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ON MEYER'S EQUIVALENCE

JURGEN POTTHOFF*

§ 1. Introduction

In the recent years there has been a considerable effort to construct
and analyze spaces of test and generalized functionals in infinite dimen-
sional situations, cf. [3, 5, 12,14] and literature quoted there. In particular
Meyer [4, 5] has introduced a certain space of "smooth" functionals on the
Wiener space, which was used by Watanabe [14] for an elegant formula-
tion of "Malliavin's calculus" (i.e. he proved a criterion for the existence
and regularity of densities of Wiener functionals). This functional space
is countably normed and one of its important properties is its algebraic
structure. The proof of this property follows from an equivalence of the
norms defining the space with a system of norms of Sobolev type [4, 5]
(cf. also (1.5), (1.6)).

In this paper we prove the generalization of Meyer's equivalence to
Gaussian spaces. By this we mean a triple (Jf*, £%9 μ), Jf* being the dual
of a separable, nuclear pre-Hilbert space Jf with (compatible) scalar
product (•, •)> £% the topological σ-algebra of Jf* and μ is the Gaussian
measure on SI defined by ( , ), i.e.

(1.1) j ^ exp /<*, ξ}dμ(x) - exp ( - λ \ ξ ή

ξ e Jf and | | is the norm induced by ( , •), cf. [1]. By #f we shall denote
the completion of Jf under | |.

A large class of spaces of Λ^-test and generalized functionals has
been constructed in [7] and, although the above mentioned equivalence
will only be proved in one special case, let us review this construction
quickly to introduce some notations.

To define spaces of test functionals over Jf* similar to Sf(Rd)9 it
would be quite natural to proceed as in the finite dimensional case,
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namely to introduce them as projective limits of chains of Hubert spaces

[1, 9] (recall the construction of Sf(Rd) via the Hamiltonian of the har-

monic oscillator): Let A be a linear, self adjoint positive operator on « ,̂

then, going through the Fock space formalism [6,9,10], we have the

linear operator dΓ(A) (ess. selfadjoint, positive) on U(Jf*, μ) and we may

consider the scalar products

m

(1.2) (f,g)*.»:=Σ<f,dΓ(Ayg)L.
1=0

on a suitable dense subspace (e.g. the polynomials) of L\^V*9 μ). The

corresponding completions L\m form a chain of Hubert spaces, which are

continuously embedded into each other, and its projective limit L2j°° can

be regarded as a space of test functionals over Jf*.

However, as Meyer remarks [5], it is easily seen, that L̂ °° is not an

algebra. Therefore one considers also the spaces L2'm, defined as the com-

pletions of a suitable dense subspace of L2(«/Γ*, μ) with respect to the

norms (p >̂ 1, m e Z+)

m

(1.3) ll/IU:=Σllrf/WΎ|i,
1=0

where || ||p is the norm of l?{Jf*, μ) = IP.

Then we can define a space ΣA as the projective limit of the system

L '̂m, where p ranges over N and m over Z+ (the inclusions L^m c Z#m,

P ^ Q> follow from Holder's inequality, while L%m+1 c I?/* follows from

the hypercontractivity of the semigroup exp(— tdΓ(A)) [6,10], cf. also

[7] and [12]).

Let us denote the dual of L%m by L2Py~m, which is a Banach space

with norm || ||_P)_m. Standard theory [1] implies that ΣA is a Frechet

space and its dual Σ% is sequentially weakly complete and

(1.4) Σt - U £ l p ' " m

The following should be mentioned as an important illustration of

our abstract setting:

Choose Jf = S?(R) and 3/e = L2(R, dt), i.e. (JT*, Si, μ) is the standard

white noise space [3]. Then Wiener functionals can equivalently be

described as white noise functionals over Jf * = Sf*(jS) (cf. [3]).
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Next, choose A = 1 (identity on ^f = L\R, dt)). Then dΓ(ί) is the

number- or Ornstein-Uhlenbeck operator and Σ is the space of Meyer

[4, 5] in a slightly different formulation.

Another typical case would be Jί = S?(Rd), JP = H^{Rd, dx), the

Sobolev space of order — 1 over Rd

> so that (,/Γ*, &9 μ) describes free

Euclidean quantum field theory (of massive bosons) in d dimensions.

Now let d(r/), η e JP, denote the annihilation operator on U (with do-

main L?'1, s.a.) [9,10] (cf. also [7, 8]) and let (ek;keZ+) be a CONS of JP

in the domain of the operator A. Then we are looking for an equiva-

lence of norms

(1.5) WJ\\\P~\\dΓ(Ay"f\\p

where

(1.6) WJf:

and 9*6?) is the ZΛadjoint of d{η).

Due to the formula

dΓ(A)fg = fdΓ(A)g + gdΓ(A)f

it would then be a matter of induction, as shown in [5, 12], to prove that

ΣA forms an algebra.

Unfortunately, because of technical difficulties, the equivalence (1.5)

can here only be proved in the case A = 1 ( = id^), although the power-

ful Littlewood-Paley-Stein (LPS) inequalities entering the proof (cf. also

[4]) have been shown in [8] for a broad class of operators A. Equivalence

(1.5) for the case A = 1 will be proved in the next section.

Finally, in section 3 Watanabe's above mentioned result about the

composition of certain test functionals in Σ with tempered distributions

is sketched in our setting. This provides a "formulation of Malliavin's

calculus" (s.a.) for random variables on Gaussian spaces (̂ K*, 3#, μ), which

is expected to have applications in fields such as Euclidean quantum field

theory.
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§ 2. The equivalence of norms

For the rest of this article we shall assume A = 1 ( = id^) and drop

all corresponding subscripts. Furthermore we denote the number opera-

tor dΓ(ϊ) by N.
In this section we prove the equivalence (1.5) of the ZΛnorms of \Ff\

and N1/2f. In the finite dimensional case (with Lebesgue measure and N

replaced by the Laplacian) the corresponding equivalence follows from

the elliptic LPS inequalities [11]. However the noncommutativity of d(η)

and N in our situation destroy such a direct proof via the Riesz trans-

formation as in [11]. Meyer has found a way in [5] how to overcome

this difficulty, applying in addition parabolic LPS inequalities. (For the

notion of elliptic and parabolic LPS inequalities cf. also [8]). Here we

are going to follow his proof rather closely, however the use of stochastic

integrals is avoided.

First we introduce a little more notation and prepare two lemmas for

later convenience.

Let 3^{n) denote the subspace of L2 isomorphic to (Jf c)®
w υ (cf. section

1 of [8]). fn denotes the orthogonal projection in L2 onto f̂(n). &> is the

algebra of polynomials in the variables {<x, efc), keZ+}, where {βfc, keZ+}

is a CONS of tf lying in JT. Note that 0> is dense in all Lp, 1 ^p < oo.

Sugita proves in [12] the following result, which is essentially a con-

sequence of Nelson's hypercontractivity theorem [6]

LEMMA 2.1. (a) βn extends to a bounded operator on all Lp, K p < oo

(b) Let {Pt, t e R+} be the semigroup on L2 defined by Pt = exp (— tN).

Then for all p, 1 < p < oo, and neN, there exists cVyU > 0, so that

(2.1) ( n-1 \

i - Σ /.)/
1 = 0 /

(c) For all ne Z+ the operator

t
1=0

defined on polynomials, extends to a bounded operator on all Lp, 1 < p < oo.

1) jfc denotes the complexification of 3tf, ® the symmetric tensor product.
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The following lemma is easily verified and its proof omitted.

LEMMA 2.2. On 0> the commutation relations

(2.2) N^3(v) = a(V)(N -

(2.3) Ptd(η) = e'3(-

hold for all η e -ff.

Now we can start proving (l.δ) for A = 1. For the following let

fe SP Π ®n>i^{n) and p e ( l , oo), unless otherwise stated. Define g :~

(N - I)1/'-/ and gt : = Ptg.

LEMMA 2.3,

(2.4) \\\Ff\\\p <

Proof. Le t Qt : = e x p ( - ίiV1/2), ί e 2 ? 4 . We c o m p u t e

=• ~ f esdkgsvt(ds)
Jo

and used Lemma 2.2 and equation (2.3) of [8]. Then

£ Γe2s\Fgs\
2v (ds)

Jo

where the first inequality follows from taking the Z2-norm under the inte-

gral and the second from Schwarz' inequality for the normalized measure

vt(ds). Upon integration with tdt, Fubini's theorem and

Λco

vt(ds)tdt = ds ,
Jo

we obtain

(2.5) Σ W ) 2 ^ Γe2s\Fgs\ds
k JO

and G4 is the Littlewood-Paley function in section 4, eq. (4.7), of [8].
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Since fe & Π ® ^ 2 ^ ( 7 ° implies that ί (dkf)dμ = 0 and 2 f c \dkf\
2 is a finite

sum (and hence its root is in all Lp, p ^ 1), we apply Theorem 4.4 of [8],

which states that the root of the left hand side of (2.5) has ZΛnorm

equivalent to the ZΛnorm of \Pf\ (if 1 < p < oo), proving (2.4).

LEMMA 2.4.

(2.6) )1/2 II

UP

Γ°°
J o P

Proof. Let h e &. From Lemma 2.4 in [8], we have the bound

(Pth=ht)

so that

(2.7)

by Theorem A of [8]. Set h = gU9 ueR+.

Then

(2.8) e^\\gu\\p:

Denote

1/2

and A : = L\R+, dt). Integrating (2.8) with euβdu we obtain

Γβ HίrJIpdtt^ fV/2 | | \\H(u, )llAll,d»
Jo Jo n

and so

.(2.9) ||(J"

Moreover, from (2.7)

l/2
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1/2

(2.10)
II \J0 / p

Now inequality (2.6) follows from (2.9), (2.10) and the triangular inequality.

Our next step is

LEMMA 2.5.

(2.11) \\\Vf\\\v <\\g\\p.

Proof. In view of Lemmas 2.3 and 2.4, it is sufficient to show that

But since g is a polynomial in ®n^2^(n\ this follows immediately from

Lemma 2.1b.

THEOREM 2.6. Let feLpΛ, 1 <p < oo. Then the equivalence of norms

(1.5) holds in the case A = id ,̂.

Proof. By density of ^ , it is sufficient to prove (1.5) for a polynomial

/. Assume first that fe & Π ®n^ ^{n) Then Lemma 2.5 provides the

bound (recall the definition of g before Lemma 2.3):

Wf\\P<\\(N-iy<*f\\p

Jt- JM\P

where || ||P)P is the operator norm on ZΛ By Lemma 2.1c the first term

of the last inequality is finite, so that for / e ^ ί l θ ^ ^ w one side of

(1.5) is proved.

General fe 0> is decomposed as / = /(0) + / ( t ) + /' with /(0) e ̂ ( 0 ) = C, /(1) e

^f ^ = #?c (the complexification of 3rif) and an elementary computation

shows that

Hence

because the projections Jn are bounded on Lp (Lemma 2.1a).

To obtain the converse inequality, we only have to observe that for

p = 2 both norms are equal, so that the standard duality argument yields



106 JURGEN POTTHOFF

\\N^f\\p £ IIIF/HI,

and the proof is concluded.
Having arrived at Theorem 2.6, the induction arguments of Meyer [5]

or Sugita [12] can now be taken over literally for our situation to prove

THEOREM 2.7. Let f,ge L2p^m. Then

(2.12) ll/fellp^^ll/llίp^ll^lkp^.

In particular Σ forms an algebra.

§ 3. On Watanabe's theorem

In this section we follow essentially Watanabe [14].

Let φ e <¥(Rd) and / = (Λ, , fd) be a map from JT* to Rd with ft e Σ,

i = 1,2, . . . , A

Define the J^-functional

(3.1) Σ
(note that by Theorem 2.7 (ϊ~% e Σ for all i,j, 1 < i,j <; d).

We shall need the following

LEMMA 3.1. Assume that the matrix 7~ι is μ-a.e. strictly positive and

that ϊ is in all Lp, 1 <Lp < oo. Then φ^ofeΣ, where φH means the ith

partial derivative of the function φ, and

(3.2) φ.to f = 1 g r^Nfrf of-fjNφof-φo fNf,}.

Proof First note that ϊ'1 > 0 μ-a.e. implies that ϊ exists μ-a.e. and
that Γ 1 e I7 together with ϊ eLp for all p e [1, oo), the chain rule for dk

(the corresponding proof in [7] is easily adapted to the present situation)
and Theorem 2.7 imply that ϊ e Σ too.

Next the chain rule for dk yields

d

from which we conclude

and since ϊ~ι is μ-a.e. invertible
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3=1

Finally using Lemma 2.2 of [8] (which extends from polynomials to Σ) we

find

Σ (dJMφof) = ±-(Nfrfof-fjNφof-φ
k 2

which proves (3.2). Theorem 2.7 implies now that φH°f belongs to Σ,

since by the chain rule φ o / belongs to Σ for ft e Σ and φ e 6^(Rd) and Σ

is stable under N and under multiplication.

DEFINITION 3.2. A sequence {Tn, neN} in 21* is said to converge

"-strongly to Te 21*, if there exist peN and me Z+, so that Tn9 Te L~p^m

for all neN and \\Tn — T\\_Pi_m converges to zero as n-+oo.

Note that strong-convergence implies strong and weak convergence

in Σ*.

Now we can adopt Watanabe's proof of the following

THEOREM 3.3 (Watanabe). Let f = (fu -,fd) be a map from Jf* to R

with fce Σ, i = 1, , d. Assume that 7~ι is (μ-a.e.) strictly positive with

ϊ e Lp for all p e [1, oo). Then there is a unique linear map ~ from ^^(Rd)

into 21* with the properties

(a) if Te^(R% then f - Tof

(b) if Tn-+T in y*(Rd\ {Tn, neN} a ^(R%

then fn-+f *-strongly in Σ*.

Sketch of the proof Let H = — Δ + | u f be the Hamiltonian of the

harmonic oscillator on L\Rd,du). For aeZ, denote by £fa the Hubert

space obtained as the completion of ^(Rd) under \\Ha/2-\\LHBaidu). Then for

each TeS?*(Rd) there exists a e Z so that Te£fa and a sequence {Tn;

neN} in ^(Rd) with Tn -> T in S?a [9]. Furthermore for βeZ+ large

enough

iϊ-*Γn >H~βT

in the uniform topology on Rd. Let geΣ.

Then
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Note that H'βTn - HβTn, e ¥(Rd) and the action of Hβ on this test func-
tion composed with / may be computed by (3.2) and is therefore expressed
by a finite sum of terms involving multiplications with 7̂ /s, //s and opera-
tions N. Selfadjointness of N yields then

(Tnof- Tn/of,g) = ((H-?Tn-H-?Tn,)of,l(g)y

where I is the corresponding action on g and by Lemma 1.1 and Theorem
2.7, geΣ implies l(g)eΣ. Hence there exist peN and meZ+, so that
\\Kg)\\p,m is finite. Since {H~βTn, neN} is Cauchy in the sup-norm, it
follows that {Tnofy neN} is Cauchy *-strongly in Σ*. The sequentially
weak completeness of 21* implies the existence of TeΣ* as the limit of
this sequence. Uniqueness follows by analogous arguments and the
theorem is proved.

Similarly one can show [14]

THEOREM 3.4. Let u-+Tu be a Ck-mapping from Rd into <$f*(Rd), then

fu is Ck in the strong-* topology and

(3.5)

forgeΣ.

If Tu is continuous in u and integrable f i.e. / Tudu, φ\ = (Tu, φ)du

< oo for all φe5f(Rd)\ then

(3.6)

for all geΣ.
Now consider the Dirac distribution δu e 9>:¥(Rd), u e Rd. Form

(3.7) p(a) :=<&(/),!>

for / satisfying the hypothesis of Theorem 3.3. Then, since 1 e Σ, (3.7)
makes sense and p(u) is C°°. Furthermore for φ e <

I φ{u)p(u)du = (φof,iy

i.e. p(u) is the (smooth) density of / and we have proved
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THEOREM 3.5 (Malliavin, Watanabe, •). Let f satisfying the hypothesis

of Theorem 3.3. Then it has a C00-density on Rd, given by (3.7).
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