue field $A_{p} / \mathfrak{p} A_{p}$. Let $k(\mathfrak{p}) \rightarrow S^{-1} B / S^{-1} \mathfrak{F}$ be the canonical immersion. Then the ring obtained from B by contracting \mathfrak{J} over \mathfrak{p} is the pullback $\phi^{-1}(k(p))=B \times_{s^{-1 B / S-1 \mathfrak{g}}} k(p)$.

Remark 2.2. a) In Definition 2.1, if $\tilde{\mathcal{S}}$ is an intersection of a family $\left\{\mathfrak{\Re}_{\lambda} ; \lambda \in \Lambda\right\}$ of primary ideals of B, such that $\mathfrak{\Re}_{\lambda} \cap A=\mathfrak{p}$, for each $\lambda \in \Lambda$, then the ring obtained from B by contracting $\tilde{\mathcal{J}}$ over \mathfrak{p} coincides with the ring obtained from B by glueing the primary ideals $\left\{\mathfrak{Q}_{\lambda} ; \lambda \in \Lambda\right\}$ over \mathfrak{p}, as defined in [14] (cf. [14, Proposition 1.5]).
b) If we suppose that $\mathfrak{J}=\sqrt{\mathfrak{p} B}$, that is if \mathfrak{J} is an intersection of a family $\left\{\Re_{\lambda} ; \lambda \in \Lambda\right\}$ of prime ideals of B, then the ring obtained from B by contracting \mathfrak{J} over \mathfrak{p}, defined in 2.1, coincides with the ring obtained from B by glueing over \mathfrak{p}, as defined in [9]. In particular, if B is integral and finite over A (and $\mathfrak{J}=\sqrt{\mathfrak{p} B}$), then the family $\left\{\mathfrak{P}_{\lambda} ; \lambda \in \Lambda\right\}$ is finite and, locally, for each $\lambda, S^{-1} \Re_{2}$ is a maximal ideal of $S^{-1} B$. Thus, in this case, the pullback diagram is of the following form:

and we obtain the "classical" definition of the ring obtained from B by glueing over \mathfrak{p}, as defined in [16].
c) Notice that to define properly the ring obtained from B by glueing over $\mathfrak{p} \in \operatorname{Spec} A$ (i.e. by contracting $\tilde{J}=\sqrt{\mathfrak{p} B}$ over \mathfrak{p}) or the ring obtained from B by contracting $\tilde{\mathcal{J}}=\mathfrak{p} B$ over \mathfrak{p}, it is necessary that one of the following equivalent conditions holds:
i) the canonical map $A / \mathfrak{p} \rightarrow B / \mathfrak{p} B$ is injective (cf. Iscebeck's definition);
ii) $\mathfrak{p} B$ is over \mathfrak{p}, that is $\mathfrak{p} B \cap A=\mathfrak{p}$;
iii) $\mathfrak{p} S^{-1} B \neq S^{-1} B$ (with $S=A \backslash \mathfrak{p}$);
iv) there exists a prime ideal \mathfrak{Q} of B over \mathfrak{p};
v) $\sqrt{\bar{p} B}$ is over \mathfrak{p}.

Using the hypotheses and notation of Definition 2.1, we can show that:
Prcposition 2.3. The ring obtained from B by contracting \mathfrak{J} over \mathfrak{p} is the largest subring A^{\prime} of B such that
i) $\tilde{J}=\mathfrak{p}^{\prime}$ is a prime ideal of A^{\prime};
ii) the canonical homomorphism $k(p) \rightarrow k\left(p^{\prime}\right)$ is an isomorphism.

Proof. Notice that in our hypotheses, we have the following commutative diagram:

Observe moreover that $S^{-1} B / S^{-1} \widetilde{\mathcal{J}}=\bar{S}^{-1}(B / \mathfrak{S})$, where $\bar{S}=h(S)=$ $\{s+\mathfrak{F} ; s \in S\}$ is a multiplicative part of B / \mathfrak{F}. Since in \bar{S} there are not zero-divisors (in fact $\left(s_{1}+\mathfrak{F}\right)\left(s_{2}+\mathfrak{J}\right)=\mathfrak{J}$, with $s_{1}, s_{2} \in \mathcal{S}$, implies $s_{1} s_{2} \in \mathfrak{p}$ and so $s_{1} \in \mathfrak{p}$ (and $\left(s_{1}+\mathfrak{J}\right)=\mathfrak{J}$) or $s_{2} \in \mathfrak{p}$ (and $\left.\left(s_{2}+\mathfrak{J}\right)=\mathfrak{J}\right)$) the homomorphism \bar{g} is injective.

Let C be the ring obtained from B by contracting $\tilde{\mathcal{S}}$ over \mathfrak{p}. By definition $C=\phi^{-}(k(p))$, where $\phi=\bar{h} \circ g=\bar{g} \circ h$. Thus, considering the injection \bar{g} as an inclusion, C is the pullback of the diagram

where the intersection is in $S^{-1} B / S^{-1} \mathfrak{J}$.
Since $C / \mathfrak{F}=B / \mathfrak{F} \cap k(\mathfrak{p})$ is an integral domain, $\mathfrak{J}=\mathfrak{p}^{\prime}$ is a prime ideal of C. Therefore C is a ring that contains A and has a prime ideal \mathfrak{p}^{\prime} over \mathfrak{p} and hence we have the canonical monomorphism $k(\mathfrak{p}) \rightarrow k\left(p^{\prime}\right)$. However $k\left(\mathfrak{p}^{\prime}\right)$ is the quotient field of $C / \mathfrak{p}^{\prime}=B / \mathfrak{F} \cap k(\mathfrak{p})$, thus it is contained in $k(\mathfrak{p})$ and so $k(\mathfrak{p}) \cong k\left(p^{\prime}\right)$.

Now, we want to show that C is maximal with respect to the properties i) and ii). A subring of B with properties i) and ii) is in fact a pullback of the type $B \times_{B / \mathcal{S}} D$ where D is a domain contained in B / \mathfrak{J} and containing A / \mathfrak{p} and with quotient field isomorphic to $k(\mathfrak{p})$. The largest ring of this kind is clearly C, constructed in correspondence with the largest $D=B / \tilde{\mathcal{N}} \cap k(\mathfrak{p})$ with the described properties.

Remark 2.4. Observe that if C is the ring obtained from B by contracting \mathfrak{J} over $\mathfrak{p} \in \operatorname{Spec} A$, then:
a) C may have also other primes over \mathfrak{p} (cf. [14, Oss. 1, p. 5]).
b) $A+\mathfrak{J} \subset C$ and, with an analogous argument to [14, Proposition 1.7], it can be shown that $A+\mathfrak{J}=C$ if and only if $A / \mathfrak{p}=C / \mathfrak{F}(=B / \mathfrak{F} \cap$ $k(p))$.

The following example shows that it may be $A \varsubsetneqq A+\tilde{\mathcal{F}} \varsubsetneqq C$.
Example 2.5. Let $A=D+Z K[Z]$, where D is a domain, K its quotient field. Let $B=K[Y, Z]$ and $\mathfrak{J}=Z K[Y, Z]$. Clearly $\mathfrak{J} \cap A=\mathfrak{p}=$ $Z K[Z]$. In this case the ring obtained from B by contracting \mathfrak{J} over \mathfrak{p} is the pullback of the diagram:

Thus it is $C=K+Z K[Y, Z]$ and $A=D+Z K[Z] \varsubsetneqq A+\tilde{\mathcal{J}}=D+$ $Z K[Y, Z] \varsubsetneqq C$.

We extend Definition 2.1 to finitely many prime ideals:
Definition 2.6. Let $A \subset B$ be two rings and let $\mathfrak{\Im}_{1}, \cdots, \mathfrak{\Im}_{n}$ be integral ideals of B such that $\mathfrak{J}_{j} \cap A=\mathfrak{p}_{j} \in \operatorname{Spec} A, j=1, \cdots, n$. We call
the ring $B_{1} \cap \cdots \cap B_{n}$ the ring obtained from B by contracting \mathfrak{J}_{1} over $\mathfrak{p}_{1}, \cdots, \mathfrak{J}_{n}$ over \mathfrak{p}_{n}, where for each $j, j=1, \cdots, n, B_{j}$ is the ring obtained from B by contracting \mathfrak{J}_{j} over \mathfrak{p}_{j}.

Proposition 2.7. Let A be a Mori domain and let $\mathfrak{\Re}_{1}, \cdots, \mathfrak{P}_{n} \in \mathscr{S}(A)$. If $\mathscr{R}=\mathfrak{B}_{1} \cap \cdots \cap \mathfrak{P}_{n}$ and $C=(A: \mathscr{R})$, then A is the ring obtained from C by contracting $\mathfrak{B}_{1} C$ over $\mathfrak{B}_{1}, \mathfrak{B}_{2} C$ over $\mathfrak{B}_{2}, \cdots, \mathfrak{B}_{n} C$ over \mathfrak{B}_{n}.

Proof. By Proposition 1.13, we have $A=C \cap A_{\mathfrak{ß}_{1}} \cap \cdots \cap A_{\Re_{n}}$. Thus it is enough to show that for each $j, j=1, \cdots, n, C \cap A_{\Re_{j}}$ is the ring obtained from C by contracting $\mathfrak{R}_{j} C$ over \mathfrak{R}_{j}. If $S_{j}=A \backslash \mathfrak{P}_{j}$ first observe that $S_{j}^{-1} C=S_{j}^{-1}\left(A: \mathfrak{R}_{1} \cap \cdots \cap \mathfrak{ß}_{n}\right)=\left(S_{j}^{-1} A:\left(S_{j}^{-1} \mathfrak{ß}_{1} \cap \cdots \cap S_{j}^{-1} \mathfrak{ß}_{j} \cap \cdots \cap S_{j}^{-1} \mathfrak{ß}_{n}\right)\right)$ (cf. for example [11, proof of Theorem 2] for the first equality and [1, Proposition 3.11 v$)$,] for the second). Thus $S_{j}^{-1} C=\left(S_{j}^{-1} A: S_{j}^{-1} \Re_{j}\right)=$ $S_{j}^{-1}\left(A: \Re_{j}\right)$. Using this equality, it is not difficult to see that the following diagram

is a pullback. Recalling now that C is a domain and so the canonical map $g: C \rightarrow S_{j}^{-1} C$ is injective, we can see that $C \cap A_{\Re_{j}}$ coincides with the pullback of the diagram

That is, $C \cap A_{\mathfrak{B}_{j}}$ is the ring obtained from C contracting $\mathfrak{ß}_{j} C$ over $\mathfrak{\Re}_{j}$.
Corollary 2.8. Let A be a Mori domain such that $\left(A: A^{*}\right) \neq(0)$ and let $B, C=(B: \mathscr{R})$ be two consecutive (Mori) domains of the associated sequence (*) of Section 1 , where $\mathscr{R}=\mathfrak{B}_{1} \cap \cdots \cap \mathfrak{P}_{n}$ and $\mathfrak{B}_{1}, \cdots, \mathfrak{P}_{n}$ are the strong maximal divisorial ideals of B. Then B is exactly the ring obtained from C by contracting $\mathfrak{ß}_{1} C$ over $\mathfrak{ß}_{1}, \mathfrak{\Re}_{2} C$ over $\mathfrak{\Re}_{2}, \cdots, \mathfrak{ß}_{n} C$ over $\mathfrak{\Re}_{n}$.

§ 3. The "seminormal" case

Let A be a Mori domain such that $\left(A: A^{*}\right) \neq(0)$. Let

$$
\begin{equation*}
A=A_{0} \varsubsetneqq A \varsubsetneqq \cdots \varsubsetneqq A_{m}=A^{*} \tag{*}
\end{equation*}
$$

be the sequence of overrings of A constructed in Section 1.
Section 3 is devoted to study the particular case where $\mathscr{R}_{i}=$ $\left(A_{i}: A_{i+1}\right)$ is a radical ideal of A_{i+1}, for each $i, i=0, \cdots, m-1$. As we shall see, this case is closely related to Traverso's seminormalization.

It is convenient to define the strong dimension of an integral domain $A, \operatorname{dim}_{s} A$, to be the supremum of the lengths of all chains of strongly divisorial prime ideals in A. If A contains no proper strongly divisorial prime ideal, we say that A has strong dimension -1 ; thus, if A is completely integrally closed, then $\operatorname{dim}_{s} A=-1$ (cf. for example [3, Corollary 13]).

In our hypothesis, by Corollary 1.6, $\operatorname{dim}_{s} A$ is finite and, by [3, Corollary 14], A is completely integrally closed if and only if $\operatorname{dim}_{s} A=-1$.

Lemma 3.1. Let $\mathfrak{\lessgtr}$ be a strongly divisorial ideal of a domain A and let $B=(A: \mathfrak{F})$. If \mathfrak{F} is a radical ideal of B and if $\mathfrak{F} \subset \mathfrak{\mathfrak { S }} \in \operatorname{Spec} B$, then \mathfrak{Q} is not a strongly divisorial ideal of B.

Proof. Let $\mathfrak{J} \subset \mathfrak{Q} \operatorname{Spec} B$. Restrict \mathfrak{Q} to a minimal prime \mathfrak{P} of \mathfrak{J}. By Lemma $1.1(\mathfrak{F}: \mathfrak{F}) \subset(\mathfrak{F}: \mathfrak{F})$ and, by [8, Lemma 3.7] ($\mathfrak{Q}: \mathfrak{Q}) \subset(\mathfrak{F}: \mathfrak{F})$. Since $(\mathfrak{J}: \mathfrak{F})=(A: \mathfrak{J})=B$, we have $(\mathfrak{Q}: \mathfrak{Q})=B$. If \mathfrak{Q} is strong, then $(B: \mathfrak{Q})=(\mathfrak{Q}: \mathfrak{Q})=B$ and $\mathfrak{Q}_{v}=B$, thus \mathfrak{Q} is not divisorial.

Proposition 3.2. Let A be a Mori domain such that $\left(A: A^{*}\right) \neq(0)$ and let (*) be the associated sequence. If, for each $i, i=0, \cdots, m-1$, $\mathscr{R}_{i}=\left(A_{i}: A_{i+1}\right)$ is a radical ideal of A_{i+1}, then:

1) no strongly divisorial prime ideal of A_{i+1} contains \mathscr{R}_{i}, for each i, $i=0, \cdots, m-1$;
2) $\operatorname{dim}_{s} A_{i}=m-i-1$, for each i, $i=0, \cdots, m$. In particular $\operatorname{dim}_{s} A=m-1$;
3) $\left(A: A_{i}\right)$ is a radical ideal of A_{i}, for each $i, i=1, \cdots, m$.

Proof. Recall that by construction $A_{i+1}=\left(A_{i}: \mathscr{R}_{i}\right)$, for $i=0, \cdots$, $m-1$, and \mathscr{R}_{i} is a strongly divisorial ideal of A_{i}. Thus to prove 1) it is enough to apply Lemma 3.1. To prove 2) observe that, by 1) and Proposition 1.10, $\operatorname{dim}_{s} A_{i+1}=\operatorname{dim}_{s} A_{i}-1$, for each $i, i=0, \cdots, m-1$. Recalling moreover that A_{m} does not have strongly divisorial prime ideals, i.e. $\operatorname{dim}_{s} A_{m}=-1$, we get $\operatorname{dim}_{s} A_{i}=-1+(m-i)=m-i-1$. In particular $\operatorname{dim}_{s} A=\operatorname{dim}_{s} A_{0}=m-1$. To prove 3), we show that A contains the radical of ($A: A_{i}$) in A_{i} for each $i, i=1, \cdots, m$. Let $x \in A_{i}$
and $x^{n} \in\left(A: A_{i}\right)$, for some $n \in N$. We want to prove that $x \in A$. It is enough to prove that $x \in A_{i-1}$ and $x^{n} \in\left(A: A_{i-1}\right)$. We have $\left(A: A_{i}\right) \subset$ $\left(A_{i-1}: A_{i}\right)=\mathscr{R}_{i-1}$, thus, since \mathscr{R}_{i} is a radical ideal of $A_{i}, x \in \mathscr{R}_{i-1} \subset A_{i-1}$. Moreover, trivially, $x^{n} \in\left(A: A_{i}\right) \subset\left(A: A_{i-1}\right)$.

If A is a Noetherian domain such that $\bar{A}=A^{*}$ is an A-module of finite type (i.e. $(A: \bar{A}) \neq(0)$), we shall prove that the particular case considered above (i.e. \mathscr{R}_{i} radical ideal of A_{i+1} in the sequence (*)) corresponds to seminormal case.

Recall that, given two rings $A \subset B, B$ integral over A, the seminormalization of A in B is the ring

$$
A_{B}^{+}=\left\{b \in B \mid b / 1 \in A_{\mathfrak{B}}+\operatorname{Rad}\left(S^{-1} B\right), \forall \Re \in \operatorname{Spec} A\right\}
$$

where $S=A \backslash \mathfrak{P}$ and $\operatorname{Rad}\left(S^{-1} B\right)$ is the Jacobson radical of $S^{-1} B$ (cf. [16]). It is well known that A_{B}^{+}is the largest subring A^{\prime} of B such that
i) for each $\mathfrak{B} \in \operatorname{Spec} A$, there is exactly one $\mathfrak{Q} \in \operatorname{Spec} A^{\prime}$ above \mathfrak{P};
ii) the canoncal homomorphism $k(\mathfrak{B}) \rightarrow k(\mathfrak{Q})$ is an isomorphism. (cf. [16, (1.1)]).

Proposition 3.3. Let A be a Mori domain and let $\mathfrak{P}_{1}, \cdots, \mathfrak{P}_{n} \in \mathscr{S}(A)$. If $\mathscr{R}=\Re_{1} \cap \cdots \cap \mathfrak{P}_{n}$ and $C=(A: \mathscr{R})$, then the following conditions are equivalent:

1) \mathscr{R} is a radical ideal of C;
2) $S_{j}^{-1} \Re_{j}=\Re_{j} A_{\mathfrak{R}_{j}}$ is a radical ideal of $S_{j}^{-1} C$ (where $S_{j}=A \backslash \Re_{j}$), for each $j, j=1, \cdots, n$;
3) A is the ring obtained from C by glueing over $\mathfrak{P}_{1}, \cdots, \mathfrak{P}_{n}$.

Moreover, if A is Noetherian, then the following are equivalent to each other and to the above conditions:
4) A is seminormal in C;
5) $S_{j}^{-1} A=A_{\mathfrak{F}_{j}}$ is seminormal in $S_{j}^{-1} C$ (where $S_{j}=A \backslash \mathfrak{P}_{j}$), for each j, $j=1, \cdots, m$.

Proof. 1) $\Rightarrow 2)$: since \mathscr{R} is an ideal of $C, S_{j}^{-1} \mathscr{R}=S_{j}^{-1}\left(\mathfrak{F}_{1} \cap \cdots \cap \mathfrak{R}_{n}\right)$ $=S_{j}^{-1} \Re_{1} \cap \cdots \cap S_{j}^{-1} \mathfrak{ß}_{n}=S_{j}^{-1} \Re_{j}$ is an ideal of $S_{j}^{-1} C$; since \mathscr{R} is radical in $C, S_{j}^{-1} \mathfrak{\Re}_{j}$ is a radical ideal of $\left.\left.S_{j}^{-1} C .2\right) \Rightarrow 1\right): \mathscr{R}=\mathfrak{P}_{1} \cap \cdots \cap \mathfrak{P}_{n}=\mathfrak{P}_{1} A_{\mathfrak{P}_{1} \cap}$ $\cdots \cap \mathfrak{P}_{n} A_{\mathfrak{P}_{n}} \cap A$. By Proposition 1.13, $A=C \cap A_{\mathfrak{R}_{1}} \cap \cdots \cap A_{\mathfrak{P}_{n}}$, thus $\mathscr{R}=$ $\mathfrak{P}_{1} A_{\mathfrak{P}_{1}} \cap \cdots \cap \mathfrak{P}_{n} A_{\mathfrak{P}_{n}} \cap C$. Since $S_{j}^{-1} \mathfrak{P}_{j}$ is a radical ideal of $S_{j}^{-1} C, S_{j}^{-1} \mathfrak{P}_{j} \cap C$ is a radical ideal of C for each $j, j=1, \cdots, n$, therefore \mathscr{R} is a radical ideal of $C .2) \Leftrightarrow 3$): by Proposition 2.7, A is the ring obtained from C
contracting $\mathfrak{R}_{1} C$ over $\mathfrak{R}_{1}, \mathfrak{ß}_{2} C$ over $\mathfrak{R}_{2}, \cdots, \mathfrak{\Re}_{n} C$ over \mathfrak{P}_{n}. Thus A is obtained by glueing over $\mathfrak{P}_{1}, \cdots, \mathfrak{P}_{n}$ if and only if $\mathfrak{B}_{1} C, \cdots, \mathfrak{B}_{n} C$ are radical ideals of C. This happens if and only if for each $j, j=1, \cdots, n, S_{j}^{-1} \Re_{j} C$ $=S_{j}^{-1} \Re_{j}$ is a radical ideal of $\left.S_{j}^{-1} C .2\right) \Rightarrow 5$): if $S_{j}^{-1} \beta_{j}$ is a radical ideal of $S_{j}^{-1} C$, necessarily $S_{j}^{-1} \mathfrak{B}_{j}=\operatorname{Rad}\left(S_{j}^{-1} C\right)$, the Jacobson radical of $S_{j}^{-1} C$, thus $S_{j}^{-1} A+\operatorname{Rad}\left(S_{j}^{-1} C\right)=S_{j}^{-1} A$ and $S_{j}^{-1} A$ is seminormal in $S_{j}^{-1} C$. 5) \Rightarrow 4): observe that for each $j, j=1, \cdots, n$, the seminormalization of A in C is contained in the seminormalization of $S_{j}^{-1} A$ in $S_{j}^{-1} C$, as it follows by definition. Therefore we have $A_{C}^{+} \subset C \cap A_{\mathfrak{P}_{1}} \cap \cdots \cap A_{\mathfrak{P}_{n}}$. By Proposition 1.13, $C \cap A_{\mathfrak{P}_{1}} \cap \cdots \cap A_{\mathfrak{P}_{n}}=A$, thus A is seminormal in C. 4) $\Rightarrow 1$): by [16, Lemma 1.3], because \mathscr{R} is the conductor of A in C.

Remark 3.4. Let A be a Noetherian domain such that \bar{A} is an A module of finite type and let B, C be two consecutive (Noetherian) domains of the associated sequence (*). Proposition 3.3 gives, in particular, equivalent conditions in order that B is seminormal in C.

Lemma 3.5. Let $A_{1} \subset A_{2} \subset B$ be domains and let $A_{2}=\left(A_{1}: \mathfrak{F}\right)$, where \mathfrak{J} is a strongly divisorial ideal of A_{1}. If $\mathfrak{B} \in \operatorname{Spec} A_{2}, \mathfrak{P} \not \supset \mathfrak{J}, \mathfrak{p}=\mathfrak{P} \cap A_{1}$, $T_{1}=A_{1} \backslash \mathfrak{p}$ and $T_{2}=A_{2} \backslash \mathfrak{P}$, then $T_{1}^{-1} B=T_{2}^{-1} B$ and the ring obtained from B by glueing over $\mathfrak{p} \in \operatorname{Spec} A_{1}$ coincides with the ring obtained from B by glueing over $\mathfrak{B} \in \operatorname{Spec} A_{2}$.

Proof. Let's prove first that $T_{1}^{-1} B=T_{2}^{-1} B$. Let $x=b s^{-1} \in T_{2}^{-1} B$, with $b \in B, s \in T_{2}$. If $0 \neq i \in \mathfrak{F} \backslash \mathfrak{P}, b s^{-1}=(i b)(i s)^{-1} \in T^{-1} B$, because $i b \in B$, is \in $\mathfrak{J} \subset A_{1}$ and $i \in A_{2} \backslash \mathfrak{P}, s \in A_{2} \backslash \mathfrak{B}$ so $i s \notin \mathfrak{B} \cap A_{1}=\mathfrak{p}$. Thus $T_{1}^{-1} B \supset T_{2}^{-1} B$. The opposite inclusion is trivial. Let's prove now that $T_{1}^{-1} p B=T_{2}^{-1} \beta B$. Let $x=q b s^{-1}$, with $q \in \mathfrak{P}, b \in B, s \in T_{2}$. Pick as before an element $i \in$ $\mathfrak{F} \backslash \mathfrak{P}$. We have $x=b q i(s i)^{-1} \in T_{1}^{-1} \mathfrak{p} B$ because $q i \in \mathfrak{p}$ and $s i \in A_{1} \backslash \mathfrak{p}$. Thus $T_{1}^{-1} \mathfrak{p} B \supset T_{2}^{-1} ß B$. The opposite inclusion is trivial. Therefore $T_{1}^{-1} \sqrt{p B}=$ $\sqrt{\overline{T_{1}^{-1} \mathfrak{p} B}}=\sqrt{T_{2}^{-1} \Re B}=T_{2}^{-1} \sqrt{\Re B}$. Recalling now that $\left(A_{1}\right)_{\mathfrak{p}}=\left(A_{2}\right)_{\mathfrak{B}}$ (cf. [7, 1.4, c)]), we have that $k(\mathfrak{p})=k(\mathfrak{P})$ and, by definition of glueing, the conclusion.

Proposition 3.6. Let A be a Mori domain such that $\left(A: A^{*}\right) \neq(0)$ and let $\left(^{*}\right)$ be the associated sequence. If, for each $i, i=0, \cdots, m-1$, $\mathscr{R}_{i}=\left(A_{i}: A_{i+1}\right)$ is a radical ideal of A_{i+1} and if $\mathscr{P}\left(A_{i}\right)=\left\{\mathfrak{P}_{i 1}, \cdots, \mathfrak{P}_{i n(i)}\right\}$, then A_{i} is the ring obtained from A_{i+1} by glueing over $\mathfrak{p}_{i 1}=\mathfrak{R}_{i 1} \cap A, \cdots$, $\mathfrak{p}_{i n(i)}=\mathfrak{P}_{i n(i)} \cap A$.

Proof. We already know according to Proposition $3.3,1) \Rightarrow 3$), that A_{i} is the ring obtained from A_{i+1} by glueing over $\mathfrak{P}_{i 1}, \cdots, \mathfrak{P}_{i n(i)}$. Observing that for each $j, j=1, \cdots, n(i), \mathfrak{P}_{i j} \not \supset\left(A: A_{i}\right)$ (cf. Lemma 3.1), and applying Lemma 3.5 we arrive at the conclusion.

Corollary 3.7. Let A be a Mori domain such that $\left(A: A^{*}\right) \neq(0)$ and let (*) be the associated sequense. If, for each $i, i=0, \cdots, m-1, \mathscr{R}_{i}=$ $\left(A_{i}: A_{i+1}\right)$ is a radical ideal of A_{i+1}, then A is obtained from A^{*} by a finite number of glueings over all the strongly divisorial prime ideals of A.

Proof. The Corollary follows immediately from Proposition 3.6. We have just to prove that the set $\{\mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p}=\mathfrak{P} \cap A$ for some i, $i=$ $0, \cdots, m-1$, and some $\left.\mathfrak{B} \in \mathscr{P}\left(A_{i}\right)\right\}$ is the set of the strongly divisorial prime ideals of A. If $\mathfrak{B} \in \mathscr{S}\left(A_{i}\right)$ for some i, by Proposition 3.2, 3), $\left(A: A_{i}\right)$ is a radical ideal of A_{i} and so, by Lemma 3.1, $\Re \not \supset\left(A: A_{i}\right)$. Thus we can apply Proposition 1.10 and conclude that $\mathfrak{p}=\mathfrak{B} \cap A$ is a strongly divisorial ideal of A. On the other hand, let \mathfrak{p} be a strongly divisorial prime ideal of A. If $\mathfrak{p \notin \mathscr { S } (A) \text { , then } \mathfrak { p } \not \supset \mathscr { R } _ { 0 } = \cap \{ \mathfrak { Q } ; \mathfrak { Q } \in \mathscr { S } (A) \} = (A : A _ { 1 }) , ~ (1)}$ and thus, again by Proposition 1.10 there exists in A_{1} a strongly divisorial prime ideal \mathfrak{p}_{1} over \mathfrak{p}. If $\mathfrak{p}_{1} \notin \mathscr{S}\left(A_{1}\right)$, then $\mathfrak{p}_{1} \not \supset \mathscr{R}_{1}=\left(A_{1}: A_{2}\right)$, thus there exists in A_{2} a strongly divisorial prime ideal \mathfrak{p}_{2} over \mathfrak{p}_{1} (therefore over \mathfrak{p}) and so on. Since in A_{m} there are not strongly divisorial prime ideals at all, there exist i and $\mathfrak{B} \in \mathscr{S}\left(A_{i}\right)$ such that $\mathfrak{B} \cap A=\mathfrak{p}$.

Theorem 3.8. Let A be a Noetherian domain such that \bar{A} is an A module of finite type and let (*) be the associated sequence. Then A is seminormal if and only if $\mathscr{R}_{i}=\left(A_{i}: A_{i+1}\right)$ is a radical ideal of A_{i+1}, for each $i, i=0, \cdots, m-1$.

Proof. If \mathscr{R}_{i} is a radical ideal of A_{i+1} for each $i, i=0, \cdots, m-1$, then, by Proposition 3.3 and Remark 3.4: A_{i} is seminormal in A_{i+1}. Thus, by [16, Lemma 1.2], we have that $A=A_{0}$ is seminormal in $\bar{A}=A_{m}$.

Conversely, let A be seminormal (in $A_{m}=\bar{A}$). We want to prove that A_{m-1} is seminormal in A_{m}. By Proposition 3.3 (and Remark 3.4), it is enough to show that, if $\mathfrak{B} \in \mathscr{S}\left(A_{m-1}\right)$, then $\mathfrak{P}\left(A_{m-1}\right)_{\mathfrak{\beta}}$ is a radical ideal of $S^{-1} A_{m}$ (where $S=A_{m-1} \backslash \mathfrak{P}$). Since, trivially, A is seminormal in A_{m-1}, ($A: A_{m-1}$) is a radical ideal of A_{m-1} (cf. [16, Lemma 1.3]), so, by Lemna 3.1, $\mathfrak{P} \not \supset\left(A: A_{m-1}\right)$. Therefore we can apply Lemma 3.5 and, if $\mathfrak{p}=\mathfrak{B} \cap A$ and $T=A_{\backslash \mathfrak{p}}$, we have $T^{-1} A_{m}=S^{-1} A_{m}$. Moreover $A_{\mathfrak{p}}=\left(A_{m-1}\right)_{\mathfrak{p}}$ and so
$\mathfrak{p} A_{\mathfrak{p}}=\mathfrak{ß}\left(A_{m-1}\right)_{\mathfrak{p}}$. Thus we have to show that $\mathfrak{p} A_{\mathfrak{p}}$ is a radical ideal of $T^{-1} A_{m}$. Observe now that, if $\mathfrak{J}=\left(A: A_{m}\right)$, since $\mathfrak{P} \supset\left(A_{m-1}: A_{m}\right) \supset \mathfrak{F}$, $\mathfrak{p} \supset \mathfrak{F}$. We claim that \mathfrak{p} is a minimal over \mathfrak{F}. If not, we have $\mathfrak{F} \subset \mathfrak{q} \subseteq \mathfrak{p}$, where \mathfrak{q} is a strongly divisorial prime of A (cf. Proposition 1.3). If this is the case, since $q \not \supset\left(A: A_{m-1}\right)$, by Proposition 1.10, there is in A_{m-1} a strongly divisorial prime ideal $\mathfrak{Q} \varsubsetneqq \mathfrak{B}$ and this is a contradiction, because $\operatorname{dim}_{s} A_{m-1}=0$ (cf. Proposition 3.2, 2)). Thus $T^{-1} \mathfrak{J}=T^{-1} \mathfrak{p}$. Since \mathfrak{J} is a radical ideal of A_{m} (cf. again [16, Lemma 1.3]), $T^{-1} \tilde{\mathcal{s}}=T^{-1} \mathfrak{p}=\mathfrak{p} A_{\mathfrak{p}}$ is a radical ideal of $T^{-1} A_{m}$.

Remark 3.9. As we recalled, if A is seminormal, $(A: \bar{A})$ is a radical ideal of \bar{A} (cf. [16, Lemma 1.3]). Observe that Theorem 3.8 provides, for a Noetherian domain A such that \bar{A} is an A-module of finite type, a kind of converse of this result. In order that A is seminormal, it is not sufficient in general that the conductor $(A: \bar{A})$ is radical in \bar{A}, but it is sufficient (and necessary) that all the conductors $\mathscr{R}_{i}=\left(A_{i}: A_{i+1}\right), i=$ $0, \cdots, m-1$, of our sequence are radical in A_{i+1}. Trivially, if $m=1$ in the sequence (*), the two conditions ($A: \bar{A}$) radical in \bar{A} and \mathscr{R}_{i} radical in A_{i+1}, for each i) are equivalent. A more general result in this spirit is the following:

Proposition 3.10. Let A be a Mori domain such that $\left(A: A^{*}\right) \neq(0)$ and let $\left({ }^{*}\right)$ be the associated sequence. If $\left(A: A^{*}\right)$ is a radical ideal of A and if $\operatorname{dim}_{s} A=0$, then $m=1$, i.e. the sequence (*) is simply $A=A_{0} \subset$ $A_{1}=A^{*}$.

Proof. Since $\left(A: A^{*}\right)$ is radical, $\left(A: A^{*}\right)=\cap\left\{\Re_{\lambda} ; \lambda \in \Lambda\right\}$, where taking only the minimal primes over ($A: A^{*}$), we can assume, by Proposition 1.3 , that all the \mathfrak{P}_{λ} are strongly divisorial primes of A. Since $\left(A: A^{*}\right)$ is the minimum strongly divisorial ideal of A (cf. [3. Proposition 16]) and any intersection of strongly divisorial primes is a strongly divisorial ideal (cf. Proposition 1.2), it turns out that $\left(A: A^{*}\right)$ is the intersection of all the strongly divisorial primes of A. However, since by hypothesis there are not in A non trivial chains of strongly divisorial primes, the set $\left\{\Re_{\lambda} ; \lambda \in \Lambda\right\}$ coincides with the set of all the strong maximal divisorial ideals of $A, \mathscr{S}(A)$ which, by Corollary 1.5 and since $\operatorname{dim}_{s} A=0$, is finite: $\left\{\mathfrak{F}_{1}, \cdots, \mathfrak{B}_{n}\right\}$. Thus $\left(A: A^{*}\right)=\mathfrak{P}_{1} \cap \cdots \cap \mathfrak{P}_{n}=\mathscr{R}_{0}$ and $A_{1}=\left(A: \mathscr{R}_{0}\right)=A^{*}$.

Remark 3.11. a) Notice that in Proposition 3.10 the hypothesis that ($A: A^{*}$) is radical in A is necessary, as Example 1.9, a) shows.
b) If A is a Mori domain such that $\left(A: A^{*}\right) \neq 0$, if (*) is the associated sequence, and if $\operatorname{dim}_{s} A=0$, we deduce easily from Proposition 3.10 that the following conditions are equivalent:
i) $\mathscr{R}_{i}=\left(A_{i}: A_{i+1}\right)$ is a radical ideal of A_{i+1}, for each $i, i=0, \cdots$, $m-1$;
ii) $\left(A: A^{*}\right)$ is a radical ideal of A^{*}.

In fact i) \Rightarrow ii) is an easy consequence of Proposition 3.2, 3) (recalling that $A_{m}=A^{*}$) and ii) \Rightarrow i) is an easy consequence of Proposition 3.10, noticing that, if ($A: A^{*}$) is radical in A^{*}, it is radical in A.
c) If A is Noetherian, the equivalence of conditions i) and ii) above gives in particular the following known result: if A is a Noatherian domain (with $A \neq(A: \bar{A}) \neq(0)$) which satisfies condition (S_{2}) (depth $A_{\mathfrak{B}} \geq$ $\inf (2, \mathrm{ht} \mathfrak{P})$, for all $\mathfrak{P} \in \operatorname{Spec} A$), then A is seminormal if and only if ($A: \bar{A}$) is a radical ideal of \bar{A} (cf. [6 Proposition 7.12]). In fact $\left(S_{2}\right)$ holds in the Noetherian domain A if and only if each $(0) \neq B \in \operatorname{Spec} A$, such that depth $A_{\mathfrak{F}}=1$, is of height 1, i.e., by [17, Proposition 1.10, i) \Leftrightarrow vi)], if and only if each divisorial prime of A is of height 1 . However there is in A at least one strongly divisorial prime, because $A(\neq \bar{A})$ is not a Krull domain (cf. [3, Corollary 14]), thus, if (S_{2}) holds in $A, \operatorname{dim}_{s} A=0$. Moreover, if A is Noetherian, condition i) above means that A is seminormal (cf. Theorem 3.8).

Finally we point out that in the Mori, non-Noetherian case, the glueings over the strongly divisorial prime ideals of A (of Corollary 3.7) do not request any algebraic or finiteness condition on the extension $k(\mathfrak{p})$ $\subset S^{-1} B / S^{-1} \widetilde{J}$ (cf. Definition 2.1), as the simple following examples show:

Examples 3.12. a) Let $A=k+X k[X, Y]$ where k is a field and X, Y indeterminates over k, then A is a Mori domain (cf. [4, Example (4.6), b)]). The associated sequence (*) is simply $A=A_{0} \subset A_{1}=A^{*}=k[X, Y]$ and $\left(A_{0}: A_{1}\right)=X k[X, Y]$ is a radical (in fact prime) ideal of $A^{*} . A$ is obtained from A^{*} by glueing over $\mathfrak{p}=X k[X, Y]$. The transcendence degree 1 of the extension $k \subset k[Y]$ in the diagram

corresponds to the contraction of the affine line of generic point $X k[X, Y]$ $\in \operatorname{Spec} A^{*}$ to the point $\mathfrak{p}=X k[X, Y] \in \operatorname{Spec} A$. Outside of \mathfrak{p}, in the
complement open set, $\operatorname{Spec} A$ and $\operatorname{Spec} A^{*}$ are scheme theoretically isomorphic.
b) Let $A=k[Z]+X Y k[X, Y, Z]$, where k is a field and X, Y, Z indeterminates over k. Then A is a Mori domain, because $A=C \cap B_{1} \cap B_{2}$, where $C=k[X, Y, Z], \quad B_{1}=k(Z)+X k[X, Y, Z]_{(X)} \quad$ and $\quad B_{2}=k(Z)+$ $Y k[X, Y, Z]_{(Y)}$ are Mori domains (cf. [12, I, Theorem 2] and [2, Proposition 3.4]). The associated sequence (${ }^{*}$) is simply $A=A_{0} \subset A_{1}=A^{*}=$ $k[X, Y, Z]$ and $\left(A_{0}: A_{1}\right)=X Y k[X, Y, Z]$ is a radical (non prime) ideal of A^{*} (in fact $X Y k[X, Y, Z]=X k[X, Y, Z] \cap Y k[X, Y, Z]$). The domain A is obtained from A^{*} by glueing over $p=X Y k[X, Y, Z]$.

The two affine planes of generic points $\mathfrak{P}_{1}=X k[X, Y, Z]$ and $\mathfrak{R}_{2}=$ $Y k[X, Y, Z]$ of $\operatorname{Spec} A^{*}$ are identified in $\operatorname{Spec} A$ in the affine line of generic point \mathfrak{p}. Outside of \mathfrak{p}, in the complement open set, $\operatorname{Spec} A$ and $\operatorname{Spec} A^{*}$ are scheme theoretically isomorphic.
c) Let $A=k+X k[X]+X Y k[X, Y, Z]$, where k is a field and X, Y, Z indeterminates over k. Then A is a Mori domain, because it is not difficult to show that $A=C \cap B_{1} \cap B_{2}$, where $C=k[X, Y, Z], B_{1}=k(Z)+$ $X k[X, Y, Z]_{(X)}$ and $B_{2}=k(X)+Y k[X, Y, Z]_{(Y)}$ are Mori domains (cf. [12, 1, Theorem 2] and [2, Proposition 3.4]). Since $\mathfrak{p}_{1}=X k[X, Y, Z]_{(X)} \cap A=$ $X k[X]+X Y k[X, Y, Z] \supset \mathfrak{p}_{2}=Y k[X, Y, Z]_{(Y)} \cap A=X Y k[X, Y, Z]$, by [4, Theorem (4.3)], $\left\{p_{1}\right\}=\mathscr{P}(A)$, and the associated sequence $\left({ }^{*}\right)$ is $A=A_{0} \subset$ $A_{1}=k[X]+Y k[X, Y, Z] \subset A_{2}=A^{*}=k[X, Y, Z] . \quad\left(A_{0}: A_{1}\right)=X k[X]+$ $X Y k[X, Y, Z]$ is a prime ideal of A_{1} and $\left(A_{1}: A_{2}\right)=Y k[X, Y, Z]$ is a prime ideal of A^{*}. Thus A is obtained from A^{*} by glueing over the strongly divisorial prime ideals of A, \mathfrak{p}_{1} and \mathfrak{p}_{2}. The affine plane of generic point $\mathfrak{P}_{1}=X k[X, Y, Z]$ of $\operatorname{Spec} A^{*}$ is contracted in $\operatorname{Spec} A$ into the point \mathfrak{p}_{1}; the affine plane of generic point $\mathfrak{F}_{2}=Y k[X, Y, Z]$ of $\operatorname{Spec} A^{*}$ is contracted in Spec A into the affine line of generic point \mathfrak{p}_{2}. Since $\left(A: A^{*}\right)=\mathfrak{p}_{2}$, outside of \mathfrak{p}_{2}, in the complement open set, $\operatorname{Spec} A$ and $\operatorname{Spec} A^{*}$ are scheme theoretically isomorphic.

References

[1] M. F. Atiyah - I. G. Macdonald, Introduction to Commutative Algebra, AddisonWesley, Reading, Mass., 1969.
[2] V. Barucci, On a class of Mori domains, Comm. Algebra, 11 (17) (1983), 1989-2001.
[3] - Strongly divisorial ideals and complete integral closure of an integral domain, J. Algebra, 99 (1) (1986), 132-142.
[4] V. Barucci-S. Gabelli, How far is a Mori domain from being a Krull domain?, J. Pure Appl. Alg., 45 (1987), 101-112.
[5] - On the class group of a Mori domain, J. Algebra, 108 (1) (1987), 161-173.
[6] M. Bass - M. P. Murthy, Grothendieck groups and Picard groups of abelian group rings, Ann. of Math., 86 (1967), 16-73.
[7] M. Fontana, Topologically defined classes of commutative rings, Annali Mat. Pura Appl., 123 (1980), 331-355.
[8] R. Fossum, The divisor class group of a Krull domain, Springer-Verlag, 1973.
[9] F. Ischebeck, Zwei Bemerkungen über seminormale Ringe, Math. Z., 152 (1977), 101-106.
[10] J. Lipman, Stable ideals and Arf rings, Amer. J. Math., 93 (1971), 649-685.
[11] J. Querré, Sur une propriété des anneaux de Krull, Bull. Sc. Math., 95 (1971), 341-354.
[12] N. Raillard (Dessagnes), Sur les anneaux de Mori, C. R. Acad. Sc. Paris, 280 (1975), 1571-1573.
[13] ——, Sur les anneaux de Mori, thèse, Univ. Pierre et Marie Curie, Paris VI, 1976.
[14] G. Tamone, Sugli incollamenti di ideali primari e la genesi di certe singolarità, B.U.M.I. (Supplemento) Algebra e Geometra, Suppl., 2 (1980), 243-258.
[15] -, A connection between blowing-up and glueings in one-dimensional rings, Nagoya Math. J., 94 (1984), 75-87.
[16] C. Traverso, Seminormality and Picard group, Ann. Sc. Norm. Sup. Pisa, 24 (4) (1970), 585-595.
[17] K. Yoshida, On birational-integral extension of rings and prime ideals of depth one, Japan J. Math., 8 (1982), 49-70.

Dipartimento di Matematica
Istituto " G. Castelnuovo"
Università di Roma "La Sapienza"
Piazzale A. Moro 5, 00185 Roma
Italia

[^0]: Received June 2, 1987.

