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MODULES WITH LINEAR RESOLUTION

OVER A POLYNOMIAL RING IN TWO VARIABLES

YUJI YOSHINO

§ 1. Introduction and main theorem

Let k be a field and let S be a polynomial ring k[xu x2, , xn] over

k in n variables. An S-module M is called a module with linear resolu-

tion if M has a free resolution;

0 > F > F > - • > F > F > M > 0

where, after taking suitable bases of free modules, all //s are matrices

consisting of linear forms of S. The reader should be referred to Eisenbud-

Goto [2, Sections 0 and 1] for elementary facts concerning modules with

linear resolution.

The purpose of this note is to give a complete classification of modu-

les with linear resolution over a polynomial ring in two variables. The

main theorem is the following.

THEOREM (1.1). Let k be an algebraically closed field of any charac-

teristic and let S denote a polynomial ring k[x, y] in two variables. Then

any finitely generated indecomposable module with linear resolution over S

is isomorphic to one of the following;

( i ) SI(x,y)S~k

(ii) (x,y)n (neΉ) or

(iii) the module M(n, p) (n e N , p e P ϊ = k U {°o}), where M(n, p) is

given as the cokernel of a linear mapping;

Sn

defined by the n X n matrix
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A proof of the theorem will be given in Section 3. To say roughly,
it will be shown that the proof is almost equivalent to finding all the
indecomposable representations of the euclidean graph of type Ax. And
hence, even if k is not algebraically closed, the theorem will be valid
after a slight modification. See Section 3 for more detail. We shall also
establish in Section 2 an equivalence between the category of linear com-
plexes over a polynomial ring in n variables and the category of repre-
sentations of the Grassmann algebra over n-dimensional vector space.
Using this equivalence, we will be able to classify the modules as in the
theorem. Further remarks for the case of three variables will be made
in Section 4.

§2. Linear complexes

In this section S always denotes a polynomial ring k[x19 x2, •• , # J

in n variables over an arbitrary field k. Let V be a ^-vector space of

dimension n with a basis {el9 e29 , en} and let V* denote the dual space

of V with the dual basis {xl9 x2, , xn}, that is, xt(e3) = < ;̂ for any i and

j . We regard S as the symmetric algebra S(V*) over V*.

A linear complex over S;

Fm:
fp+1

-F"-1

is a complex consisting of finite free modules and matrices of linear forms

of S. Note that a linear complex is completely determined by a set of
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matrices of linear forms {pj satisfying φi+ι-φt = 0 for all i. Let {pj and

{ψi} give linear complexes, and let {/J be a morphism of complexes be-

tween them, i.e. fi+1-<pi = -ψvΛ for all i. Then {/έ} is said to be a linear

morphism if each ft is a matrix consisting of elements in k = So(V*). We

denote by J*?(S) the category of all linear complexes over S and all linear

morphisms. We also denote by JS?δ(S) the full subcategory of Jδf(S) con-

sisting of all bounded linear complexes. On the other hand, let G be a

Grassmann algebra Λ'V over V which we always regard as a Z-graded

algebra over k. The category of all graded left G-modules is denoted by

Jίgr(G) and we denote by Jίf

gr{G) the full subcategory consisting of all

finite modules. We want to establish the following equivalence.

THEOREM (2.1). There is a category equivalence between &(S) and

Jί gr{G). And by this equivalence J?b(S) is equivalent to Jtτ

sr(G).

Proof, We define a functor Φ: Jlgr(G)-> &(S) as follows. If M =

2] Mt is a graded G-module, then each υ e V gives a λ-linear mapping

<Pi(v): Mt-~* Mi+ί for any ί, where each ρ4 must be linear in v by defini-

tion, hence φ/s are matrices consisting of elements in S^V*). They

satisfy φi+1'<pi = 0 for all ί, since the action of a square of any y e F o n

M is trivial and since each φi+1 φt is a matrix of quadratic forms. Thus

the set of matrices {ψi} defines a linear complex which we denote by Φ(M).

Note that if M is a finite G-module, then Φ(M) is a bounded complex.

Next consider a morphism f = Σft: M = Σ Mt -+ N == Σ Nt in J?gr(G).

If {pj and {ψj define respectively Φ(M) and Φ(N), then regarding each

ft as a matrix consisting of elements in SQ(V*) = k, it holds that ft+1-φt

= ψi fi for all i as matrices over S, hence {ft} gives a linear morphism

from Φ(M) to Φ(iV), denoted by Φ(f).

A functor in the opposite direction will be defined by following the

above in reverse. In fact, if F': >Fι -^-> Fί+1 - ^ > Fί+2 -> is a

linear complex, then we consider β-spaces Mt of the same rank as free

modules F\ and denote M = 2 Mt as a /?-space. We make Λf a graded

G-module by defining the action of i; 6 V on Mt as <pi(v). We denote by

F(F') the graded G-module M and may define a functor ?F: SP{S) ->

Jίgr{G). Then it is easy to see that Φ-Ψ = 1S{S) and Ψ-Φ = l^gΛG), hence

the categories are equivalent. It is also obvious that the functors Φ and

?T give an equivalence between £fh(S) and Jίf

gr{G). Q.E.D.

Remark (2.2). By the equivalence above the grade shifting on modules
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in JCgr{G) corresponds to the degree shifting on complexes. That is, if

M=ΣM< i s i n Λgr(G) and if F' is in &(S\ then the following holds;

j] and

where (F'[j]Y = F^+i and (ML/]), = MJ+i.

As a corollary of Theorem (2.1) we remark the following fact which,

a priori, is non trivial.

COROLLARY (2.3). The category j£?δ(S) of linear bounded complexes over

S admits the Krull-Schmidt theorem.

§ 3. Modules over a Grassmann algebra

By Theorem (2.1) in order to analyze the category J?(S) it will be

enough to classify the modules over a Grassmann algebra. If dim(V) = 1,

it will be easy. In fact the Grassmann algebra G over Vis a commuta-

tive algebra k[e^\l(ef) and hence G and k are all the indecomposable G-

modules, correspondingly we may conclude that all the linear complexes

over S = k[x] are

0 >S-^->S >0 and 0 >S—* 0 .

However the circumstances are more difficult in the case S = k[x, y].

If this is the case, the Grassmann algebra G is a four dimensional k-

algebra having a basis {1, el9 e2, e3 Λ e2 = — e2 Λ ej, and it is easily seen

that G is self-injective. Let R be a quotient algebra G/(e1 Λ e2) =

k[eu e2\l(e2

1, exe2, el), then the following holds true, and is easy to prove.

LEMMA (3.1). If M is an indecomposable left G-module which is not

free, then M is annihilated by ex Λ e2, i.e. M is a module over R.

By this lemma it is sufficient to consider the modules over 2?. We

note that the category of modules over R is stably equivalent to the

category of representations of the euclidean graph Aί9 hence the classifi-

cation of those modules are known as a solution to Kronecker's problem.

See [1] or [3] for the detail. We exhibit in the following the classifi-

cation of .R-modules in the convenient form for us.

LEMMA (3.2). Let T be a commutative k-algebra k[eλ, e2]/(el, ef) where k

is an algebraically closed field. Then any finite indecomposable R-module

is ίsomorphίc to one of the following modules.
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(1) the modules Ln(neZ) defined as follows; Lo = k, if n < 0 then

Ln is the (— ή)th syzygy module of k as a T-module (not as an R-module)

and if n> 0 then Ln is the T-dual HomΓ (L_w, T) of L_n.

(2) the modules M(n,p) (λieN, p ePl = &U{oo}) defined as fellows;

M(n, p) is a graded R-module Wx ® W2 having only two graded pieces,

where W — Wx — W2 is an n-dimensίonal k-space, and ex and e2 act as

mappings of degree 1. If p e k, then ex acts on Wx as the identity (to

W2) and e2 as a matrix of Jordan canonical form;

P 1
0 p

0
1

0 0
0 0

If k — co, then βj acts on Wt as a matrix;

the identity.

0 1
0 0

0
0

0 0
0 0

0 0 0 ••• 0 1
I 0 0 0 0 0

• 0 O Ί

• 0 0

•P 1

•0 p

and e2 as

Remark (3.3). Even if k is not algebraically closed, the lemma above

holds true after a slight modification. In fact, it is enough to replace (2)

in Lemma (3.2) by the below:

Let PJ. be a set of all monic irreducible polynomials in k[e^\ and a

symbol co. If p(ej — e™ + c^ί1"1 + + cm_1e1 + cm is an irreducible pol-

ynomial, then we denote by J(p) the m X m matrix;

0 1 0 0
0 0 1 0

0 0 0 0

0
0

and denote by I(p) the m X m matrix;

0 0 ... 0 (M
0 0 •-. 0 0

0 0 ..- 0 0
1 0 0 0 J
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Then M(n,p) is a graded module WL 0 W2 where W = Wt = W2 is an τιm-

dimensional space such that if p =£ oo then ex acts on WΊ as the identity

and e2 as a matrix;

0
00 J(p) 7(p). . 0

0 0 O. . .J(p) /(/>)
0 0 0 . . - . 0 J(p)i

and if p = oo then M(n, p) is the same as the one in Lemma (3.2).

By Lemma (3.2) and Remark (3.3) above we see that every module

over the Grassmann algebra G has a graded structure, and the modules

in the list of Lemma (3.2) are thus giving all indecomposable objects in

Jίf

gr{G) up to grade shifting. Combining this with Theorem (,2.1) we can

classify all the indecomposable bounded linear complexes over k[x,y].

THEOREM (3.4). Let S be a polynomial ring k[x, y] over an algebra-

ically closed field k. Then any indecomposable bounded linear complex is

one of the following:

(1) the Koszul complex; IC:0-+S > S2 >S->0,

(2) the complexes L'n (neZ); L'Q: 0 —> S —> 0, if n > 0 then

L;: 0 -> Sn > Sn+1 -> 0 and if n < 0 then &n is the
f y x 0 0 0 0

0 y x 0 0 0
0 0 y x - - 0 0

0 0 0 0 •-. x 0

0 0 0 0 y x

dual complex Hom s (L _n, S) of L'J*.

(3) the complexes M\n,p) (neN, pePi); if pek then

Mm(n,p): 0 -* Sn > Sn ->0 and if p = oo ίΛen
+ py y o o
0 x + py y 0

0
0

0
0

0 y
0 x +py)
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Remark (3.5.) If k is not algebraically closed, then (3) in Theorem
(3.4) should read as follows:

Let PJ. stand for the set of all monic irreducible polynomials in k[e^]
and the symbol oo. The complex M'(n, oo) is the same as in Theorem
(3.4). For & p Φ oo in Pi, let I(p) and J(p) be as in Remark (3.3).
Further we denote by E(p) the identity matrix of the size deg (p). Then
the complex M\n,p) (p Φ oo) is the complex;

0- eg (p) . gn ύeg(p)

yl(p) 0
0 xE(p) + yj(p) 0

0

0

0 yl(p)

0 xE(p) + yJ(p)

Using Theorem (3.4) we are now able to prove Theorem (1.1). In
fact, if M is a finitely generated indecomposable module with linear res-
olution over S = k[x, y] with k algebraically closed, then the resolution
F* of M is an indecomposable linear complex, hence it must be one of
the complexes in Theorem (3.2). Since F' is acyclic, it is either K\ L'n
(n > 0) or M'(n, p) (n e N, p e V\), which gives that M is either k, (x, y)n

(n > 0) or M(n,p) as in Theorem (1.1). Q.E.D.

Remark (3.6). Even if k is not algebraically closed, Theorem (1.1)
wiΠ be valid after replacing M(n,p) in the theorem by the homology
module of the complex in Remark (3.5).

§4. Modules with linear resolution over k[x, y, z]

In this section we are concerned with the modules with linear reso-
lution over a polynomial ring S= k[x, y, z] in three variables. By the
notation in the beginning of Section 2, S is the symmetric algebra
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over V* = (xy y, z} where V denotes the three dimensional k space with

a basis {e19 e2, ez) which is dual to {x, y, z). We consider a category ^(S)

consisting of all finitely generated graded torsion S-modules M with

linear resolution and with the condition that depth (M) = 2 (or equiva-

lently pd(M) — 1) and that Mftx, y)M is a direct sum of copies of k, and

morphisms in «̂ ~(S) are graded homomorphisms of degree 0. For a good

evidence that the classification of modules with linear resolution over S

would be hopeless, we show that the subcategory ^{S) in the category of

all modules with linear resolution is equivalent to the category of all

finite modules over the free algebra k(eu e2} in two variables.

THEOREM (4.1). There is a category equivalence between &*(S) and

(k(eίy e2>-mod.).

Proof. Let M be a module in <<Γ(S). Since M i s a torsion module

and has depth 2, it has the free resolution;

0 > Sn - % Sn > M > 0 ,

where φ is a matrix of linear forms in S. Consider the graded module N

over the Grassmann algebra G = A(eu e2, e3) corresponding to this linear

complex under the equivalence of Theorem (2.1). Note that N has only

two graded pieces, and we may write N = Wx ® W2, where W = Wt = W2

is an ^-dimensional Z -̂space. The condition that M/(x9 y)M ^ kn says

that, after taking a suitable basis, the matrix ψ (x) S/(x, y)S is the identity

matrix times z, and hence the action of e3 on Wγ to W2 is the identity

mapping. The actions of e1 and e2 on Wx = W to W2 = W define a

k(eu e2)-module structure on W, which we denote by Φ{M).

Let / b e a graded homomorphism from M to M', where M and M'

are in 3Γ(S). Then / induces a morphism (/0, /i) between the linear reso-

lutions as follows;

0 > Sn > Sn > M —-> 0
ψ
 I λ

0 > Sn' > Sn' > Mf > 0 .

Since / preserves the degree, (/0, /i) must be a linear morphism. If N =

Wi θ Ŵ2 (resp. iV' = W[® Wζ) is the graded G-module corresponding to

M (resp. MO, then (/0, /Ί) gives a graded G-homomorphism g = gι® g2

from i\Γ to iV7 by Theorem (2.1). Since the action of e3 is the identity on
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i to W2 (resp. on W[ to Wζ), the diagram; gA g A is commutative.

Wί—*Wί
id

We denote by Φ(f) the linear mapping gx: Wi.-> W{ (or equivalently g2:

W2 -» W'2)> Since the following diagram is commutative, we see that Φ(f)

is actually a k(eu e?) homomorphism from Φ(M) to Φ(M).

Wι-%> W2

( ί = 1.2).

Thus we defined a functor Φ from ^"(S) to {k(ex, e2)-

Next we want to define a reverse functor. For this let W be a finite

module over k(ely e2). Then we denote N = Wx ® W2 as a A-space where

ΐy = VFj = Wi, and define a G-module structure by the following;

etW2 = 0 (i = 1, 2, 3), e€: ^ -> ί̂ 2 (£ = 1 or 2) is the same as the

original action as a k(eu e2>-module, and e3 acts on Wί to W2 as the

identity mapping.

Thus we obtain a graded G-module N, and consider the linear complex

corresponding to N under the equivalence in Theorem (2.1), say

0 > Sn -^-> Sn > 0 .

Here that the action of e$ is the identity gives that ψ ® Sj{x, y)S is a

diagonal matrix with diagonal elements z. In particular this implies that

ψ is injective and the cokernel Ψ{W) of φ is in T(S). For a k(eίye2)-

homomorphism h: W-> W, we may define a linear mapping g from N —

Wt Θ W2 (W = W, = W2) to iV7 = Wί Θ Wί (W' = Wί = WO by g = A Θ A.

Then it is easy to see that g is, in fact, a G-homomorphism, and hence

it gives an S-homomorphism Ψ(h) from Ψ(W) to Ψ(W') by Theorem (2.1).

This defines the functor Ψ: (k(e,, β2>-mod.) -> ^ ( S ) .

From the definition of the functors one can easily show that Φ-Ψ =

1 and ?Γ Φ = 1, and this completes the proof. Q.E.D.
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