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THE FEYNMAN INTEGRAL OF QUADRATIC POTENTIALS

DEPENDING ON n TIME VARIABLES

CHULL PARK AND DAVID SKOUG1

§ 1. Introduction

Let Cj[O, T] denote (one-parameter) Wiener space; that is the space
of continuous functions x on [0, T] such that x(0) — 0. In a recent ex-
pository essay [21], Nelson calls attention to some functions on Wiener
space which were discussed in the book of Feynman and Hibbs [13, section
3-10] and in Feynman's original paper [12, section 13]. These functions
have the form

(1.1) G(x) = exp | £ £ W(su s2; x(Sl),

Feynman obtained such functions by integrating out the oscillator coordi-
nates in a system involving a harmonic oscillator interacting with a
particle moving in a potential. Further functions like (1.1) but involving
multiple integrals of more dimensions than two arise when more particles
are involved; the study of such functions is the topic of this paper. In
particular we consider the case where the function W: [0, T]n X Rn -> C
is quadratic in the space variables.

In [8], Chang, Johnson and Skoug consider functions on Wiener
space of the form

(1.2) F(x) = exp {-jy JJ (A(su s2)(x(Sl)} x(s2)), (xfe), x

where {A(sl9 s2) — (α^/Si, s2)): (sl9 s2) e [0, T]2} is a commutative family of 2
by 2 real, symmetric, nonnegative definite matrices with their eigenvalues
Pi(Sι, s2) and p2(sl9 s2) having square roots which are of bounded variation
on the rectangle [0, T]2. They showed that such functions F are in the
Banach algebra S of functions Jon Wiener space which was introduced by
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Cameron and Storvick [6]. In particular the functions F are analytic
Feyman integrable.

In section 3 of this paper we extend these results to functions of the
form

(1.3) F(x) = exp{-

Perhaps more importantly we are able to substantially relax the require-
ments on the eigenvalues pfa, , sn). In this paper we simply require
that the eigenvalues p3(su , sn) be in IΊ([0, T]n) rather than requiring
that their square roots be of bounded variation on [0, T]n

9 a rather difficult
condition to verify for n > 1. In particular this permits us to considerably
simplify the hypothesis of several theorems and corollaries.

In section 4 we extend the results of section 3 to v-dimensional Wiener
space C;[0, Γ] = Cj[0, T] X X d[0, T] (v times). The formulations in
[6] and [19] are y-dimensional with n = 1 (one time parameter) while in
[8], v is 1 with n — 2. In this section we let both n and v be arbitrary
positive integers. In [8] the matrices A(sl9 s2) are 2 by 2 and involve two
time parameters. In [19] the matrices A(s) are v by y and involve one
time parameter. In this section the matrices A(su , sn) are of dimension
nv by nv and involve n time parameters. Of course, it is much more dif-
ficult to increase the number of time parameters than to handle more
position dimensions.

We establish several corollaries which show that the Banach algebra
S contains a broad class of functions involving multiple integrals of
potentials depending on n time parameters. We also show that these
functions are in Albeverio and H0egh-Krohn's space ^(H) of Fresnel
integrable functions [1-3].

It is interesting to note that while the statements of our results
involve only the one-parameter Wiener process, the proofs heavily involve
the M-parameter Wiener process in a most natural way. In particular we
use a stochastic integration formula, see equation (2.9) below, involving
a mix of one-parameter Wiener space and ra-parameter Wiener space.

For some related work other than [8] and [19], see a recent paper by
Elworthy and Truman [11], as well as a 1973 paper by Cameron and
Storvick [5].
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§ 2. Preliminaries

Let w be a positive integer and let Q = [0, T]n. Let Cn = Cn(Q)

denote n-parameter Wiener space; that is the space of continuous functions

f on Q such that /(0, s2, , sn) = f(sl9 0, s3, , sn) = = /fo, , sw_1? 0)

= 0 for all (sl9 , sn) in Q. We let mn denote Wiener measure on Cn(Q)

and we denote the Wiener integral of a measurable function F: Cn(Q)->

C by

ί F(f)dmn(f).
J Cn(Q)

Next we give the definition of the Paley-Wiener-Zygmund (P.W.Z.)

integral for functions of n variables. Let {φ3) be a complete orthonormal

(CON) set of functions of bounded variation in the sense of Hardy-Krause

[4] on Q = [0, T]\ For g in L2(Q), let

(2.1) gm(su - , sn) =

The P.W.Z. integral is defined by the formula

(2.2) I g ( s u - , s n ) d n f ( s u , s n ) = l i m ί ^ m ( 5 1 ? > , s n ) d f ( s u • • • , « „ )

for all / in Cn(Q) for which the limit exists. (In the case n = 1, we denote

the P.W.Z. integral by fΓ^(s)dx(s).)
Jo

We need the concept of scale-invariant measurability [17, 7] in order

to state various properties of the P.W.Z. integral. A subset A of Cn(Q)

is said to be scale-invariant measurable provided pA is Wiener measurable

for every p > 0, and a scale-invariant measurable set N is said to be scale-

invariant null provided mn(pN) = 0 for every p > 0. A property that

holds except on a scale-invariant null set is said to hold scale-invariant

almost everywhere (s-a.e.)

Next we state some useful facts about the P.W.Z. integral.

(2.3) For each g in L2(Q), the P.W.Z. integral f gdj exists for s-a.e. /
JQ

in Cn(Q).

(2.4) The P.W.Z. integral f gdj is essentially independent of the CON
JQ

set {φj}.
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(2.5) If g is of bounded variation on Q, then the P.W.Z. integral I gdj is
JQ

s-a.e. equal to the Riemann Stieltjes integral gdf
JQ

(2.6) The P.W.Z. integral has the usual linearity properties.

(2.7) The map sending g in L2(Q) to the function Fg on Cn(Q) given by

Fg(f) = gdnf is an isometric isomorphism of L2(Q) into L2(Cn(Q),mn).
J Q

Moreover, f expfi f gdnf]άmn(f) = exp{-i||g||!}.
J Cn(Q) I JQ J

(2.8) The sequence < gmdf\, gm given by (2.1) above, considered as a
UQ J

function of /, converges in L2(Cn(Q), mn) mean to gdnf.
JQ

Finally we give a stochastic integration formula involving a mix of

one-parameter Wiener space and ra-parameter Wiener space that follows

quite easily from a Fubini Theorem for multi-parameter P.W.Z. integrals

that we recently established. This formula plays a major role in the

proof of our main result, Theorem 3.1 below.

THEOREM 2.1. Let n be a positive integer, let Q = [0, T]n and let h e

L2{Q). For k = 1, 2, , n let Ek(sk) = [0, Γ]*"1 X [sfc, Γ] X [0, T]n~\ Then

for k = 1, 2, , n

(2.9) ί h ( s i 9 , s n ) x ( s k ) d n f ( s u •••,«„)
JQ

= ΓΓf h&> ' Od»/(ίi, , tn)]dx(sύ
JO U Ek(Sk) J

for mxxmn- a.e. (x,f) e C^O, Γ] X Cn(Q).

Proof By use of the Fubini Theorem we obtain:

I h(su - , snMs^dJis, ••-,«„)
JQ

= J Λfe, •••,«„) | J o Z[0,Sλ;](w)dΛ;(w)jdw/(si, , sn)

= £ [ J Λfe, , sn)XίUtT1(sk)dnf(sl9

= Γ f f h(sl9 ',sn)dnf(sl9 , s
JO U Ek(u)
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§ 3. Quadratic potentials involving n-dimensional integrals

First we define the Banach algebra S mentioned in the introduction.

Let M = M(L2[0, T]) be the collection of complex-valued countably addi-

tive measures on J = J*(L2[0, T]), the Borel class of L2[0, T]. I is a

Banach algebra under the total variation norm where convolution is taken

as the multiplication. The Banach algebra S consists of functions F on

CJO, T] expressible in the form

F(x) = f exp ίi Π g(s)dx(s))dσ(g)
Ji2[o,r] I Jo J

for s-a.e. x in CJO, T], where a is an element of M. Cameron and Storvick

show that the correspondence σ ^-F is one-to-one [6, Theorem 2.1] and

carries convolution into pointwise multiplication. Furthermore the an-

alytic Feyman integral exists for every F in S [6, Theorem 5.1].

THEOREM 3.1. Assume that for s-a.e. xe CΊ[O, T], F(x) is given by (1.3)

where {A(sl9 , an) = {aί3(su , sj): ίj = 1, 2, , n, (su , sn) e Q} is a

commutative family of n by n real, symmetric, nonnegatίve definite matrices

such that the nonnegative eigenvalues pfa, , sn) , Pnis^ , sn) are

each elements of L^Q). Then F is in the Banach algebra S and hence is

analytic Feynman integrable.

Proof. We seek an element σ in M(L2[0, T]) such that for each p > 0,

F(px) = ί expίi^o ί g(s)dx(s))dσ(g)
JL 2 [O,Γ] I JO J

for raj-a.e. x in Cj[O, T]. Let B = (6 ί ;) be an orthogonal matrix such that

BA(su , s J S " 1 = P(s1? - - -, sn) throughout Q where P(su - - -, sn) is a

diagonal matrix with nonnegative entries Afo, , sn), , pπ(s1? , sn) e

Let jo > 0 be given. Then for m ra.e. x e C^O, Γ], we have

(3.1) F(px)

= exp{- ^J^B-'PBWs,), , *(sB)), (x(Sl), , x(s

ί Γ n Xn I 2 1
= exp - p2\ 2] p/s!, , sn) Σ 6^x(sfc) dδi dsn \

= exp{- jtj^P^Σb^iPjisu • • , sn)r2x(sk)Jdsr • -dsn
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= ί f e x p f £ Up V~2 ί f £ bίk(Pj(Sl, ••-, sn)r*x(Sh)]
J Cn(Q) J Cn(Q) lj = l\ JQLk = l A

dnfj(Si, , s^jydmnif^dmnif^)' -dmn(fn)

Γ C ( . n n / fT V C
I I i « / O \ ' v ' / I I I ί» / /•* -i \\1/2

J Cn{Q) J C»(Q) I k = l .7=1 \ J θ LJ Ek(sk)

mn(fi)" -dmn(fn),

where we have made use of Theorem 2.1.

Next we define F\ [Cn(Q)]n -> L2[0, Γ] by the formula

( 3 . 2 ) ^ ( Λ , , fn)(s) = J ~ 2 ± ± bjk ί (Pj(tl9 , O ) 1 / 2 d « Λ ( ί i , •••,*.)•
* = l ^ = l J Ek(s)

We need to show that ^" is a Borel measurable function of (s, /i, , fn)

on [0, Γ] X [Cn(Q)]n and that for mn X mn X X mn - a.e. (fu ,/n) in

[Cβ(Q)]n, ^(Λ, ••-,/„)(•) is in L2[0, T]. But these facts will follow quite

readily once we show that each term

gjk(s, f3) = f [Pj(tu , O]1/2d»/#i, , O = f Jpjti nitidnffa, - , O

on the right hand side of (3.2) satisfies properties (a) and (b) below:

(a) gjk(s, fj) is a Borel measurable function of (s, fά) on [0, T] x Cn{Q).

(b) For s-a.e. fj in Cn(Q), ft*(s, /,) is in L2[0, ϊ 7].

Proo/ of claim (a). Let {̂ } be a CON set of functions of bounded

variation on Q. Let Φ(s)(tu . , O [0, T] -> L2(Q) be given by

ΦίsXί,, , tn) = [p,(ί,, ,

Then, Φ is continuous and hence Borel measurable. Also

(3.3) gjk(s, /,) = ί Φ(s)(tu ., fjdn/ifo, -..,/„)

= lim Σ(Φ(s), ^ ) f ζi/ί,, , tjdfjit,, •••,tn).

It is easy to see that each term on the right hand side of (3.3) is a

continuous and hence Borel measurable function of (s, fj) on [0, T] x Cn(Q)

and so gjk(s, f3) is Borel measurable.

Proof of claim (b). This follows from the Fubini Theorem:
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f
J

Cn(Q) \J 0

= Γ(f g%{s, QdmJJ^ds
Jθ \J Cn(Q) J

Thus we arrive at the following expression for m,-a.e. xe Ci[O, T]:

(3.4) F(px) = f f expfip fV(/1 ; , /;)(SMx(s) W ( / , ) • dm,,(/B)
J Cn(Q) J Cn(Q) I Jθ J

= I exp lip f £(s)cb(
JL 2 [O,T] I JO

with σ ΞΞ [mj n o j - - 1 e Λf(L2[0, T]). This expression for F implies that F

is in the Banach algebra S, which concludes the proof of Theorem 3.1.

Next we develop several corollaries to Theorem 3.1. Our first corol-

lary is the main result in [8].

COROLLARY 3.1. THEOREM 4.1 of [8]. This is the case n — 2 and the

eigenvalues px(su s2) and p2(su s2) have square roots which are of bounded

variation on [0, T]2.

In order to apply Theorem 3.1 to functions F of the form (1.3) one

needs to compute the n eigenvalues pfa, , sn)> , pn(su , sn) and

show that they are in Lλ(Q). In our next corollary we put the hypothesis

directly on the functions a^is^ , sn) rather than on the eigenvalues.

The hypotheses of this corollary are very simple as compared to those of

the corresponding corollary in [8, Corollary 4.2].

COROLLARY 3.2. Let F(x) be of the form (1.3) where the matrices

{A(sl9 - , sn) = (α^(Si, , sn)): ί, j = 1, 2, , n} are a commutative family

of n by n real, symmetric, positive definite matrices with the functions

ai5{su - - , sn) all in L^Q). Then the conclusions of Theorem 3.1 hold.

Proof Since BA(st, , sJB'1 = P(su , sn), a diagonal matrix with

the eigenvalues pfa, , sn), -9pn(βl9 , sn) along the diagonal, we see

that each eigenvalue Pj(su , sn) is a finite linear combination of the

functions ais(su , sn) and so is in Lt(Q).

C O R O L L A R Y 3 . 3 . L e t F(x) be of t h e f o r m ( 1 . 3 ) w i t h A ( s l 9 •••, s n ) =

g(su , sJA where g(su , 5J > 0 is m L^Q) α7ic? A is a real, constant,
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symmetric and nonnegatίυe definite matrix. Then the conclusions of Theorem

3.1 hold since the eigenvalues of A(su •• ,5r i) are simply the eigenvalues

of A multiplied by the Lλ-function g(su , sn).

In our next corollary we show that a broad class of functions belong

to the Banach algebra S.

COROLLARY 3.4. Let {A(sί9 , sn)} be as in Theorem 3.1. Let η be a

Borel measure on Q = [0, T]n. Let θ: Q X Rn -> C be such that for all

(sί9 ,sn)eQ,

θ(su , sn; uu , un) = I e x p ( i f ] . uJυλdσi8ir..,,n)(υl9 - ,vn)

where

ii) /or all Ee^(Rn), <7(Sl)...,Sw)(ίJ) is α Borel measurable function of

ί/ie function

(3.5) G(x)

= exp(— I <A(s1? , sn)(*(ί?i), -,x(sn)\ (xis,), •, x(sn))}dsι ds f t

+ J β(s!, , s«; x(s ;) , oc(sn))dη(sί9 , s n ) |

belongs to S.

Proof. Let G^x) = exp ( j ^(sl7 , sn; φ j , , x(sn))dη(sl9 , s n ) | .

Then G(x) = F(x)G1(x) where F(x) is given by (1.3). By Theorem 3.1

above, F belongs to S and by Corollary 4 of [10], G^x) belongs to S.

Since S is a Banach algebra we have G e S.

§ 4. The ^-dimensional theory

Let y be a positive integer and let Cί[0, T] denote ^-dimensional

Wiener space; that is the set of i?v-valued continuous functions ϊ£ =

(xί9 - , xv) on [0, T] such that J?(0) = 0. Let ml denote Wiener measure

on C;[0, T] and let M(L;[0, T]) be the collection of complex-valued count-

ably additive measures on &(LV

2[Q9 T]). The Banach algebra S(v) consists

of functions F on Cϊ[0, Γ] expressible in the form
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F(ϊ) = f exp \i Σ Γvk(t)dxk(t)]dσ(vl9 ., vv)

for s-a.e. J? in C[[0, T], where σ is an element of M(Lv

2[0, T]).

In this section, as mentioned birefly in the introduction, we extend

the results of section 3 to CJ[O, T], We first give a v-dimensional version

of Theorem 3.1.

THEOREM 4.1. Let n and v be positive integers. Assume that for s-

a.e. X in Cϊ[0, T],

= exp {- Γ \\A(SU , sn)
I J o J o

{A(su , sn) = (α,/sj, , 5.)): i, = 1, 2, . , vn9 (su , sn) e Q] is

a commutative family of vn by vn real, symmetric, nonnegative definite

matrices such that the (nonnegative) eigenvalues Pι(su , sn), -9pvn(sί9

- - , sn) are each elements of LX(Q). Then F is in the Banach algebra S(v).

Furthermore F is analytic Feynman ίntegrable.

Outline of Proof. We may assume that both n and v are greater than

1 since the case v = 1 and general n is Theorem 3.1 above, while the case

n — 1 and general v is the main result of [19]. We will omit the measur-

ability arguments; they are similar to arguments given eariler in this

paper. In fact we will simply give a brief outline of the key calculations.

These calculations however are quite complicated.

For r e R let h[r] denote the greatest integer less than or equal to r.

Let p > 0 be given. Let B — (δi)fc) be an vn by vn orthogonal matrix such

that BA(su , sJ-B"1 = P(su , sn) throughout Q where P(sl9 , sn) is

an vn by vn diagonal matrix with nonnegative entries p^Sj, , sn)9 ,

Pvn(si, , sn)9 the eigenvalues of A(sl9 , sn). Then for mj-a.e. H in

C;[0, T] we obtain that

F(PX) = exp[- P2IQ<P(*U ' ' ,sn)B(X(Sl), , X(sn)\

ds, dsn

vn
 Γ

= Σ eXp —
y = i L

n
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= f f exp ί ^ V Ύ Σ Σ I {bj^lpjis,, .., sn)]1/2xι+{k_1)mod{v)
J Cn{Q) J Cn(Q) L k = l j = lJQ

= f f exp \iPVτ ΣΣ\Ί\ b MU, , OF
J Cn(Q) J Cn(Q) L fc = l J = l JO U J"*

1

where the last equality follows from Theorem 2.1 and Jk denotes the set
-Si+Λ[(fc-i)/p](Si-ΛC(fc-i)/p]); see Theorem 2.1 for the definition of Ek(sk).

N e x t for α = 1, 2, « . , y l e t

n p

b^+Apfr, •••,
= l J Em + i(s)

Then

== f f expfip ± \T^*(f» ••-,U(s)dxa(s)] dw,(/,) dmn(U .

Now let SΓ: [Cn(Q)y -* L&0, T] be defined by the formula SΓ{fu • • -,/„„)(•)
= (^Ί(fu • • ,Λ.X ), . ^".(Λ. •./-)(•)), and let σ = [mn]'n ° r~\ Then
a is an element of M(L"2[0, T]) and for mϊ-a.e. A* in C;[0, Γ] we have,
using the change of variables theorem [14, p. 163], that

F(pT) = ί exp Up ± \TvMdxxΔdσiv,, • • •, vv) .

Thus F is an element of S(v) which completes the proof of Theorem 4.1.

Remark. Note that Theorem 4.1 has many corollaries; for example
the main result of [8], the main result of [19] and Theorem 3.1 above.
In addition, Corollaries 3.2-3.4 above all have u-dimensional counterparts
which are quite straightforward to formulate and hence precise statements
of them will not be given.

§ 5. Fresnel integrals

In this section we show that functions of the form (1.3) or (3.5) with
an appropriate slight modification are Fresnel integrable. Let H be the
space of absolutely continuous functions T on [0, T] which vanish at T
and whose derivatives Dϊ are in L2[0, T], H is a Hubert space under the
inner product
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r» r2) = \

Albeverio and H0egh-Krohn's space ^(H) of Fresnel integrable functions
consists of Fourier transforms of finite Borel measures on H[l]. The
spaces ^(H) and S are isometrically isomorphic as Banach algebras as
was shown by Johnson [15].

THEOREM 5.1. For each ϊ in H let

(5.1) G(ϊ) = exp{- £ . -J\A(S19 , sn)(γ(Sί) - 7(0), , 7(sn) - 7(0)),

(7(s,) - 7(0), , 7(sn) - (0)) > dsr ώn}

where the matrices {A(su •• ,s7i)} are as in Theorem 3.1. Then G is in

Proof, This theorem follows from Theorem 3.1 above and ideas from
[15]. The key idea is that equation (2.9) holds for s-a.e. / in Cn(Q) for
each x in CΊ[O, T] which is absolutely continuous and whose derivative is
in L2[0, T]. This, in turn, implies that equation (3.4) holds for each such x.

Finally, using Theorem 5.1, a result from [9], and the fact that 3^(H)
is a Banach algebra we obtain the following corollary.

COROLLARY 5.1. Let {A(su ---,sn)}, η and θ be as in Corollary 3.4.

For ϊ in H let

Gβ) = exp j £ . ^θ(su - , sn; ΠΛ) - r(0), , ϊ(sn) - r(0))dη(su , sw)J .

Then the functions GX(T) and Gι(T)G(T)9 where G is given by equation (5.1),

are in the Banach algebra

Remark. Proceeding as in section 4 above it is quite easy to see that
Theorem 5.1 and Corollary 5.1 also have ^-dimensional counterparts.
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