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THE DIMENSION FORMULA OF THE SPACE OF CUSP FORMS

OF WEIGHT ONE FOR Γ0(p)

YOSHIO TANIGAWA AND HIROFUMI ISHIKAWA

Introduction

The purpose of this paper is to study the dimension formula for cusp
forms of weight one, following the series of Hiramatsu [2] and Hiramatsu-
Akiyama [3]. We define as usual the subgroup Γ0(N) of SL2(Z) by

Γ0(N) = {(« *) e SL(2, Z)\c = 0 (mod iV)} .

In this paper we consider the case of a prime level, so we always put
Γ — Γ0(p) for a prime number p. In Section 1, we define the Eisenstein
series and determine the constant term matrix explicitly. In Section 2,
we calculate the trace of certain invariant integral operator by the method
of Selberg. First we define a Selberg type zeta function z(δ, X) in (2.4).
It appears in the trace formula from the hyperbolic conjugacy classes.
After analytic continuation, we take the residue of z(δ, X) at 0 and get

dim S^Γ, X) = -1- Res z(δ, X).
4 δ = Q

On the other hand, Deligne-Serre (c.f. Serre [8]) proved that this dimen-
sion is equal to the number of two dimensional Galois representations
satisfying certain conditions. Thus the residue of the Selberg type zeta
function contains an information of the number of such representations.

The main result of this paper was obtained by both authors inde-
pendently. The first author would like to express his hearty thanks to
Professor Hiramatsu and Dr. Akiyama for fruitful discussions.

§ 1. Eisenstein series

Let k be a positive integer and X a Dirichlet character modulo p. We
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assume that χ(— 1) = ( — l)fc. For ( j = ί ^ j e Γ , we put X(σ) = X(d) and

regard X as a character of Γ. The discrete subgroup Γ has two cusps

represented by oo and 0. Let Γκ be the stabilizer of a cusp K. We put

= J and <j0 = - 7 — I Λ ) ,
VP \p 0/

where / is the unit matrix. Then it holds that σκ 00 = % and σ71Γκσκ = Γ^.

Let S be the upper half plane. For z = x + V — l j e S, we denote the

imaginary part of z by 3̂ (2). We define an automorphic factor of weight

k as

Ju(σ,z) = (
cz + dp

The Eisenstein series at a cusp K is defined by

(1.1) Eκ(z, s, k,X) = Σ XiσyΊidσ^σ, z)'1 yiσ^σz)8,

where ze S and s e C. This series converges absolutely and uniformly

for z in any compact subset of S and s in any compact subset of

{s|Re(s) > 1}. We put

Ettμ(z, s, k, X) = jk(σμ, z)-ιEκ(σμz, s, k, X)

for any pair of cusps tc, μ. We often omit the weight k and the character

X if there is no fear of confusion. Since EKtμ(z, s) is a periodic function

in z with period 1, we have a Fourier series expansion

Eκ,μ(z, s) = 2 a*,μ(m; y, s)e(mx)

mez

with

(1.2) aκ μ(m; y, s) = Eκ μ(z, s)e(— mx)dx
Jo

where e(x) = exp(2πV—lx). The constant term of Eg>μ(z, s) has the fol-

lowing form

with Kronecker's δ. The matrix M(s, k, X) = (mK}fi(s, k, X)) appearing in the
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constant term of Eκ^μ(z, s), which is called the constant term matrix, plays

an important role in the theory of Eisenstein series (cf. Kubota [6]). We

will determine M(s, k, X) explicitly in the following Proposition.

PROPOSITION 1. Let ζ(s) and L(s, X) be the Riemann zeta function and

the Dirichlet L-function respectively. We put

nro h\-(- .finv./v Γ(s)Γ(s - 1/2)
N ' ' x ' " Γ(s + kl2)Γ(β - A/2)

( 1 ) When X is a non-trivial character, the constant term matrix is

given by

(1.3) >h
( _ 1 ) t L(2s-l,X)

U2s - 1, X)
' L{2s,l)

0
L(2s, X)

( 2 ) When X is a trivial character Xo, the constant term matrix is given
by

(1.4) M(s, k, Xo) = G(s, k)
ζ(2s)

I-P1

Lp α-p-2 1) ,

Proof. We apply the double coset decomposition

with c >

Case

0,

(i

UP

d

)

y

mod

fC —

,*) =

c and (?
μ — oo.

• y +

= ys +

f
Jo

V1

d) e σ:Tσμ.

We have

«•

Σ
P\c

-si

\

y.(dyι r°° / z
c2s )-Λ\z

d 6 (Z/cZ) x

+ d Vs

+ d\) \c

+ d/c Y*
+ d/c\) 2 +

IT)*

d
d\u

diet*

d

dx

The last integral is equal to
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(-/Γly 77 Γ(g)Γ(g-1/2)
Γ(s + k/2)Γ(8 - k/2)

Next we consider the last sum. It vanishes for a non-trivial character.

For a trivial character, we have

Σ —97 = Σ

~~ \q £nme \ — Q1 ~ 2 s / ^ ^ ^ _ 1-2

_ l(2s - 1) p - 1
ζ(2β) p2 5-1

where 9 is the Euler function.

Case (ii) Λ; — 00 and μ — 0. In this case, we have

-dx
\z + d/c\2s

0,d mod c

- 1/2)
Γ{s + kj2)Γ(s - kβ)

c>0,d mod c

Put

σ = (c d) = U ")<T°

( ^ * \ / * *\
n Vp" -m\jτ) ΐor\m n)eΓ

We see that the condition d mod c reduces to m\p mod n, hence the above

sum is equal to

1 f, x(ft)-y(tt) __ j ^ L(2s - 1, z)

In particular, when 1 is a trivial character, it is equal to

1 ζ(2s - 1) 1 -p1-28

ps ζ(2s) 1 - p~2s '

Case (iii) K — 0 and μ — oo. By the same way as in the case (ii),

we get
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- 1/2)
ps L(2s, 1) Γ(s + k/2)Γ(s - k/2)

In particular, when % is a trivia] character, we get

aUQ y, s) = α0oo(0;y,s).

Case (iv) Λ: = μ = 0. This case is reduced to case (i), so we get

α00(0;;y, s) - a^(0;y,s).

The cases above complete the proof of Proposition 1.

The Fourier coefficient aKtμ(m;y, s) for m Φ 0 can also be evaluated by
the integral in (1.2) using the Whittaker function Watβ. In fact, we have

(1.5) « . > i ; y , β ) = - ( - V = I )
sgn(ι»)(ft/2))

X W f t . s g n ( r a M / 2 _ 8 (4 , |m | ) (

PROPOSITION 2. TΛe constant term matrix M(s, k, 1) and Eisensteίn
series Eκ(z, s) can be continued meromorphίcally to the whole plane and
satisfy the functional equations

(1.6) M{s, k, X)M(1 - s, k, 1) = I ,

The above Proposition is a consequence of the general theory of
Eisenstein series (cf. [6]), but in our case, we can show (1.6) directly by
using the functional equation of the Riemann zeta or the Dirichlet L
function.

§2. Dimension formula

Let G denote SL(2, R). We choose a fundamental domain 2 of Γ in
S such that 2 has oo and 0 as the cusps. We put S = Sχ(Rj2πZ). The
group G operates on S as

, Φ) = (^~lr, Φ + arg(cz + d))
\cz + a /cz +

for (z, φ)eS,g == (® fye G. We choose d(z, φ) = y~2dxdydφ as the G-
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invariant measure on S. It is well known that the ring of G-invariant

differential operators on S is generated by

and Δ =
dx dy / 4 dφ dφ dx

We fix such a fundamental domain 9 of Γ in S as it is projected on

2. Let L2(Φ, X) be the set of all functions on S such that

( i ) f(σ(z, φ)) = X(σ)f(z, φ) for all σ e Γ,

(ii) ^Jf(z,φ)fd(z,φ)<oo.

We denote by 9ft (k, λ, X) the set of all functions in U(β, X) which satisfy

the further conditions

(iii) (dldφ)f(z, φ) = -S=lkf(z, φ),

(iv) Δf(z, φ) = λf(z, φ).

It is well known that every eigenspace 2ft (k, λ, X) is finite dimensional

and orthogonal to each other.

Now we consider the space of cusp forms of weight 1. It is shown

in [2] that 3ft (1, -3/2, X) ̂  S^Γ, X). We suppose that p > 3 in the sequal

because S^Γ, X) = {0} if p = 2. First we introduce an invariant integral

operator on C°°(S) defined by a point-pair invariant kernel

(2.1) ωδ((z, φ\ (z\ φ'))

(yyT2

(z - (z - z')I2j--ϊ

For Re(δ) > 1, it is of (a)-(b) type in the sense of Selberg [7]. Put

**((*, ^), (*', f)) = Σ Z(ffW(«, Φ), σ{z', φ')) .

Then the operator ωδ can be written as

Γ Ks{{z, φ), (z>, φ>))f(z>, φ')d(z', φ')

on V(9, X). By the definition, the operator Kδ vanishes on Wl(k, λ, X) unless

k = 1. Put Λo = — 3/2. Let — 3/2 > λί > λ2 > are the set of all eigen-

values of Δ in L\§, X) such that 2Jl(l, λu X) Φ {0}. It is known that λt ->

— oo when ί—> oo. It follows from [7] that every non zero element in

2ft (1, λuX) is an eigenfunction of Kδ and its eigenvalue depends only on

the spectrum λ. In fact, it is easy to see that the eigenvalue is given by
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(2.2) hs(r) = n
1 (ό)l (pjΔ + 1)

with λ = - 3/2 - r\

Put E*(z, φy s, 1, X) - e" v:iΓΦEκ(z, s, 1, %). We also write simply as

#*(2, 0, s) = Ef(z, φ, s, 1, X). We define

ffί((*, φ\ (z\ φ'))

, 0, 1

As is well known, the integral operator on L2(9, t) defined by the kernel

Kf — Kδ — H^ — H°s is completely continuous and has all discrete spectra

of Kδ. So we obtain the following trace formula

(2.3) ± hδ(rt) d i m SK(1, λi9X)= [ _K*((z, φ\ (z, φ))d(z, φ),
1 = 0 J 9

where λt = — 3/2 — r\. It was shown by Selberg that the right hand side

of (2.3) may be reduced to the sum of components corresponding to con-

jugacy classes of Γ. We will compute each term in the next Theorem.

Before that, we set the following definition.

DEFINITION. Let {Pa} denote the representatives of primitive hyperbolic

conjugacy classes in Γ/{± /}. We define the Selberg type zeta function by

(2 4) z(δ X) = Y Y % ( P j ) sign (Λj) log JV(Pa)
(N(Pa)

ι/2 - N(Pa)-ι/2)(N(Pa)
ι/2 + N(Pay

ι/2)δ

where λa is an eigenvalue of Pa and N(Pa) is the norm of Pa.

THEOREM 1. For Re(<5) > 1, the following trace formula holds:

(2.5) ΣHr

1 \pjZ -j-
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TC J -°° Γ

- i f " hs(r) (2±- (1 + 2V=ϊr, χ) £ (l + 2/lr,
L

where

IZ(c) + X(c') /or p = 1 (mod 3)

0 /or p = 2 (mod 3)

- 1 /or p = 3
c, c' are ίw o solutions of x2 — x + 1 = 0 (mod p).

Proof. Denote by {M} the conjugacy class of MeΓ. We put

= ί. Σ X(σ)ω&z, φ), σ(z, φ))d(z, φ)
J 2 σ G {M}

for M which is not a parabolic element. Let Pκ be the set of all parabolic

elements of Γ which fix a cusp equivalent to K. We put

J(ύ = ί J Σ Z(cτK((*, ίί), ^(^, ̂ )) - H l(z, φ\ (z, φ))}d(z, φ).
J « U6P* J

Then we have, as usual,

\_K*{(z,φ),{z,φ))d(z,φ)

{Q}

where Q, and R denote respectively a hyperbolic element, and an elliptic

element in Γ.

( i ) It is clear that

J(I) = J(- I) = vol ($) = ^ - (p + 1).
o

(ii) Let Q be a hyperbolic element of Γ. There exists an element

Qo such that {± Q%\neZ} is the centralizer of Q. Let λ and λQ be eigen-

values of Q and Qo with \λ\, \λo\ > 1 respectively. Then it is easy to see

that

J(Q) = 2s+2π ^ W K * + ^Z2) χ(Q> s i g n W l Qg 1̂ 1
Γ(ί/2 + 1) (\λ\ - \λ\-%λ\ + \λ\~J #

Therefore we have
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Γ(δl2 + 1)

(iii) Let R be an elliptic element of Γ with p as the fixed point in

S. Let I be a linear transformation which maps S into a unit circle:

w = ψ(z) = (z — ρ)l(z — p). We put R̂ = (^ ^ j and ζ = cp + d. Then ζ

and ζ are eigenvalues of R, and ι*/ = ψ(Rz) = (ζ/ζ)α/. By the simple cal-

culation, we have

= 8πX(R)ζ Γ (1 - M2)*-1

J,w | < 1 | i __ ζ 2 ^ΰ;^i _ ζ*Ww)

1 - 1 ^ ( 1 , 4 ; 3 + i; i +
ζ - ζ « V 2

where F is the hypergeometric function and Γ(R) is the centralizer of R

in Γ. Now we compute the sums border ±J(R)> Σorder 3 or β J(R). Put rc =

ί . j e SL(2, Z) for c mod p. First we consider the case of order 4. Sup-

pose that p ~ 1 (mod 4), and let c, & be two solutions of x2 + 1 = 0 (mod

p). There exist four conjugacy classes of elliptic elements of order 4 in

Γ, and they are represented by ± ΐcTΪ'1 and ± Te, τϊ',1 where τ — ί __-, Λ,

Therefore we have

"*"• J(R) = 2{J{rcτr-1) + j(re. τy-,1))
order 4

2π2Λί=l.

because % is an odd character. When p = 3 (mod 4), there are no elliptic

elements of order 4. Next we consider the case of order 3 or 6. Suppose

that p ~ 1 (mod 3), and let c and d be two solutions of f - x + 1 Ξ 0

(mod p). Then there exist eight conjugacy classes of elliptic elements of

order 3 or 6, and are represented by ± TV/"1, and ± Γ^r/^1 (j = 1,2)

where τ1 = ( ^ __Λ and r2 = ί ~\ ~"Q). On the other hand, when p =

3, there are four conjugacy classes of elliptic elements of order 3 or 6,

and are represented by ± ^f/ί 1 . Hence we have
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Σ J(R) = 2 Σ Wir.τj:1) +
order 3 or 6 J =1

^ T δ
UFL δ l + V-3

for p = 1 (mod 3), and

Σ J(R) = 2(J(r2τ1n
1) +

order 3 or 6

for p = 3. When p = 2 (mod 3), there are no elliptic elements of order 3

or 6.

(iv) We follow the method of [6] to compute J(tc). Let &γ be the

subdomain of @ consisting of all points z e Q) such that y > Y. Put @γ

= Q)\{Q)γ U a<β'γ\ and 9Y = {(̂ , ^) e # | z e ^ Γ } . We also put T = β j"V

Every element of Pκ is conjugate to ± σκT
mσ~ι for some non zero integer

m, and every ± σκT
maZx is not conjugate to each other. Therefore, we

have

(2.6) f Σ Z(ey)ω,((2, φ\ σ(z, φ))d(z, φ)
J ®γ σGP/r

= 2 Σ f. Σ Kr-Xojmσ:xr)ωs{(z, φ), ΓxσcT
mσ:ιr(z, φ ))d(z, φ)

mΦO J 9γ rQΓκ\Γ

= 2 Σ f ω/(z, )̂, Γ«(«, φ))d(z, φ)
mΦOJ &

where # = Urΐσ 'Sy, (r 6Γ«\σ7Tσ.) and J^ is the projection of # onto

S. It is easy to see that the last sum of the integral on {z e S| 0 < x < 1,

y < Y}\^ is o(l) as Y ^ oo. Therefore, (2.6) is equal to

(ml2y)



CUSP FORMS 125

Now we apply the Euler-MacLaurin summation formula as described in

[6]. As a result, (2.6) becomes

as Y-> co, where C is the Euler constant.

The Eisenstein part is evaluated most elegantly by using the Maaβ-

Selberg relation. We define the compact part of E*(z9 φ, s) by

EΠz, φ, s)

= (E*(zf φ, s) - e~^jλ{σ-μ\ z^o^O; Imiσ^z), s) if ze aμ®'γ ,

[E*(z, φ, s) otherwise .

Then the Maaβ-Selberg relation states that

, Φ, s), εr(z, ψ, §0) =
π s + s' — 1

(K Φ μ). Hence, putting s = t + V — lr, we have

(2.8) ^_^H's((z,φ),(z,φ))d(z,φ)

= - L ] i m f Γ hs{r)Eΐγ{z, φ, s)Efγ(z, φ, s)drd(z, φ) + o(l)

4TΓ t-^l/2 J Q J — oo

Am- t 1 /9 I Of 1
_ 4 Γ(l/2)Γ((g + D/2) t

Γ(3/2 + 1)

- -i- Γ A,(r) ̂  (4- +
4π ,,

(A; Φ μ). We used (1.6) in the above computation. We have

(2.9) <» ( 1 + J=ϊr, 1, χ) = <= (1 + ̂ Γϊr, i, χ)

^ I Γ l ^ 0- - v " r l r
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(1 + 2/^ϊr, χ) + -jjL (l _ 2/^Ίr, X))

by (1.3) and the log derivative of the functional equation of L. As hι(r)

is even, it follows from (2.7)-(2.9) that

J(κ) = Hm j ^ {^g Z(σ)α)a((2, φ), σ(z, φ)) - H's{(z, φ), (z, ώ))}d(z, φ)

D/2) Λ ^ 3)

Γ((δ + 1)/2)Γ((3 + 3)12)
iγ

2 ^ I r > χ> + #JL

Summing up the above cases, we get Theorem 1.

COROLLARY. The Selberg type zeta function z(δ, X) can be continued

meromorphically to the whole plane.

Proof. Firstly we consider an analytic continuation of the following

series

(2.11) g Γ (~ + ^r^ϊr)j Γ ( |- - v ^ l r , ) dim

By the theory of trace formula (c.f. [7]), the series above is convergent

absolutely and uniformly on any compact set in Re(d) > 1. Hence (2.11) is

a holomorphic function in this region. We put A = {2(m ± V —lrέ)|m e Z,

m < 0, i = 0, 1, 2, •}. Let n be any positive integer. For Re (δ) > 2 — 2n

and δ & A, (2.11) is equal to

(2.12) Σ r ( 1 + n + v^ϊ r > ( A + n - y^Ί Γ ) d i m

- V2 V l 2 T

Since Re(^/2 + ή) > 1, and u m ^ l r * ] = oo, (2.12) is convergent absolutely

and uniformly on any compact subset not containing any points of A.

Hence we can define an analytic continuation of (2.11) to the whole

plane.

The terms in the right hand side of (2.5) which are expressed by

gamma and hypergeometric functions can be continued meromorphically
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to the whole plane.

Finally we consider the integral

(2.13) g(δ) = f V~1C° r ( 4 - + t) Γ (ί - t)f(t)dt for Re (δ) > 1,

where /(*) = (Γ'\F){\ + t) or (L'/L)(l + 2ί, X). It is well known that

^ and ψ(l + 2t,l) = O(log2p(l + \t\))

for t e Λ/^Λ i?. Then, g(δ) is a holomorphic function in Re (δ) > 0. In

order to continue to the region Re (δ) < 0, we take the point <50 on V —1R.

Let ? be a path described in the figure satisfying that f(t) has no poles

in the semi-disks Dι and D2 surrounded by <€ and V —11?.

D.

- 1

δ
2

δ_
2

When <50 = 0, we take Dt = D2 Let 5 be very close to <50 such that

— δ/2 e D2. It follows from the residue theorem that

- - | ) Res(δ) =

As the integral above is convergent for any δ/2 in Z)j, ̂ (^) is continued to

the imaginary axis. Let δ/2 be in the interior of Du Then, g(δ) can be

expressed as

( 2 14>
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The integral above converges in — 2 < Re (δ) < 0 and defines a holomorphic

function in that region. Hence (2.14) gives an analytic continuation of

g(δ) to — 2 < Re (δ) < 0. By the same way, for ^ in a small neighbour-

hood of - 2 + δ0 (δ0 eV^ΛR), we have

Γ(t)

And for — 4 < Re (δ) < — 2, g(δ) can be expressed as

(2 15) ί ^ Γ ( £ + ' M i -
- (-| + l)) + / ( | - + l)) Res Γ(t)

Repeating this procedure, g(δ) can be continued meromorphically to the

whole plane. So we get an analytic continuation of z(δ, X).

THEOREM 2. It holds that

(2.16) dim S^Γ, X) = — Res z(δ, X).
4 s=o

Proof. We take the residues of both sides of (2.5) at δ = 0. The

residue of the left hand side is 16π2 dim S^Γ, X). In the right hand side of

(2.5), the term from elliptic conjugate classes vanishes, because F(l, 0; 1; z)

= 1. The other terms except z(δ, X) turn out to be holomorphic at δ = 0.

Hence we get Theorem 2.
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