T. Kurokawa
Nagoya Math, J.
Vol. 111 (1988), 1-11

INTEGRAL REPRESENTATION OF SMOOTH FUNCTIONS
IN WEIGHT CLASSES AND ITS APPLICATION

TAKAHIDE KUROKAWA

§1. Introduction

Let R™ be the n-dimensional Euclidean space, and for each point x =
(x,, - - -, x,) we write |x| = (] + - - - + x2)'%. For a multi-index « = (ey, * * -, @n),
we denote by x* the monomial x{*-..x;", which has degree |a] = > 7, «,.
Similarly, if D, = 9/dx; for 1 < j < n, then

D" =Dy Dy

denotes a differential operator of order |« We also write a! = a,!- - -a,!.
Throughout this paper, let 1 < p < o and (1/p) + (1/p’) = 1. For a real
number r, we denote by L”" the class of all measurable functions f for
which

£l = ([l + larpdz) < oo

The notation 9 denotes the LF-space consisting of all C~-functions with
compact support. The symbol 2’ stands for the topological dual of 2.
Let m be a positive integer. We denote by L2 the space of all ue %’
such that D*u e L»" for any « with |a| = m. We set

(lnsp,r = 25 (|1 Dullp,r -
la]=m

If u belongs to 9, then u can be represented by its partial derivatives of
m-th order as follows (Yu.G. Reshetnyak [4]):

ww = 3 [ I by,
|a| m guo!

where ¢, denotes the surface area of the unit sphere. In this paper, we

are concerned with integral representation of u e C* N L%" and its integral
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estimates. As an application we give an improvement of T.S. Pigolkina’s
result ([3]).

Throughout this paper, we use the symbol C for generic positive
constant whose value may be different at each occurrence, even on the
same line..

§2. Integral representation of smooth functions and its integral
estimates

The following lemma is due to G.O. Okikiolu ([2]).

Lemma 2.1. Let (S, mg) and (T, m;) be measure spaces, and let K(s,t)
be a measurable function on S X T. Suppose that there are positive
measurable functions ¢, on S, ¢, on T and positive constants M,, M, such
that

@1 [, 01K, pldme) < My g7,

@2) [ #671KG, Dldmy(e) < Mpguty .

If the operator Kf is defined by

Kf(s) = [ K, tf@)dma(t),
then

1/p

([, &G Pamy(s)) " < m.38,(] 170rdm. )

The following lemma is proved by applications of Lemma 2.1.

LEmMA 2.2. Let f be a measurable function on (1, ). Then:
(i) If ¢ <1 and ¢ >0, then

][ = oraese-ords < cf i foper-ar.
(ii) If £ >0, then
(i) If ¢ > £ >0, then
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Proof. (1) It suffices to show

ﬂfﬁ'“s - t>“t"”’“f(t)t%—ldt‘;psmlds < Crlf(mpwldt.
We take (S, my) = ((1, o0), s"77'ds), (T, my) = ((1, o0), t*"'dt) and

si(s — it 1<t<s,

K(s, t) =
9 { 0, 1<s<t.

Since ¢ < 1, we can choose a number ¢ such that — 1/p’ < a < — q + (1/p).
For ¢,(s) = ¢.(s) = s*, we can show (2.1) and (2.2). Hence we obtain (i)
by application of Lemma 2.1.

(ii) It is enough to show

J.

We take (S, mg) = ((1, ), (1 + log 8)-2s?'ds), (T, ms) = ((1, o), t*-'dt) and

jss%(s - t)g“lt""“f(t)t”“‘dt%p(l 1 logs)7s*-'ds < Crlf(t)lf’zf’"‘dt.
1 1

s7s — )it 1<t <s,

K(s,t):{
0, 1<s<t.

We can show (2.1) and (2.2) for ¢(s) = s77(1 + logs)? /" and ¢(t) =
t7'(1 4+ log £)~*/* with 0 <e < 1.
(i11)) It is sufficient to show

I

We take (S, my) = ((1, 0), s“7977'ds), (T, m;) = ((1, o), dt) and

r(t — sy fdt ! se-or-ids < € j L@t

(t _ S)Z~1t—q+<1/p) s 1<s< t,

K(s,t):{
0, 1<t<s.

For ¢,(s) = s“ "2/ and () = ¢t7'"", we can show (2.1) and (2.2). We
complete the proof of the lemma.

Let ue C~. For a nonnegative integer %k, by Taylor’s formula u can
be represented as follows:

AN ol L PE ,
uw) = 33 =D wypue) + e+ 3 [T ey puganar
1=k 7! =k +1J1 7!

where x' = x/jx. The remainder term in Taylor’s formula can be con-
sidered as integral representation of a function by its partial derivatives.
Using spherical coordinates, Taylor’s formula and Lemma 2.2 (i), (i1), we
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obtain

ProposiTiON 2.3. Let ¢ and m be positive integers such that £ = m,
and ue C~.

(i) If m — (n/p) —r >0, then

(fm;l lu(x)lplx|(f—ﬂ>pdx)‘/p
= C;p|§—-m<.[le|:I‘Dﬁu(énpdo'(&))l/p + C]a[ 2 (ngl lDau(x)lplxI(’~m+1>pdx)1/p |

=¢—m+1
(ii) If m — (nfp) — r =0, then
1/p
([ u@P + loglad-7ale-ordx )
lzl=21
18lsé—m lal=¢~m+1

<c v ([ IDuerd®)”+c 5 (]| rutopix(c-=vrax) ™.

Now we shall deal with integral representation of ue C~ N L%". For
this purpose we prepare two lemmas. We denote by X, the unit sphere
{¢e R"; |¢]| = 1}, and let m,(E) represent the surface area of E C %,.

LemmA 2.4. Let 1 — (nfp) —r<0. If @ = {¢}iey,..... CC*N L7 isa
family of functions such that D.$, = D,p, for all i,j =1, ---,n, then for
each point x there exists a set E°(x) C X, with m, (3, — E%x)) = 0, which
satisfies the following conditions:

(i) For £ E*(x)

[(ipx—sgids <o, i=1, .
(ii) If we put
¥ = 36 f “gu(x — s8)ds,

then (x) is independent of & € E®(x), and Dy = ¢, (j =1, ---, n).
(iil) For €e E%x) and t >0

v — 1) = 36 g — se)ds.
Proof. By the assumption ¢, € C* N L”", we see that

0 > lelgll¢i(x - y)lpiylprdy = J|5|=1I:’(¢t(x —_ SS)‘pSm”L_ldeo'(E) )
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Hence, if we put E! = U, {E;r]gﬁi(x — s&)ps?rinids — 00}, then m,(E)) =
1
0. By Holder’s inequality and the condition 1 — (n/p) — r <0, we see
that for £e¢ 2, — E}
2.3) fm|¢i(x —s&)ds < oo, i=1--,n.
0
Furthermore, by the assumption ¢, € C* N L>", we have

> [ lgdx = Dpyrrdy

- rr”. ‘ 'r|¢i(x — s&)|Ps?T " (sin §))" - - -(sin B, _,)db, - - -db,,_,ds
1Jo 0

where &, = cosd, [[{icising,(1 £j<n—1) and &, = [[iisind,. Hence
0

there exist sets D, C D, = [0, 7] X ---X [0,z] X --- X[0, z] X [0, 22] C R*~*

(j=1,---,n—1) such that m,_(D.,) =0 and for (4, -, 0 S 0.)¢€

D, - D,

I

2.4) ij:lqii(x — s§)|Ps?" 1 (sinf,)" ' idl,ds < 0,  j=1,---,n—2,

Ijj.:xlsﬁi(x — 8€)psPr*m1dg, _ds < oo

where m,_, stands for the (n — 2)-dimensional Lebesgue measure and the
symbol ~ denotes that the j-th element is deleted. For each positive
number ¢ < z/2, weput C, ;, () =x —s§, e <0, <nr—e(j=1,---,n—2),
and C, ., ,0,.,) =x—s§ 0=<6,., <2z. We shall prove that for (@, ---,
b;, -+, 6,.)eD; — Di ,

@5 liminf[" gz — sg);|ic_y;ﬂ 49, =0, j=1--n—2,
J

$§—o &

1 o o X . dCx,n—l(ﬁn—l) l —
(2.6) h?}lwnffo |a(x SS)II————dgn_l dg,.,=0.

We give the proof of (2.5). We note that

I ac,,; «(6,)
do,

= s(siné,)- - -(sin@,_,) .

We may assume that siné,---sinf,_, = 0. Suppose
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liminf

T
§— o0 &

Clgix — sgz)|’£&f&‘dgj —a>0.
de,
Then there exists a number s, such that for s > s,
al2 < Jﬁ—£|¢i(x — s88)|s(sind,)- - -(sind,_,)d6, .
By Holder’s inequality we have

([ 16dw — o5 sino,)-~ds,ds = Car [ s77+71-2ds = o

So

since 1 — (n/p) — r < 0. However this contradicts (2.4). Hence we obtain
(2.5). We put E;’i = U?;f {5, (01, Ty éj? Ty 9n-1)e D;,j’ 0< 0! < 77"} U
&0, -+, 0,9)eDi,,,0=0,, <2z}, and E°(x) = 2, — (E; U Ui, E}).

Then m,(2, — E%x)) = 0. By (2.3), (2.5), (2.6) and Stokes’ theorem, we see
that for &, 7€ E°(x)

é EiJj@(x — Sf)ds = fi’]ij: ¢z(x — 877)ds .

The formulas D,y = ¢,(j =1, - - -, n) follow from Stokes’ theorem. Thus
we obtain (i) and (ii). The assertion (iii) follows from (ii) and the funda-
mental theorem of calculus. We complete the proof of the lemma.

By repeating use of Lemmas 2.2 (iii) and 2.4, we have

LemMA 2.5. Let m — (nfp) —-r <0 and ue C* N L%". Then:
(1) For a multi-index a with \a|=m

flx — y[" M Du(y)dy < oo

for every x € R".
(ii) There exists a set E, C %, with m, (2, — E,) = 0 such that for
§ekE,

:s’"‘llD“u(x — 88)|lds < o0
lal=m

and

37 (mal)es j s Dru(x — se)ds

la|=m 0

is independent of { € E,.
(i) If we set
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@ = (m/a!)&“I: s Doux — s&)ds, ek,
then for ¢e E, and t >0
ox —t8) = 3 (mjal)er j “(s — ' Dou(x — s&)ds .
la]=m t
(iv)
1/p 1/p
(lelgllv(x)l |xl ( )dx) é Clag‘m (J‘lezllD U(x)‘ lxlp dx) )

Now we shall prove

THEOREM 2.6. Let uc C* N L&" and we suppose that the integral part
[m — (nfp) — r] = k of m — (n/p) — r is not greater than m — 2. Then there
exists a polynomial P(x) = 3 ..1<ip<m-1CsX* such that, if we set v(x) = u(x)
— P(x), then for R+ 1 <|r|Em —1

Do) = 3 P E=9 penyy)dy

lal =m—|71 ol lx - yln

= MLgastm-"'-‘D“’u(x—sS)ds

lal<m-111 !
for almost every &e X,.

Proof. For each B with || = m — 1 we see that

@7 DPu(— t&) — DPu(— t8) = — 31¢, f " Dertbu(— se)ds
j=1 ¢
where the symbol e, stands for the multi-index (0, - -, Ji, -+-,0). Since

k< m -~ 2 implies 1 — (n/p) — r <0, by the condition ue C~ N L&" and
Holder’s inequality we have

rwwu(— st)|ds < oo
0

for almost every £e2,. Hence Dfu(— t&) converges to Cyé) as t — oo,
and by (2.7) we have

(2.8) Cy() — DPu(0) = — ]zl g, J : Deér*Pu(— sE)ds

for almost every é € X,. It follows from Lemma 2.5 and (2.8) that C,(¢) are
the same for almost all £ € X, and we write Cy(¢) = C,. Moreover we have
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Dfu(x — t&) — Dfu(x) = — i} g, J‘bDef‘”ﬂu(x — s)ds.

By an argument similar to the proof of Lemma 2.4 (ii), we see that
Dfu(x — t&) — Dfu(— t€)— 0 as t— oo for almost every £e X,. Hence for
almost every & €2, we have

Diu(x) = C, + Zn, Ejf” DeitPu(x — sg)ds .
J=1 0

We put u,(x) = w(x) — 335 -n-1(Cs/BNx?. For B with || =m — 1 we see
that
Dfu(x) = Dfu(x) — C, = i SjJ‘mDef"ﬂu(x — s€)ds
7=1 0
for almost every £ 2X,. Next let 2 <4 <m — k — 2. Suppose that u,(x)

= u(x) — D m-s<1s1=m-1(Cs/B1)x? and for each multi-index 7 with m — ¢ <
|1l £ m — 1, D'u, can be represented as follows:

Diufx) = 3, m—:rmfafjsm""“lD5+’u(x — s&)ds

pl<m—171 9!

for almost every ¢eX,. If [ri=m —4¢=k+ 2, then m —|7| — (n/p) — r
< 0, so that by Lemma 2.5 (iv) we have

I !Dfu‘(x)ipixlp(r—(m—m))dx < oo ,
lz]21
and hence, since m — |7| — (n/p) — r < — 1,
rmfu,(— sé)|ds < oo
0

for almost every &¢2,. Therefore for |{|=m — £ — 1, D'u(— s€) con-
verges to C, as s — oo, and

D) = C+ 3,8, Dol — se)ds
=1 0

for almost every £eX,. We put u,,, = uf(x) — D> jom_1 (C/ENX* = u(x)
— Y mot-1z1p1sm-1(Co[BDxP. For 7 with m — £ < |7] < m — 1 we see that

D'u, . (x) = D'ux) = 3, —m%VIE‘?I:s’""”"‘D“Tu(x — 8€)ds .

18] =m—Ir| 0

Let |[7|]=m — £ — 1. Since D**'uec C* N L*»" and ¢ — (n/p) — r <0, by
Lemma 2.8(iii) and Fubini’s theorem we have
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Dl (%) = Dux) — C, = 3¢, f "Dy (x — se)ds
j=1 0

= i'. ijm 2 m=lr-1 & J:o(s — pm-m=EDesosiy(x — s&)dsdt

=170 o 1=nST-1 o!

D B
H 0

[6l=m—17r]

for almost every £e 2,. Thus we obtain the function v = u,_,_, which
possesses the following properties: v(x) = u(x) — > ;. 1</55m-1(Cs/BDx? and
forvwithk+1Z|711E€m—1

Drv(x) — Z 5 lTI Eaf m -yl - lDa+ru(x _ sé)ds

laj=m—17|

for almost every £e23,. Therefore we also have
Do) = (1fo)|  Do@do@

_ Z m — Irljm IIO gm-171- ’D“”u(x _ sE)deo‘(f)

lal<m—171  ga!

— Z m — ‘ﬂ (x - y) D‘”Tu(y)dy

lat<m—-1r1  gpoe! lx — y"

we complete the proof of the theorem.

The following corollary is a consequence of Proposition 2.3, Lemma
2.5 and Theorem 2.6.

CoroLLARY 2.7. Let k=[m —(n/p) —r] and ue C> N L%". Then
there exists a polynomial P(x) = 3 ;.1< 5 <m1CsX’ such that, if we set v(x)
= u(x) — P(x), then for v with kR +1<|7|<m —1

(| _iperiapee-max)” = c 5 ([ Du@plpds)”

laj=m

and for v with |r| <k

(I | D'u(x) 2| |- m- 1 dx)“p
lzlz1

zcxy ([ _iru@nards)”+c 5 ([ Dwrde)”

la|=m IrI<181<k

(m—(p)—r=01-..--,m—1),

(I | Dro(x) P + log |xl)—plx|p(r—(m—lrl))dx)1/p
lrjz1
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Irisléisk

é Clnlz=:m (jlxlzl|Ddu(x)lplx|prdx)1/p + C (J.’H:JDJU(E) [pdo(g))llp
m-—(np)—~r=0,1,---,m—1).

§ 3. Density of finite functions

T.S. Pigolkina [3] proved that, if r < 0, then for u < L%" there exists
a sequence {¢y}y-iz... C 2 such that |u — ¢yln.,, tends to 0 as N — oco.
In this section we show that the above assertion holds for all real number r.

First we establish an analogue of Theorem 3.1 in [1]. By [1;p. 13],
for each positive integer m, there exists a function w, which possesses
the following properties:

(i) o,eC~

(i1) w,(x) = 0 for x with |x| = L

(iii) f o, (x)dx = 1.

@iv) jwm(x)x’dx =0for vy with 1 <|r|m— 1

We put 2, = {|x| < 5/4} and 2, = {3(2""°) <|x| <92}, j=1,2, ---. As
in [1; Lemma 1.2], for {2;},..,.. there exist functions {p;}, .. C C*
which satisfy the following conditions:

(1) p, =20 and Y 5.,p,(x) =1 for all xe R".

(i1) suppp, C2,,j=0,1,---.

(iii) |Dp,(x)| < C279'*! for all x e R".
For a locally integrable function u, we set

Emu(x) = ; pj(x)Ju(x — 2w, (y)dy, e>0.

By an argument similar to the proof of Theorem 3.1 in [1], we obtain

ProposiTiON 3.1. If uelLl’, then EMuec C~ N LY and |ETu — ul,.,.,
tends to 0 as ¢ — 0.

Now we shall prove

THEOREM 3.2. If ue L%, then there exists a sequence {¢y}y_1s,... C D
such that |u — ¢yln,p,» tends to 0 as N — co.

Proof. By Proposition 3.1, it suffices to show the theorem for ue C*
N Lz". By Corollary 2.7 there exists a polynomial P of degree m — 1
such that, if we put v = u — P, then v has the properties in Corollary
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2.7. We take a function he C°(R) suchthat 0 <A <1, A(t) =1fort <1
and A(t) =0 for ¢t > 2. For N=2,38, .---, we set

h((og|xP)/log N),  for xx0,
gx(x) =
1, for x =0.

Then gy€ 2. For a multi-index 5 with {8| = 1 we have

(3.1) Dfgy(x) =0  if |x| <N or if |x| > N*,

(3.2) |Dfg(x)| < Clog N)|x|"'® for all xc R".

We put ¢, = g,v. For « with |¢] = m we see that

1D*(w — ¢)l,,r = 1D — gxV)|l,,-

< ([, 1Dv@ra + xpdx) * + ¢ 5 ([ID-reu@Duera + <) dx)
= I} + I%.

Since Dv = Deue L7, I}, tends to 0 as N— co. By (3.1) and (3.2) we
have

1
L<Ccy (L_Sl D@ + loglx})“plxl”“‘(’"“"”“dx) .

b<a

Hence by Corollary 2.7, I% tends to 0 as N — co. Since ¢y € 2, we obtain
the theorem.

REFERENCES

[1] V. L Burenkov, Mollifying operators with variable step and their application to
approximation by infinitely differentiable functions, Nonlinear Analysis, Function
Spaces and Applications Vol. 2, Teubner-texte zur Math., Leipzig, 1982, 5-37.

[2] G. O. Okikiolu, On inequalities for integral operators, Glasgow Math. J., 11 (1970),
126-133.

[8] T. S. Pigolkina, The density of finite functions in weight classes, Math. Notes, 2
(1967), 518-522.

[4] Yu. G. Reshetnyak, The concept of capacity in the theory of functions with gener-
alized derivatives, Siberian Math, J., 10 (1969), 818-842.

Department of Mathematics
College of Liberal Arts
Kagoshima University
Kagoshima 890, Japan








