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A LIPMAN'S TYPE CONSTRUCTION, GLUEINGS

AND COMPLETE INTEGRAL CLOSURE

VALENTINA BARUCCI

§ 0. Introduction

Given a semilocal 1-dimensional Cohen-Macauly ring A, J. Lipman

in [10] gives an algorithm to obtain the integral closure A of A, in terms

of prime ideals of A. More precisely, he shows that there exists a

sequence of rings A = 4 0 c A 1 c c A i C , where, for each ί, i > 0,

Ai+1 is the ring obtained from At by "blowing-up" the Jacobson radical

9ί% of A,, i.e. Ai+ι = (J n (^? :^?) . It turns out that UiA. ί^O} = A

(cf. [10, proof of Theorem 4.6]) and, if A is a finitely generated A-module,

the sequence {At; i > 0} is stationary for some m and Am = A, so that

(+) A = Λ S A g ••• ̂ A w = A.

In [15] G. Tamone studies when in the Lipman's sequence ( + ) At is

a "glueing of primary ideals of Ai+1 over a prime ideal of A" (see [14]

for definition). She shows in particular that At is not always a glueing

of primary ideals of Ai+1.

In this paper we give an algorithmic construction, for a Noetherian

domain A of any dimension, such that A is a finitely generated A-module,

defining a new sequence {A*; i > 0} of overrings of A; Aί+1 is obtained

from At, taking the dual of a distinguished radical ideal of At. We show

that such a sequence is stationary for some m, Am = A (cf. Theorem 1.8),

and A?: is always a glueing of primary ideals of Ai+ί (cf. Proposition 2.7

and Remark 2.2, a)).

A similar sequence was considered in [17] by K. Yoshida in the case

of a Noetherian ring satisfying the Si-condition. As a matter of fact, the

intermediate rings of the Yoshida sequence are defined in a rather differ-

ent way, but the prime ideals occuring in their definition are linked to

those that we use in our sequence (cf. for more details Remark 1.7).
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However our result holds in a more general situation which turns
out to be its natural context, that is A is just a Mori domain. We recall
that a Mori domain is a domain such that the ascending chain condition
holds for integral divisorial ideals (e.g. Noetherian and Krull domains are
Mori; for other examples and further properties of these domains cf. [11,
12, 13, 2, 4]). In this case the sequence of overrings of A is stationary
at A*, the complete integral closure of A (for a Noetherian domain, it
coincides with A, the integral closure of A).

In Section 2 we study the general procedure in order to descend
along the sequence {At; i > 0} constructed above. This procedure con-
sists in a "contraction of ideals of Aί+1 over prime ideals of A/' (cf.
Definition 2.1), that, in the Noetherian case, coincides with the gJueing
of primary ideals, as defined by G. Tamone in [14].

With the additional hypothesis that in our sequence {At ί > 0} the
conductor of At in Ai+1 is a radical ideal of Ai+ί, for each i (cf. Section
3), we show that the "contraction" coincides exactly with the glueing
(of prime ideals), as defined by F. Ischebeck in [9]. Under this particular
hypothesis, in the Noetherian case, we get a new characterization of
seminormal domains (cf. Theorem 3.8); an analogous characterization,
involving conductor ideals, was given by K. Yoshida, using his sequence
(cf. [17, Theorem 2.2]). On the other hand, if the domain A is not
Noetherian, but Mori, we obtain a natural extension of the notion of
seminormal domain (not in the integral closure but) in its complete
integral closure: similarly to Traverso's result for Noetherian seminormal
rings, (cf. [16, Theorem 2.1]) such a domain A is obtained from its com-
plete integral closure A* (that is a Krull domain) with a finite number
of glueings over prime ideals of A of a certain type (cf. Corollary 3.7).
The paper ends with some examples of Mori, non-Noetherian domains of
this kind.

Throughout the paper, if $ is an ideal of an integral domain A, we
denote, as usual, A: (A: $) by $«• An ideal ίg is called divisorial if
$ = %υ9 strong if (A: $) = ($: $) (cf. [3]), strongly divisorial if it is strong
and divisorial (cf. [11]).

§ 1. The algorithmic construction

We begin by showing that any non-zero intersection of strongly divi-
sorial prime ideals is a strongly divisorial ideal. We need the following:
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LEMMA 1.1. Let ψ be a prime ideal containing a radical ideal $ of

an integral domain A. Then ($β: ψ) c (ίg: $).

Proof Let $ = Π{?βλ; λ e Λ}, where, for each λ, ?fiλ is a minimal prime

of & Since £ C Sβ, we have 3(Sβ:φ)c$β. But, for each ψλ, we have

80β: qθ) c φ,0β: Sβ) C φ/A: Sβ) c (Sβ,: φ). Notice that, for each ψλ with

ψλφψ, we have ( ^ : ^ ) n A = ^ , because if xeA and #φ c ψλ, then,

since φ £ fβi9 xe*βa. Thus we have 30β: 5β) C φ n {(&: Sβ); Sβ4 =£ Sβ} c

? , ^ ^} = S, that is (Iβ: Sβ) C ($: 3).

PROPOSITION 1.2. Lei % = n{5βΛ; λe-4}, ι^^r5 /or eαc/i ^e^ί, β̂A /s α

strongly divisorial prime ideal of an integral domain A. If % Φ (0), then

^ is a strongly divisorial ideal of A.

Proof It is enough to show that $ = A: ($: $) (cf. [3, Proposition

6]). It is obvious that % C A: ($: $). For the opposite inclusion, since,

by Lemma 1.1, 0βλ: Sβa) C ($: 3) for each λ e A, we have Sβ, = A: (A: $β4)

= A : ( φ 2 : φ a ) = ) A : ( 3 ί : 3 ) . Thus Π{^λ; λ e 4 = % 3 A: (Jg: 3).

For a Mori domain, a f"converse" for Proposition 1.2 holds:

PROPOSITION 1.3. Lei A 6e a Mori domain and let % be a strongly

divisorial ideal of A. If $β is a prime ideal minimal over $, £ΛOT $β is

strongly divisorial.

Proof Consider the localization A^. Since

and (A,: ίgA )̂ = A$(A: 3) - A^(^: ^) = ( 3 Λ : ^A$) (cf. for example [11],

proof of Theorem 2), $A^ is a strongly divisorial ideal of A%. Therefore

^A^ is contained in at least one strong maximal divisorial ideal of A%

(cf. [5, Proposition (1.7)]), that is $βAsβ is strongly divisorial. By [11,

Lemma 4], we conclude that $β is a strongly divisorial ideal of A.

As usual, we denote by A* the complete integral closure of A. We

consider in the following results mainly the case where the conductor

of A in A*, (A: A*) is different from (0). This hypothesis is equivalent

for a Noetherian domain A to suppose that the integral closure of A,

A = A* is a finitely generated A-module.

LEMMA 1.4. Let A be a Mori domain such that (A: A*) Φ 0. Then

any decreasing chain of strongly divisorial ideals of A is stationary.

Proof. Let {$„; n > 0} be a strictly decreasing chain of strongly divi-

sorial ideals of A. Since A is a Mori domain, ί Ί ^ ; n > 0} = (0) (cf. [12;
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I, Theorem 1]). On the other hand, since (A: A*) Φ (0), Π{&; n> 0} Φ (0)

(cf. [3, Proposition 16]), a contradiction.

We denote, as in [4] by Dm(A) the set of maximal divisorial ideals

of a Mori domain A, The elements of Dm(A) are prime ideals of A and,

if φ e Dm(A), either A% is a DVR or Sβ is strong, i.e. strongly divisorial

(cf. [4, Proposition (2.1) and Theorem (2.5)]). The set ST{A) = {^eDm(A)\ψ

is strong} is nearly related to A*, as we shall see later. At the moment

we prove:

PROPOSITION 1.5. Let A be a Mori domain such that (A: A*) Φ (0).

Then £f(A) is empty or finite.

Proof. The first case, £f(A) = 0, occurs if and only if A is a Krull

domain. In fact, if A is a Krull domain, it is well known that A% is a

DVR, for each ψeDm(A) and, conversely, if ό?(A) = 0, A is a Krull

domain (cf. [4, Theorem (3.3)]). Suppose that Sf(A) is non empty. If ̂ (A)

is not finite, consider a countable set {9βu ψn, •} of elements of

^(A), with ψi Φ ψp for i Φ j . We can consider the decreasing chain

{$„; n> 1}, where $ n = 0{%;l<i<n}. For each n, %n is a strongly

divisorial ideal by Proposition 1.2. Moreover the chain {$„ n, > 1} is

strictly decreasing because, if 3» = 3»+i> then $i $„ C & = £ n + 1 C Sβn+1,

thus Sβί C Sβn+1 for some j , 1 < i < nf which is clearly impossible. By

Lemma 1.4 we get a contradiction.

COROLLARY 1.6. Let A be a Mori domain such that (A: A*) Φ (0).

Then the set of strongly divisorial prime ideals of A is empty or finite.

Proof. Let 0> be the set of strongly divisorial prime ideals of A.

& = 0 if and only if A is a Krull domain (cf. [3, Corollary 14]). If

gp φ 0, notice that the set of the maximal elements of & is exactly ^(A).

In fact, trivially, if ψ e ̂ (A), ^ is a maximal element of 9. Conversely,

let $ be a maximal element of &. Since $β is divisorial, Sβ C 2K for some

9ft e Dm(A). But ψAm is a strongly divisorial ideal of Am, thus Am is not

a DVR and 9ft e &(A) C ̂ . For the maximality of φ, φ = 9K e ^(A).

Therefore, by Proposition 1.5, the maximal elements of 9 are a finite

number: 9fiu , φ , . Arguing as in the proof of Proposition 1.5, we can

show that &\{φu •••>$*} n a s a finite number of maximal elements

^ί, * * *, Ψt and trivially, for each ί, 1 < i < t, ψt ^ ^d for some j , 1 <j

< s. To conclude the proof it is enough to observe that any decreasing
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chain of elements of & is finite (cf. Lenrna 1.4).

REMARK 1.7. Let A be a Noetherian ring satisfying the SΓcondition

and let R, RaΆ, be a finite overring of A. In this case K. Yoshida

[17] considers a sequence of intermediate rings between A and R (related

to a sequence that we are going to introduce) and a set of distinguished

prime idea]s of A, D(A, R) (cf. [17, Proposition-Definition 1.1]). We notice

that, if A is a Noetherian domain and R = A, the set D{A, A) of [17]

coincides with the set of strongly divisorial prime ideals of A.

In fact, if φ e Spec A and ht P = 1, then Sβ e D(A, A) if only if A^

is not integrally closed (cf. [17, p. 54]), i.e. if and only if SβÂ  is not

principal (cf. for example [1, Proposition 9.2]). It is easy to prove that

the previous statement is equivalent to assume that ψ is a strong ideal

of A. Since in this case (ht 3̂ = 1) $β is always divisorial (cf. for example

[11, Proposition 1]), we have that Sβ e D(A, A) if and only if Sβ is strongly

divisorial. On the other hand, if Sβ e Spec A and ht $β > 1, then Sβ e

D(A, A) if and only if Sβ is divisorial (cf. [17, Proposition 1.10, (vi) <=Φ (xi)])

Since in this case (ht ψ > 1) ψ is always strong (if not ψA% would be a

principal ideal of the Mori domain A%, a contradiction with [11, Lemma

3]), we have that $β e D(A, A) if and only if $β is strongly divisorial.

We notice in particular that Corollary 1.6 generalizes Yoshida's result

on the finiteness of the set {ψ e Spec A | ht Sβ > 1 and depth A% = 1} (cf.

[17, Proposition 1.10 and Corollary 1.12]).

We recall that if A is a Mori domain and $ is a strongly divisorial

ideal of A, then (A: %) = ($: £) is a Mori overring of A (cf. [13, p. 11]

or [3, Corollary 11]). If, moreover, A is a Mori domain such that (A: A*)

Φ (0), then also (A: $) has the same property, that is ((A: ίg): (A: $)*)

Φ (0), because (A: $)* = A*. Thus, under the preceding hypothesis, we

can construct a sequence of Mori overrings of A

A = Ao c Ax c c Am c

setting for each i > 0, Ai + 1 = (A,: #,), where ^ = fl{^; ψ e S^(At)}9 if

^ ( A , ) ^ 0 and Ai+1 = A,, if 5"(At) = 0 .

Notice that, in the first case, 0tt Φ (0), by Proposition 1.5, and that

0ίt is a strongly divisorial ideal of Ai9 by Proposition 1.2; thus, if ^(Aτ)

Φ 0 , At g A ί + 1. Conversely, if ^(A^) = 0, A* = A^ , for each j > ί.

THEOREM 1.8. Let A be a Mori domain such that (A: A#) Φ (0). Then
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the sequence of oυerrings of A considered above is stationary for some

m>0 and Am = A*.

Proof For any ί, i > 0 it is easy to see that At is an overring of

the type $"* for some ideal £^ of A, that is At is a (fractional) divisorial

ideal of A. In correspondence with the sequence {At\ i > 0} of overrings

of A, we get the decreasing sequence of strongly divisorial ideals of A,

{(A: At); i> 0}. This is stationary by Lemma 1.4, thus the sequence of

overrings {A* i > 0} is stationary too (cf. [3, Corollary 8]),

Therefore there exists a n / n > 0 such that Am = Am+1. Thus S?(Am)

= 0 i.e. Am is a Krull domain (cf. [4, Theorem (3.3)]). However A* =

(Am)*, because (A: Am) Φ (0) i.e. A and Am have a nonzero ideal in

common. On the other hand Am is completely integrally closed, that is

(A J * = Am, thus A* = Am.

EXAMPLES 1.9. a) Let A = k\t, t% where £ is a field. A is a 1-dimen-

sional Noetherian (in particular Mori) local domain and its maximal ideal

J = (t\ f) is strongly divisorial. In this case ^ 0 = 9K and Ax = (A: ^ 0 )

== /ep3, ί5, ί l ; # ! = (ί8, ί5, O and A2 - (A,: ^ 2 ) - k{t\ f ] ; ^ 2 = (t\ tz) and

A3 = (A2: 9tύ = Ap]

Observe that in this example our sequence of overrings of A is

different from the sequence constructed by J. Lipman (cf. [10, p. 661]).

As a matter of fact, in this case the steps in the Lipman sequence are
k{t\ fj c k{t\ f] c km

b) Let A = k + XK[X] + YK[X, Y, Z], where k £ if are fields. A is

a Mori (possibly non-Noetherian) domain, because A = K[X, Y, Z]Γ\BίΓ\ B2

where B, = k + (X, Y, Z)K[X, Y, Z](X)Y)Z) and £ 2 = /φΓ) + YK[X, Y, Z ] m

are Mori domains (cf. [12, I, Theorem 2] and [2, Proposition 3.4]). In this

case ^ 0 = XK[X] + YK[X, Y, Z], Ax = (A: # 0) - #[X] + YK[X, Y, Z],

^ = YK[X, Y, Z] and finally A2 = (A,: dt,) = K[X, Y, Z].

We recall that if A is a domain, % is a strongly divisorial ideal of

A and C = (A: SX then Spec A and Spec C are closely related. More

precisely the canonical map associated to the inclusion ί: A-+C, ai: Spec C

—•Spec A gives a one-to-one correspondence between {.OeSpec C|£l;z$$}

and {φ e Spec A |Sβ 73 %}; moreover, if Q e Spec C, Q 73 5̂ and Sβ = Q Π A,

then CQ = A$ (cf. for instance [7, Theorem 1.4, c)]). We notice also that

for any ϊβ e Spec A, $β 73 $, the unique Q € Spec C above Sβ is ($β: $).

Actually (̂ S: $) is a prime ideal of C, because if α& 6 ($β: ̂ 5) and α g (^: 5̂),
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with a,beC =(A:%), then abe Oβ: $2) i.e. a%b% c Sβ, so, since α£ C A,

6̂ 5 C A and α$ ςt ψ, we have 6$ C φ, that is &e0β:$). Moreover

0β: S)Π A = 5β, because if x e A is such that x$ C φ, then, since $ £ *β,

xe$β, and, on the other hand, it is trivial that φ c Oβ: $)Π A.

We want to show that, if A is a Mori domain, in the previous one-

to-one correspondence, strongly divisorial primes of C correspond to

strongly divisorial primes of A.

PROPOSITION 1.10. Let A be a Mori domain, $ a strongly divisorial

ideal of A and C = (A: £). If Sβ e Spec A, Sβ 73 £ am/ G = (ψ: %) (i.e.

£ιf]A = ψ), then ?β is a strongly dίυίsorial ideal of A if and only if G is

a strongly divisorial ideal of C. Moreover if $β e ^(A), then G 6 <S?(C).

Proof. We know that C is a Mori domain and that, if Sβ e Spec A,

$β 73 ̂ 5, is a strongly divisorial ideal of A, then G = (5β: £5) is a divisorial

ideal of C (cf. [13, p. 11]). We want to prove that G is strong.

Denote by F the quotient field of A (and of C). If G is not strong,

there exists x e F such that xG C C and xG ςzί G. Thus xGCα = Co and

GCα = x'ιCo, is principal. But Co is a Mori domain (cf. [11, Corollary 3])

and so if ht G > 2, we have a contradiction with [11, Lemma 2]. On the

other hand, if ht G = 1, Co = A^ is a DVR (cf. [13, Theorem A-4]). This

also is a contradiction because $β (and consequently $βAφ) is strong.

Conversely, let G = Oβ: 3) be a strongly divisorial ideal of C, with

Sβ 6 Spec A, Sβ 73 $. As noted before, Sβ = G D A, thus it is easy to see

that $β is a divisorial ideal of A. In fact, since G = Π{xC; xe F and

X C : D G } , φ = Π{x(A:S); Λ e F and xC=)G}ίΊA is an intersection of

divisorial ideals of A. We want to prove now that $β is strong, i.e. that

(A:$β) = 0β:*β). Actually we have (A: gS) c (A: $Q) = ((A: %): G) =

(C: G) = (G: G). Thus if x e (A: Sβ), x^ c xG c G. From ^ c A and

xφ C G, we get xφ C A ίΊ G = φ, so x € 0β: φ).

For the last part of Proposition notice that if §β e Dm(A) and G = (§β: 5̂)

C 3K € Dm(C), then 2K Π A is a divisorial ideal of A. Thus SK Π A = φ

and, for the one-to-one correspondence, G = 2JI.

Given a Mori domain A such that (A: A*) ψ (0), we have associated

to A a sequence of Mori overrings:

From the previous Proposition we get the following:



106 VALENTINA BARUCCI

COROLLARY 1.11. Let A be a Mori domain such that (A: A*) ψ (0)

and let (*) be the associated sequence. Then m > sup {lengths of chains

of strongly divisorial primes of A}.

Proof Let /* = sup {lengths of chains of strongly divisorial primes of

AJ and let ψQ c ψt c c ψlt be a chain of strongly divisorial primes of

A,. Then necessarily ψh e 5%A«) and %, , φ ^ 73 0tt = ΓΊ $3; Sβ 6 5%A,)}.

So, by Proposition 1.10, there exists in Ai + 1 = (A*: ^ ) a chain of strongly

divisorial primes of length at least lt — 1. Recalling that Am is the only

ring in the sequence (*) which does not have strongly divisorial primes,

the conclusion follows easily.

Other informations about the relationship between strongly divisorial

primes of two consecutive rings of the sequence (*) are given in the

following:

PROPOSITION 1.12. Let A be a Mori domain such that (A: A*) ψ (0)

and let B, C = (B: 0ί) be consecutive (Mori) domains of the associated

sequence (*), where 0t = SftΓl Γl$β« and {%, ••-,$,} = &(B). If £1 is a

strongly divisorial prime ideal of C such that Q D i , then £lf]B = ψj for

some j , j = 1, , n.

Proof. As in the proof of Proposition 1.10 it is easy to see that

Q n δ i s a divisorial ideal of B. But, since £ I D « and B = ) ^ , φ = Q Π β

Z) 01 = ^ Π Πψn 3 φ t ψn. Since ψ is a prime ideal, ψ 3 ψ3. for

some j , j — 1, , n. Thus Ŝ = ^ , becasue ψ is divisorial and Vβj is

maximal divisorial in B.

For an example of the situation described in Proposition 1.12, look at

Example 1.9 a). Ax (resp. A2) has a strongly divisorial prime, 0tx (resp. 0t^y

above ^ 0 e S?(A) (resp. ^ t 6 ^(Ai)).

Clearly in this case, if (*) is the associated sequence of overrings of

A, m > sup {lengths of chains of strongly divisorial primes of A}.

PROPOSITION 1.13. Let A be a Mori domain and let ψu , ψn e S?(A).

If 0t = φ t n Γl̂ Pn and C = (A: «), then A = CD A,XΠ Π A V

Proo/. The inclusion i c C Π A^Π Π A$ra is trivial. For the oppo-

site inclusion we recall that if A is a Mori domain, A = Π {A$ $β e Dm(A)}

(cf. [4, Proposition (2.2) b)]). Thus it is enough to show that C C A,, for

any maximal divisorial ideal ?β of A, ψ Φ Vβlf , ̂ 5W. Actually for such
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maximal divisorial ideal Sβ of A, ψ φ 9t = %Γ\ Γ\ψn, thus there is

exactly one Q e Spec C above ψ and A% = Ca (cf. [7, Theorem 1.4, c)]).

Therefore it is clear that C c A%.

Next we study in greater detail the generic step At C Ai+1 in the

sequence (*). Putting At = B and Aί+ί = C and using the notation of

Proposition 1.12, we describe the extension ΰ c C in n steps, in corre-

spondence with the n prime ideals *&, , $βn.

We shall denote by Q){A) the set of divisorial ideals of a domain A.

Let Bo = B and ̂ 0: ̂ (5) ->^CB) the identity map. Define, for 1 < j

< n, the pair {Bp a) in the following way:

Denote, for simplicity, the map ( α ^ o o#0): £&(B)-+@(Bj-1) by ?r

j_1.

Observe that, for each j , j = 1, , n, ^-Λ^Sj) eS^iBj^). In fact, if

= 1, ^(^ i ) = ?i e S?(B0). If j > 2, applying Proposition 1.10, we get that

ΨM^^iβu) and ?r t(^) 73 Wk(%+d for any A, Λ = 0, 1, -,j - 2. So,

again by Proposition 1.10, Ψj.^ψ^e ^(Bj.,).

Therefore we have a sequence of Mori overrings of B, B — Bod Bx

C C Bn (cf. again [13, p. 11]). We can prove:

PROPOSITION 1.14. Preserving the notation introduced above, the inte-

gral domain Bn coincides with C.

Proof. Observe first that for each j , j = 1, , n, W^ffij) is a frac-

tional ideal of B and that

= Bn.t: (Ψ^iψ^Wn-M) = • • • - B: (ro(^)- • -Ψ.-M).

Observe secondly that, since for each j , j = 1, , n, ̂ jB%J = ($stB%)v

= (%••• ψnB9)v, we have % Π Π ψu = %B9ι Π Π 5β,B,. ΠB = ^ B , , Π

• • Π φ n β $ α Π {B, ψ e Dm(B), ψ Φ ̂ } = (Sβ, • ^ B $ 1 ) , ΓΊ Π (Sβ, ^ B , , ) ,

Π {(^, 5P.B,),; φ 6 Dm(B), ψ Φ 5β,} = (5βx 5βκ)0 (cf. [4, Proposition (2.2),

c)])

Thus we have C = (B: Sβ, Π Π φ.) = (B: ( ^ $βn),) = (B: Sβ, Sβn).

Now, since for each , = 1, , n, % c ^-X^,), we have Sβ, Sβ, c ro(5β,)

• • Ψn-ffiπ) and so C 3 BM. For the opposite inclusion it is enough to
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show by induction that WββJ . Ψn-X{^v) c ψ,Π Πψn. Trivially
= ^ c $βlβ Suppose that ^0^) . rn.2(Sβw_1) C & Π Π %n-i (n>2).
Since Wn^n) c £„_! and ?Fn-20β«-i) is an ideal of B ^ , we have that
Wn-iWn-rWn-M C S^Oβn-λ thuS 5 ^ ) Wn^n) C & Π f i ? ^ .

Moreover, since by definition S ^ G U = (S^OP,): ^ ( φ ^ ) ) , it is
clear that Wn^n)Ψn^n^) c ^ _ 2 ( φ j . So Fo(^) . • ^ . ^ n ) c Wn^n)Π
B = ψn and r o ( ^ ) . ψn-M c ^ n n ?..,n ψn.

§ 2. Contraction of ideals and glueings

To descend in the sequence (*) associated to a Mori domain, defined
in Section 1, we need some further definitions.

DEFINITION 2.1. Let A c B be two rings and let % be an integral
ideal of B such that $(Ί A = p e Spec A. Let S = A\p. S is a multipli-
cative set of A and of JB. Denote by φ the composition of canonical
maps B-^S'B-^S'BIS-1^ and by k(p) the residue field AJpAr Let
£(;p) -> S~ιBjS~ι<^ be the canonical immersion. Then the ring obtained
from B by contracting % over p is the pullback φ'\k(p)) = B Xs-iB/S-^

Remark 2.2. a) In Definition 2.1, if $ is an intersection of a family
{Q̂  Λ e A} of primary ideals of B, such that Q̂  Π A = p, for each /I e yί,
then the ring obtained from B by contracting $ over J> coincides with
the ring obtained from B by glueing the primary ideals {€ιλ λ e A} over
p, as defined in [14] (cf. [14, Proposition 1.5]).

b) If we suppose that $ = V pB, that is if $ is an intersection of
a family {ψλ;λeA} of prime ideals of B, then the ring obtained from B
by contracting $ over p, defined in 2.1, coincides with the ring obtained
from B by glueing over p, as defined in [9]. In particular, if J3 is in-
tegral and finite over A (and $ = <JpB), then the family {Vβλ;λeA} is
finite and, locally, for each λ, S" 1 ^ is a maximal ideal of S^JB. Thus,
in this case, the pullback diagram is of the following form:

φ-\k(p)) — • k(p)

I 1
and we obtain the "classical" definition of the ring obtained from B by
glueing over p, as defined in [16].
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c) Notice that to define properly the ring obtained from B by glue-

ing over p e Spec A (i.e. by contracting $ = V pB over p) or the ring

obtained from B by contracting $ = pB over p, it is necessary that one

of the following equivalent conditions holds:

i) the canonical map Ajp ~» BjpB is injective (cf. ϊscebeck's defini-

tion)

ii) pB is over p, that is pBΠA = p;

iii) pS-^B =£ S - Έ (with S = A\p);

iv) there exists a prime ideal Q of B over p;

v) V pJ3 is over p.

Using the hypotheses and notation of Definition 2.1, we can show that:

PROPOSITION 2.3, The ring obtained from B by contracting $ over p

is the largest subring A; of B such that

i) £< = ρ/ is a prime ideal of Af\

ii) the canonical homomorphίsm k(p) -> k(pf) is an isomorphism.

Proof. Notice that in our hypotheses, we have the following com-

mutative diagram:

S-'B

> Aft

Observe moreover that S-'B/S-1^ - S^CB/^), where S = h(S) =

{s + 55; s e S] is a multiplicative part of Bffi. Since in S there are not

zero-divisors (in fact (s1 + $)(s2 + S) — Ŝ  with s1? 82 e S, implies s^2 € p
and so 5j e p (and (sj -+- 3̂) = 5̂) or s2 e p (and (s2 + $) = ^)) the homomor-
phism g is injective.

Let C be the ring obtained from B by contracting $ over p. By
definition C = φ~(k(p))9 where φ=:hog = goh. Thus, considering the in-

jection g as an inclusion, C is the pullback of the diagram
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c = Λ-'((B/S) n k(p)) — • BI% n k(p)

1 h 1
B

where the intersection is in S

Since C/$ = B/$ Π k(p) is an integral domain, $ = p' is a prime ideal

of C. Therefore C is a ring that contains A and has a prime ideal p'

over p and hence we have the canonical monomorphism k{p) —• £()/)•

However &(p') is the quotient field of C/p' = Bffi Π k(p), thus it is con-

tained in k(p) and so k(p) = k(p').

Now, we want to show that C is maximal with respect to the prop-

erties i) and ii). A subring of B with properties i) and ii) is in fact a

pullback of the type B XB/% D where D is a domain contained in B/% and

containing Ajp and with quotient field isomorphic to k(p). The largest

ring of this kind is clearly C, constructed in correspondence with the

largest D = Bffi (Ί k(p) with the described properties.

Remark 2.4. Observe that if C is the ring obtained from B by con-

tracting $ over peSpecA, then:

a) C may have also other primes over p (cf. [14, Oss. 1, p. 5]).

b) A + § c C and, with an analogous argument to [14, Proposition

1.7], it can be shown that A + % = C if and only if A/p = C/8 ( = B/% Π

k(p))
The following example shows that it may be A §Ξ A + % §Ξ C.

EXAMPLE 2.5. Let A = D + ZK[Z], where D is a domain, if its quo-

tient field. Let B = K[Y, Z] and $ = Zif[Y, Z]. Clearly S Π A = ^

ZK[Z]. In this case the ring obtained from B by contracting $ over p

is the pullback of the diagram:

K

B = K[Y,Z]-—+K[Y]

Thus it is C = K + ZίΓ[y, Z] and A = D + ZK[Z] £ A + 3 = D -f

, Z] ^ C.

We extend Definition 2.1 to finitely many prime ideals:

DEFINITION 2.6. Let A c B be two rings and let $i, ••-,$„ be

integral ideals of B such that $ ; Π A = p5 e Spec A, j — 1, , τι. We call
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the ring Bx Π ΓΊ Bn the ring obtained from B by contracting & over

Pu - , Sn oυer $n> where for each , j = 1, , n, B3 is the ring obtained

from B by contracting ί^ over pjt

PROPOSITION 2.7. Let A be a Mori domain and let Sβj, , Σβw 6

If & = %n - - f)ψn and C = (A: 31), then A is the ring obtained from C

by contracting S&C over Vβlf Sβ2C over $β2> •> ί^

Proof. By Proposition 1.13, we have A = CΠ A^Γi Π A%n. Thus

it is enough to show that for each j , j = 1, , n, C Π A%. is the ring ob-

tained from C by contracting ψjC over Vβj. If Sj — A\Vβj first observe that

(cf. for example [11, proof of Theorem 2] for the first equality and [1,

Proposition 3.11 v),] for the second). Thus SjxC = (SfA: Sfψj) =

Sj^A'.ψj). Using this equality, it is not difficult to see that the follow-

ing diagram

is a pullback. Recalling now that C is a domain and so the canonical

map g: C -> S^C is injective, we can see that CΠA^j coincides with the

pullback of the diagram

C—-> S

That is, CΠ A^.is the ring obtained from C contracting ψjC over ^ .

COROLLARY 2.8. Let A be a Mori domain such that ( A : A * ) ^ ( 0 )

and let B, C — (B: $) be two consecutive (Mori) domains of the associated

sequence (*) of Section 1, where £% = ψι Π Π ψn and ψu , S$n are the

strong maximal divisorial ideals of B. Then B is exactly the ring obtained

from C by contracting ψtC over 9βl9 ψ2C over ψ2, , VβnC over ψn.

§3. The f fseminormaΓ' case

Let A be a Mori domain such that (A: A*) ψ (0). Let
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be the sequence of overrings of A constructed in Section 1.

Section 3 is devoted to study the particular case where &tt —

(Ail Ai+ί) is a radical ideal of Ai+U for each i, i — 0, , m — 1. As we

shall see, this case is closely related to Traverso's seminormalization.

It is convenient to define the strong dimension of an integral domain

A, dim, A, to be the supremum of the lengths of all chains of strongly

divisorial prime ideals in A. If A contains no proper strongly divisorial

prime ideal, we say that A has strong dimension — 1; thus, if A is com-

pletely integrally closed, then dims A — — 1 (cf. for example [3, Corollary

13]).

In our hypothesis, by Corollary 1.6, dims A is finite and, by [3, Cor-

ollary 14], A is completely integrally closed if and only if dims A = — 1.

LEMMA 3.1. Let $ be a strongly divisorial ideal of a domain A and

let B = (A: $). If $ is a radical ideal of B and if $ c Q e Spec B, then

<Q is not a strongly divisorial ideal of B.

Proof Let ^ c Q e Spec B. Restrict Q to a minimal prime Sβ of $.

By Lemma 1.1 (3β: *β) c (S: 3) and, by [8, Lemma 3.7] (Ω:£l) c 0β:φ).

Since (ίg: 3) = (A: ίg) = £, we have (£>:£}) = B. If Q is strong, then

(B: O) = (O: Q) = B and £>„ = JB, thus £t is not divisorial.

PROPOSITION 3.2. Let A be a Mori domain such that (A: A*) Φ (0)

and let (*) be the associated sequence. If, for each i, ί = 0, , m — 1,

gtt = (A<: A ί+1) is α radical ideal of Aί+1, then:

1) no strongly divisorial prime ideal of Ai+1 contains 0tu for each i>

i = 0, , m — 1;

2) dims Aί = m — i — 1, /or eαc/i /, i = 0, , m. In particular

dims A = m — 1

3) (A: AJ is α radical ideal of Aif for each ί, ί = 1, , m.

Proo/. Recall that by construction Ai+1 = (At: $τ), for ί = 0, ,

m — 1, and ^ is a strongly divisorial ideal of At. Thus to prove 1) it

is enough to apply Lemma 3.1. To prove 2) observe that, by 1) and Prop-

osition 1.10, dims Aί+ί — dims At — 1, for each i, i = 0, , m — 1. Re-

calling moreover that Am does not have strongly divisorial prime ideals,

i.e. ά\ms Am — — 1, we get dims At — — 1 + (m — ί) = m — i — 1. In

particular dim, A = dim, Ao = zn — 1. To prove 3), we show that A con-

tains the radical of (A: At) in At for each ί, ί = 1, , m. Let xe A4
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and xne(A:Aι), for some neN. We want to prove that xeA. It is

enough to prove that x e A ^ and xn e (A: A ^ ) . We have (A: At) C

(A^ji At) = ^ί-i, thus, since Mt is a radical ideal of Ai9 xe&ί..1 c A ^ .

Moreover, trivially, xw 6 (A: At) C (A: A ^ ) .

If A is a Noetherian domain such that A = A* is an A-module of

finite type (i.e. (A: A) Φ (0)), we shall prove that the particular case

considered above (i.e. 0tt radical ideal of Aί+ί in the sequence (*)) corre-

sponds to seminormal case.

Recall that, given two rings A a B, B integral over A, the semi-

normalization of A in B is the ring

Ai = {b e B16/1 e Aφ + Rad (S-'JB), Vψe Spec A}

where S = A\ψ and RadίS^jB) is the Jacobson radical of S-'B (cf. [16]).

It is well known that A£ is the largest subring A! of B such that

i) for each ?β e Spec A, there is exactly one QeSpecA 7 above ?β;

ii) the canoncal homomorphism k(ψ) -> k(€ϊ) is an isomorphism, (cf.

[16, (1.1)]).

PROPOSITION 3.3. Let A be a Mori domain and let Vβlf , ψn e £?(A).

If 3t = ψt Π Π ψn and C = (A: ^ ) , ί/iβM ί/ie following conditions are

equivalent:

1) ^ is α radical ideal of C;

2) Sfψj = φ.A^. is α rαdΐcαZ idea/ o/ S j ^ (it Λgrθ Sά = A\φ ;), /or

eac/i j , j = 1, . . . , λi;

3) A is £/ιe riπ-,g obtained from C by glueing over 9fil9 , ^3W.

Moreover, if A is Noetherian, then the following are equivalent to

each other and to the above conditions:

4) A is seminormal in C;

5) SjλA = A¥y is seminormal in S^C (where Sj = A \ ^ ) , /or

j = 1, , m.

Proof. 1) =φ 2): since « is an ideal of C, S j 1 ^ = Sf^Π

= S j ^ j Π Π S j 1 ^ = Sj 1 ^- is an ideal of SjxC; since ^ is radical in

C, S j 1 ^ . is a radical ideal of Sj'C. 2) => 1): # = ^ Π Π §n = %A^O

- - Π φnA$ n ίΊ A. By Proposition 1.13, A = CΠ A^ Γ) Π A$n, thus ^ =

^iA^ Π Π ψnA%n Π C. Since Sfψj is a radical ideal of SfC, Sj1^ Π C

is a radical ideal of C for each y, j = 1, , n, therefore ^ is a radical

ideal of C. 2) 4=) 3): by Proposition 2.7, A is the ring obtained from C
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contracting %C over %, φ2C over φ2, , $ n C over ψn. Thus A is ob-

tained by glueing over Vβί9 , $βn if and only if ^ C , , ψnC are radical

ideals of C This happens if and only if for each j , j = 1, , ra, S j ^ C

= Sj^j is a radical ideal of S^C. 2)=>5): if S Mβ, is a radical ideal

of SfC, necessarily Sjτ% = Rad (Sj'C), the Jacobson radical of SjτC9

thus SjxA + Rad (S^C) = SjxA and SjxA is seminormal in SfC. 5) =$>

4): observe that for each j , j = 1, , 72, the seminormalization of A in

C is contained in the seminormalization of SjτA in S^C, as it follows by

definition. Therefore we have AJ c CΠ AΦl Π Π A^w. By Proposition

1.13, C Π A9l Π Π A%n = A, thus A is seminormal in C. 4) => 1): by

[16, Lemma 1.3], because 0t is the conductor of A in C.

Remark 3.4. Let A be a Noetherian domain such that A is an A-

module of finite type and let B, C be two consecutive (Noetherian)

domains of the associated sequence (*). Proposition 3.3 gives, in par-

ticular, equivalent conditions in order that B is seminormal in C.

LEMMA 3.5. Let Ax c A2 c B be domains and let A2 = (Aj: ίg), where

% is a strongly dίvίsorίal ideal of Ax. If ψe Spec A2, $β ~ύ $, p = 3̂ Π Ax,

Γj = Aj\P « r̂f 2̂ = A2\φ, then T^B = T'a"1^ ατz<i ί/ie rmg obtained from

B by glueing over peSpecAi coincides with the ring obtained from B by

glueing over $β e Spec A2.

Proof. Let's prove first that T^B = T^B. Let x = 6s"1 e T^B, with

beB, seT2. lί 0 Φίe 3\φ, 6s"1 = (ib^is)-1 e TλB, because ib e B, is e

^ C Λ and ie A2\% s e A2\gS so is e φ Π Aj = p. Thus T^B ZD T^B.

The opposite inclusion is trivial. Let's prove now that T^pB = T^ψB.

Let x = qbs~\ with ge^β, beB, seT2. Pick as before an element ie

We have x= bqiisi)'1 e T^pB because qiep and sieA\p. Thus

ID T ^B. The opposite inclusion is trivial. Therefore T{WW =

V Tr'pB = VlVfB = Γ ί V W - Recalling now that (A^ = (A2), (cf.

[7, 1.4, c)]), we have that ^(p) = k(ψ) and, by definition of glueing, the

conclusion.

PROPOSITION 3.6. Let A be a Mori domain such that ( A : A * ) ^ ( 0 )

and let (*) be the associated sequence. If, for each i, i = 0, , m — 1,

<%i = (Ail Ai+1) is a radical ideal of At+1 and if Sf(At) = {5βtl, - -, ^βin{i)}y

then Ai is the ring obtained from Ai+ί by glueing over pn = Sβtl Π A, ,

Pinii) = ΨW) Π A.
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Proof. We already know according to Proposition 3.3, 1) ̂ > 3), that

Ai is the ring obtained from Aί+1 by glueing over 9βiu '' ,^βίn{ί). Ob-

serving that for each j , j — 1, , n(i), ^tj 7$ {A: AJ (cf. Lemma 3.1), and

applying Lemma 3.5 we arrive at the conclusion.

COROLLARY 3.7. Let A be a Mori domain such that (A: A*) Φ (0) and

let (*) be the associated sequence. If, for each i, ί — 0, , m — 1, ^ =

(At: Ai+1) is a radical ideal of A ί+1, then A is obtained from A* by a

finite number of glueίngs over all the strongly dίvίsorίal prim? ideals of A.

Proof. The Corollary follows immediately from Proposition 3.6. We

have just to prove that the set {p e Spec A | p = ψ ΓΊ A for some i, i =

0, , m — 1, and some ψ e ^(A,:)} is the set of the strongly divisorial

prime ideals of A. If ^eS^(At) for some i, by Proposition 3.2, 3), (A: At)

is a radical ideal of At and so, by Lemma 3.1, 3̂ 7$ (A: At). Thus we

can apply Proposition 1.10 and conclude that p = ψ Π A is a strongly

divisorial ideal of A. On the other hand, let p be a strongly divisorial

prime ideal of A. If p g ̂ (A), then p 73 ̂ 0 = Π {Q; Q e ̂ (A)} = (A: Aj)

and thus, again by Proposition 1.10 there exists in Ax a strongly divi-

sorial prime ideal px over p. If ^ g ^ A j ) , then ^ 73 ̂  = (Aji A2), thus

there exists in A2 a strongly divisorial prime ideal p2 over p1 (therefore

over p) and so on. Since in Am there are not strongly divisorial prime

ideals at all, there exist ί and $β e S?(Aι) such that $β Π A == p.

THEOREM 3.8. Let A be a Noetherian domain such that A is an A-

module of finite type and let (*) be the associated sequence. Then A is

seminormal if and only if ^ = (A? : Ai+1) is a radical ideal of Ai+1, for

each i, ί = 0, , m — 1.

Proof. If 0ίi is a radical ideal of Ai+ί for each i, i = 0, , m — 1,

then, by Proposition 3.3 and Remark 3.4 Aέ is seminormal in Aΐ+1. Thus,

by [16, Lemma 1.2], we have that A = Ao is seminormal in A = Am.

Conversely, let A be seminormal (in Aw = A). We want to prove

that Am_j is seminormal in Am. By Proposition 3.3 (and Remark 3.4), it

is enough to show that, if ^e^(AT O_!), then ^ ( A ^ ^ is a radical ideal

of S- 1Am (where S = Am_j\^). Since, trivially, A is seminormal in Am_u

(A: Am.1) is a radical ideal of Am_x (cf. [16, Lemma 1.3]), so, by Lemma

3.1, ψ 73 (A: Am_j). Therefore we can apply Lemma 3.5 and, if p — ψ Π A

and Γ = A\J), we have T~ιAm = S-ιAm. Moreover Ap = (Am^\ and so
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pAp = ψ(Am.1\. Thus we have to show that pAp is a radical ideal of
T~ιAm. Observe now that, if 3 = (A:AJ, since ^ D ^ A J D S ,

p Z> $. We claim that p is a minimal over $. If not, we have ^ C q £ J),
where q is a strongly divisorial prime of A (cf. Proposition 1.3). If this
is the case, since q 7$ (A: Am_j), by Proposition 1.10, there is in Am_ι a
strongly divisorial prime ideal <Q gΞ $β and this is a contradiction, because
dims ATO.j = 0 (cf. Proposition 3.2, 2)). Thus Γ"1^ = T~'p. Since 3 is a
radical ideal of Am (cf. again [16, Lemma 1.3]), T'1^ = T"1*) == pAp is a
radical ideal of T~xAm.

Remark 3.9. As we recalled, if A is seminormal, (A: A) is a radical
ideal of A (cf. [16, Lemma 1.3]). Observe that Theorem 3.8 provides, for
a Noetherian domain A such that A is an A-module of finite type, a
kind of converse of this result. In order that A is seminormal, it is not
sufficient in general that the conductor (A: A) is radical in A, but it is
sufficient (and necessary) that all the conductors ^ = (A*: A<+1), i =
0, , m — 1, of our sequence are radical in Aί+1. Trivially, if m = 1 in
the sequence (*), the two conditions ((A: A) radical in A and 0tt radical
in Ai+1, for each i) are equivalent. A more general result in this spirit
is the following:

PROPOSITION 3.10. Let A be a Mori domain such that (A: A*) ψ (0)
and let (*) be the associated sequence. If (A: A*) is a radical ideal of A
and if dims A = 0, then m = 1, i.e. the sequence (*) is simply A = Ao c
Ai = A*.

Proo/. Since (A: A*) is radical, (A: A*) = Π {$&; λ e Λ}, where taking
only the minimal primes over (A: A*), we can assume, by Proposition
1.3, that all the ψλ are strongly divisorial primes of A. Since (A: A*) is
the minimum strongly divisorial ideal of A (cf. [3. Proposition 16]) and
any intersection of strongly divisorial primes is a strongly divisorial ideal
(cf. Proposition 1.2), it turns out that (A: A*) is the intersection of all
the strongly divisorial primes of A. However, since by hypothesis there
are not in A non trivial chains of strongly divisorial primes, the set
{?βλ;λeΛ} coincides with the set of all the strong maximal divisorial
ideals of A, S?(A) which, by Corollary 1.5 and since dims A = 0, is finite:
{Sft, , $n}. Thus (A: A*) = ^ Π • Π ψn = @Q and Ax = (A: #0) = A*.

Remark 3.11. a) Notice that in Proposition 3.10 the hypothesis that
(A: A*) is radical in A is necessary, as Example 1.9, a) shows.
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b) If A is a Mori domain such that (A: A*) Φ 0, if (*) is the as-

sociated sequence, and if dims A — 0, we deduce easily from Proposition

3.10 that the following conditions are equivalent:

i) 0ίi == (Ai'.Aί+d is a radical ideal of AU 1, for each i, ί = 0, ,

m — 1;

ii) (A: A*) is a radical ideal of A*.

In fact i) =̂> ii) is an easy consequence of Proposition 3.2, 3) (recalling

that Am — A*) and ii) => i) is an easy consequence of Proposition 3.10,

noticing that, if (A: A*) is radical in A*, it is radical in A.

c) If A is Noetherian, the equivalence of conditions i) and ii) above

gives in particular the following known result: if A is a Nostherian

domain (with A Φ (A: A) Φ (0)) which satisfies condition (S2) (depth A% >

inf (2, ht ψ), for all $β e Spec A), then A is seminormal if and only if

(A: A) is a radical ideal of A (cf. [6 Proposition 7.12]). In fact (S2) holds

in the Noetherian domain A if and only if each (0) Φ $β 6 Spec A, such

that depth A$ = 1, is of height 1, i.e., by [17, Proposition 1.10, i) ΦΦ vi)],

if and only if each divisorial prime of A is of height 1. However there

is in A at least one strongly divisorial prime, because A (Φ A) is not a

Krull domain (cf. [3, Corollary 14]), thus, if (S2) holds in A, dim, A == 0.

Moreover, if A is Noetherian, condition i) above means that A is semi-

normal (cf. Theorem 3.8).

Finally we point out that in the Mori, non-Noetherian case, the

glueings over the strongly divisorial prime ideals of A (of Corollary 3.7)

do not request any algebraic or finiteness condition on the extension k(p)

C S^JB/S"^ (cf. Definition 2.1), as the simple following examples show:

EXAMPLES 3.12. a) Let A = k + Xk[X, Y] where k is a field and

X, Y indeterminates over k, then A is a Mori domain (cf. [4, Example

(4.6), b)]). The associated sequence (*) is simply A = Ao C Ax = A* = k[X, Y]

and (Ao: A^ = Xk[X, Y] is a radical (in fact prime) ideal of A*. A is

obtained from A* by glueing over p = Xk[X, Y]. The transcendence

degree 1 of the extension k c k[Y] in the diagram

A = φ~\k) > k

]

Φ

corresponds to the contraction of the affine line of generic point Xk[X, Y]

e Spec A* to the point p = Xk[X, Y] e Spec A. Outside of p, in the
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complement open set, Spec A and Spec A* are scheme theoretically iso-

morphic.

b) Let A = k[Z] + XYk[X, Y, Z], where k is a field and X, Y, Z in-

determinates over k. Then A is a Mori domain, because A = C Π δ i Π δ 2 5

where C = Jfe[X, Y, Z], B, = k(Z) + Xk[X, Y, Z\x) and B2 = A(Z) +

Y£[X, F, Z] ( F ) are Mori domains (cf. [12, I, Theorem 2] and [2, Proposition

3.4]). The associated sequence (*) is simply A = Ao c Ax = A* =

AtX, 7, Z] and (Ao: A^ = XYfe[Z, Y, Z] is a radical (non prime) ideal of

A* (in fact XYk[X, Y, Z] = Xk[X, Y, Z] Π Yfe[X, F, Z]). The domain A is

obtained from A* by glueing over p = XY£[X, Y, Z].

The two affine planes of generic points ψt = Xk[X, Y, Z] and β̂2 =

Yk[X, Y, Z] of Spec A* are identified in Spec A in the affine line of

generic point p. Outside of p, in the complement open set, Spec A and

Spec A* are scheme theoretically isomorphic.

c) Let A = k + Xk[X] + XYk[X, Y, Z], where k is a field and X, Y, Z

indeterminates over k. Then A is a Mori domain, because it is not

difficult to show that A = C Π B1 Π B2, where C = &[X, Y, Z], ^ = A(Z) +

Xk[X, Y, Z] (JΓ) and B2 = A(X) + Y3fe[Z, Y, Z] ( F ) are Mori domains (cf. [12, 1,

Theorem 2] and [2, Proposition 3.4]). Since p, = X3fe[Z, Y, Z] ( X ) (Ί A =

Z^[Z] + XYMX, Y, Z] =) p2 = Yk[X, Y, Z] ( F ) Π A = XYfe[X, Y, Z], by [4,

Theorem (4.3)], {pt} — y(A), and the associated sequence (*) is A = Ao C

A, = k[X] + Yk[X, Y, Z] c A2 - A* - k[X, Y, Z]. (Ao: A,) = Xk[X] +

XYk[X, Y, Z] is a prime ideal of Ax and (A2: A2) = Yk[X, Y, Z] is a prime

ideal of A*. Thus A is obtained from A* by glueing over the strongly

divisorial prime ideals of A, pt and p2. The affine plane of generic point

Sβi = X£[X, Y, Z] of Spec A* is contracted in Spec A into the point fo;

the affine plane of generic point ^ 2 = Yk[X, Y, Z] of Spec A* is contracted

in Spec A into the affine line of generic point p2. Since (A:A*) = p2,

outside of p2, in the complement open set, Spec A and Spec A* are

scheme theoretically isomorphic.
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