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ON THE ISOMORPHISM CLASS OF THE RING OF

ALL INTEGERS OF A CYCLIC WILDLY RAMIFIED

EXTENSION OF DEGREE p II

YOSHIMASA MIYATA

Let k be an algebraic number field with the ring of integers ok = o

and let G be a cyclic group of order p, an odd prime. Let Kjk be a cyclic

extension of degree p with the ring of integers £>κ. Then, £>κ is an oG-

module. In the case that K\k is tamely ramified, L. McCulloh [3] proved

that the subset R(oG) of the classes cl(D) of the rings O in the class

group Cl° (oG) is equal to the subgroup Cl° (oG)J generated by all cα, c e

Cl° (oG), a e J, where J denotes the Stickelberger ideal (for the definitions,

see below).

Now, in the previous paper [4], we studied the case that Kjk is

wildly ramified. Let Γ(€)) be the genus containing O. From H. Jacobinski's
results [2], we know that there exists a one-to-one corresponding between
the isomorphism classes in Γ(D) and the elements of the class group M

(for the definition, see also below). The group Δ of automorphisms of G

acts on M and so MJ can be defined as in the group CF(oG). In [4], we

defined the invariant N(G) which is an element of M, and showed that

iV(£)) e MJ (cf. [4, Theorem 4]). The purpose of this paper is to prove that

the subset Rw(oG) of invariants N(G) of the rings O in the wildly ramified

extensions Kjk of degree p is equal to MJ (Theorem 3).

Let g be a fixed generator of G and ζ be a primitive p-th root of

unity. Throughout this paper, we assume that k contains ζ. In Section

1, we shall recall the definitions given in [4], and prove Theorem 1 which

is the modification of Theorem 4 of [4]. In Section 2, we shall recall

L. McCulloh's results [3] and define a J-homomorphism ψ from Cl°(oG)

onto M. This homomorphism ψ plays the important role in the proof of

Theorem 3 that Rw(oG) — MJ, which is proved in Section 3.

Received February 16, 1987.

165



166 YOSHIMASA MΪYATA

§ l

Let K/k be a cyclic wildly ramified extension of degree p and let G

be a cyclic group of order p. We can view G as Galois group G(K/k) of

K/k. In this section, we call definitions and Theorem 4 of [4]. For a

prime ideal p of o, let kp be the p-adic completion of k with the valuation

ring op, and let Kp = kp (x)fc if and O, = ov ®0D. Denote by π(p)(= π) and

eCP)(=β) a prime element and the absolute ramification index of kp, re-

spectively. We denote by c(p) the ramification number of KJk9. Then, it is

well known that - 1 £ c(p) £pe(p)l(p - 1). Let Px = PX(K) (PQ = P0(K))

be a product ftp of p such that p\(p) and 0 < c(p) <pe(p)/(p - 1) - 1

(c(p) = — 1), respectively, and let P — PQPι. As in [4], define integers

dip) by

- 1) - Φ ) for

{(p)l(pl) for p\Pt,

Moreover, for 0 ^ i < p, integers mfy) are defined by

771,0)) = t»d(t»)/p],

where [Λ] denotes an integer with [x] <Ξ x < [x] + 1.

Now, we define ofG-modules Lp and an oG-module Z,. Let Et be an

primitive idempotent of kG with g ̂  = ζ'Ei for 0 ^ i < p. For 0 < i < p

and p\Plt let

and αo(ί)) = 1. We define o^G-modules Lp as follows:

(a) For p X P, Lp - o, ® (Σ oE<).

(b) For p\Pu LP = Σ%*M

(c) For p\P0, Lp^(l/p)opG.

Then, it is easily known that there exists an oG-module L in kG such

that op(g)oL = Lp for each p (for example, see [5, p. 70 (5.3) Theorem]).

Denote by Γ(L) a genus including L. By the definition of L, we have

O e Γ (cf. [4, Lemma 7]).

Next, we define a class group M. Let % be a character of G with

χ(g) = ζ and X = {%, %2, , P"1}. Let J be the group of fractional ideals

of k relatively prime to P and let Map (X, I) be the group of functions

from X into /. As in [3], an automorphism δ in Δ{= Aut G) acts on X

and Map (X, I) as follows:
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( 1) Xu(g) = V(gι-X) and ns(r) = nfl!"-1), n 6 Map (X, I).

Let ZΔ be the group ring over the ring of integers Z and an element θ

of ZΔ be

where gδ = gt{δ) with 1 <: ί(3) < p . Let the Stickelberger ideal J oί ZΔ be

J={p~ιθ-ZΔ) Π ZJ.

An element a of £G is written in the form;

a = αô Ό + « Λ + + cip-iEp^ .

From [4, Lemmas 4 and 5], we have

LEMMA 1. Let Aut Lp 6e ί/iβ group of ofi-automorphisms of Lp. Then,

if a e AutLp for each p\P, α0, , av_x are P-unίts.

Let H be defined by

H = {a e kG\a e Ant Lp for p |P and α0 = 1},

and so by [4, Corollary 2], ϋ" is J-invariant. Then, we can define a J-

homomorphism / from H into Map (X, I) such that

f(a)(Γ) = α,o .

The class group M is defined by

M = Map (X,

LEMMA 2. For n e Map (X, /), let cl ra denote a natural image of n in

M. Then, there exists an element m of Map (X, /) such that (m{V), (p)) = 1

and cl m = cl n.

Proof. Let Λ be a left order of L:

A = { α e A G | α L c L } .

Let an ideal f of o be the order ideal of the factor module (2] oE^/Λ (for

the definition, see [5, p. 49]). By the definition of L, the set of prime di-

visors of f is the set of prime divisors of P. Let S be

S = {aekG\aEt = l(f) for 0<ί<p}.

Then, by H. Jacobinski's results [2, p. 8], we have H 2 S. Every coset of



168 YOSHIMASA MIYATA

the ray R(\) mod f in I contains infinite many primes (for example, see

[4, p. 215]). Thus, we can choose ideals ra(Γ) such that m(X*) and n(lι) be

in the same coset of i?(f) in / and (m(lι),(p)) — l Since H Ξ> S, cl n =

cl m, which completes the proof of Lemma 2.

Finally, we remember the definition of N(G). From [4, Lemma 1],

there exists an element a of £> such that apeo and for p\P,

(2) apΞΞ l(π(p)dW).

Then, for 1 ^ * < p,

(3) (αlp) = B*cΓp,

where B̂  is a p-power free integral ideal and cέ is a fractional ideal. By

(2), (ct, P) = 1 and so an element n(£>) of Map(X, /) is defined by rc(O)(Γ)

= Ci. Let N(ΰ) be the natural image cl (n(O)) of τz(O) in M.

From [4, Theorem 4], we have the following theorem.

THEOREM 1. Let Kjk be a wildly ramified extension of degree p with

the discriminant dis (K/k). Let L and M be as above, and let J be the

Stίckelberger ideal in ZΔ. Then,

(i) N(£))eMJ and

(ii) for given ideal a of o with (α, (p)) = 1, there exists a wildly ramified

extension Kf\k of degree p such that ©' e Γ{L) =- Γ(O) and (dis (K'/k), a) = 1.

Proof, ( i ) of Theorem 1 is Theorem 4 of [4] and hence its proof is

done. Next, we prove (ii). Taking sufficiently large integers n(p) for

p\a(p), we choose an element 6 of o such that for p\(p), b = ap(π(p)n{p))

and for p\a,

(4) 6 ΞΞ l(π(ίo)^) .

Let β = V b and Kf = k(β). Then, we see that for p\(p), the ramification

number of Kfjk is equal to the ramification number of K/k. Thus, by [4,

Corollary 1], £)'eΓ(L). As in (3), let (j8p) ='6<rp Then, if p\όia(K'lk)

and (p, (p)) = 1, p is a prime divisor of 6 (for example, see [1, p. 91 Lemma

5]). By (4), (6, α) = 1 and so (dis (K'/k), a) = 1, which completes the proof

of Theorem 1.

§2.

In this section, we recall L. McCulloh's results [3], Let Xr = {X0} U X,
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and V be the group of fractional ideals of o relatively prime to (p). Let

Op be the semilocalisation of o at p, and denote by u(oPG) the group of

units of the ring oΌG, We define a homomorphism / from u(opG) into

Map (X', Γ) by

f(a){t) = %*(α)o .

Then, the class group Cl(oG) of oG is isomorphic to the factor group

Map (X\ F)lf(u{ovG)). We extend an element n of Map (X, Γ) to an element

of Map (Xf, Γ) by setting n(X°) = o, and hence we can view Map (X, T) as

a subgroup of Map (X\ I'). Let φ be the natural homomorphism from

Map (X, Γ) into Map (X', Γ)lf(u{opG% Then,

Ker φ = {f(ά) I a e u(opG) and aE0 is a unit of 0}.

By [3, (2.3.2) Proposition], we have ^(Map(X, JO) = Cl°(oG). Let T be a

subgroup of w(opG) consisting of elements α in u(opG) with α£J0 — 1. Then,

clearly, f(T) = Ker 0.

LEMMA 3. Le£ T &β as above and H be as in Section 1. 7%gft, T ̂  H.

Proof. An element of T is clearly an automorphism of Lp for each

, and so T g iJ by the definition of H.

Now, noting Γ c: J? we have a zl-homomorphism ψ ; from Map (X, JO into

Map (X, I). Then, it follows that ψ' induces a J-homomorphism ψ from

Cl°(oG) into M since T and H are J-groups. Then, we have

LEMMA 4. ψ (Cl°(oG)) = M.

Proof, By Lemma 2, for cl zz e M, there exists an element m of

Map (X, J) such that (m(lι), (p)) = 1 and cl n = cl m in M Then, m e

Map(X, JO and so cl n = ψ(cl m) e ψ(Cl°(oG)).

Since ψ is a J-homomorphism, we have

COROLLARY 1. ψ(C\°(oG)J) - MJ.

We conclude this section with stating L. McCulloh's Theorem [3,

(1.3.1) Theorem].

THEOREM 2. Let G be a cyclic group of order p, and J be the Stick-

elberger ideal. Define a subset R(oG) of Cl°(oG) by

R(oG) = {cl(€)κ)\K runs over the set of tame extensions of degree p}.
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Then, R(oG) = Cl%oG)J. Moreover, given m e Cl° (oG)J and an ideal a of o,

there exists a tame extension K/k such that (dis (K/k), a) = 1 and cl (£>) = m.

§3.

In this section, we prove Theorem 3, which is the aim of this paper.

THEOREM 3. Let G be a cyclic group of order p and K be a wildly

ramified extension of degree p. Let L and Γ(L)( = Γ(O)) be as in Section

1. Define a subset Rw(oG) of M by

Rw(oG) = {N(Sy) IO' is the ring of a wildly ramified extension Kr\k

of degree p with O' e Γ(L)}.

Then, Rw(oG) = MJ. Moreover, given m e MJ and an ideal a of o with

(&9 (P)) — 1> ί/iβre exists a wildly ramified extension Kjk such that

(άis(Klk), α) = 1 cmd N(£>) = m.

Proo/. By Theorem 1, we have Rw(oG) c M*7. In the following, we

have the existence of such a extension if/£ as above. By (ii) of Theorem

1, there exists a wildly ramified extension K'jk such that (dis (K'jh), a)

= 1 and £)' e Γ(L). Let a' be an element of £)' satisfying the congruences

(2). Then, as in (3), we have

(«"*) = &&-* for l ^ i < p .

As shown in the proof of Theorem 1, (b , α) = 1. Let n = iV(D7) and m'

= 7Z"1/?! in M. Since n e M J by Theorem 1 (i), we have mf 6 M J . Then,

by Corollary 1, for some cl (©") 6 CFίoG)"7 ψ(cl (O77)) = m'. By Theorem 2,

Dr/ can be chosen so that the discriminant of k£>" is relatively prime to

the product b of α, bί, ,bp_/. Moreover, as shown in the proof of [3,

(4.2.1) Theorem], there exists an element β of £)" such that βp =r 1 ((ζ - l)p).

Let

where b* is p-power free, and so (bf, b) = 1 because (dis (k£)"/k), b) = 1.

Ideals c, define an element c of Map (X, JO by c(V) = c<. By [3, (3.2.2)

Theorem 3], cl(D/7) = cl c, and hence

( 5 ) ιιι = ψ(clc)ΛΓ(O0.

Now, let F = k(a'β), and then JF is clearly the extension of degree p over

k. The action of g on α'β is defined by g{afβ) = ζαr'β. Since k(β)/k is
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tamely ramified, the ramification number c'(p) of Fjk is equal to the

ramification number c(p) of Kjk for p\(p). Therefore, by [4, Corollary 1],

the ring €)F of all integers in F belongs to the genus Γ(L). We have

and Wfii is p-power free because ft and 6 are p-power free with (ft'ί9 ftt) = 1.

Then, ideals c£, c* define an element n(€)F) of Map (X, I) by 7i(OF)(Γ) = c ĉ ,

and so n(£)F) = c ^(OO By the definition of iV(O) and (5), we have m =

N(£)F), which accomplishes the proof of Theorem 3.
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